Modeling and Data Analysis Report

for

Joe Pool Lake Watershed Protection Plan (WPP) Development

Funded by

The Texas Commission on Environmental Quality (Contract No. 582-20-10162)

Investigating Entities

Texas A&M AgriLife Research The Trinity River Authority of Texas

Prepared by

Avay Risal, Texas A&M AgriLife Research Shubham Jain, Texas A&M AgriLife Research Katie Mendoza, Texas A&M AgriLife Research R. Srinivasan, Texas A&M AgriLife Research Heather Firn, Trinity River Authority Webster Mangham, Trinity River Authority

August 2021

Funding provided by the Texas Commission on Environmental Quality through a Clean Water Act § 319(h) grant from the U.S. Environmental Protection Agency.

Table of Contents

List of Figures	iv
List of Tables	viii
List of Acronyms	x
1.0 Introduction	12
1.1 Problem Statement	13
1.2 Pollutant Source Assessment and Load Evaluation	14
1.3 Study Area Description	16
2.0 Methods	21
2.1 Data Collection Activities	21
2.1.1 Texas Surface Water Quality Standards	24
2.1.2 Nutrient Screening Levels and Reference Criteria	25
2.1.3 Segment Impairments and Concerns	26
2.1.4 Geospatial Data Collection	
2.2 Statistical Analysis	
2.3 SWAT	
2.4 LDC and FDC	
2.5 SELECT	
2.5.1 General Approach	
2.5.2 Point Source: WWTFs	40
2.5.3 Point Source: SSOs	42
2.5.4 Nonpoint Source: Dogs & Cats	46
2.5.5 Nonpoint Source: Livestock, Deer, Horse & Feral Hogs	47
2.5.6 Nonpoint Source: OSSFs	
3.0 Results and Discussion	54
3.1 Statistical Analysis	54
3.1.1 <i>E.coli</i>	55
3.1.2 Nutrients	56
3.1.3 Solids	61
3.1.4 Correlation Analysis	62
3.2 LDC Analysis	62
3.2.1 Nutrients	62

3.2.2 E.coli	70
3.3 SELECT Analysis	75
4.0 Conclusions	80
References	83
Appendix A. Geospatial Data Sources Used for Watershed Analysis	86
Appendix B. LDCs Results	90
Appendix C. Geometric mean of Nutrient and Bacteria Load	117
Appendix D. Site Summaries for <i>E.coli</i> and Streamflow	122

List of Figures

Figure 1-1. JPL watershed.	13
Figure 1-2. Discharges to JPL watershed	17
Figure 1-3. Land Use across the JPL watershed	20
Figure 1-4. Land cover across the JPL watershed	20
Figure 2-1. JPL watershed, its subbasins, USGS gages, monitoring stations, and stream network	22
Figure 2-2. Land Cover Distribution upland of monitoring stations across the JPL watershed	23
Figure 2-3. Historically impaired segments and water quality concerns in the watershed	27
Figure 2-4. Flow categories and regions of likely pollutant sources along an example load duratio	n curve.
	33
Figure 2-5. Flow duration curve example from JPL watershed (log scale Y-axis).	34
Figure 2-6. Load duration curve example from JPL watershed (log scale Y-axis).	35
Figure 2-7. Load duration curve example for E.coli, with flow condition breakdowns and load red	uction
estimates	36
Figure 2-8. JPL subwatersheds and stream network for the use in SELECT analysis	
Figure 2-9. Potential Sources of E.coli loading in JPL watershed	40
Figure 2-10. Location of Sanitary Sewer Overflows in the JPL watershed	43
Figure 2-11. Permeability of soils in the JPL watershed.	50
Figure 2-12. Permitted OSSFs across the JPL (left) and permitted OSSFs within the 330-ft riparian	buffer
(right)	52
Figure 3-1. Hydrology and E.coli parameters, Walnut Creek at Matlock Road (13621)	54
Figure 3-2. Boxplots and geomeans for E.coli samples collected June 2019-April 2020; a) Walnut	Creek,
b) Mountain Creek, c) JPL.	55
Figure 3-3. Boxplots and geomeans for Nitrate samples collected June 2019-April 2020; a) Walnu	t Creek,
b) Mountain Creek, c) JPL.	56
Figure 3-4. Boxplots and geomeans for TKN samples collected June 2019-April 2020; a) Walnut C	reek, b)
Mountain Creek, c) JPL	57
Figure 3-5. Boxplots and geomeans for TP samples collected June 2019 - April 2020; a) Walnut Cr	eek, b)
Mountain Creek, c) JPL	58
Figure 3-6. Boxplots and geomeans for OP samples collected June 2019-April 2020; a) Walnut Cre	eek, b)
Mountain Creek, c) JPL	59
Figure 3-7. Boxplots and geomeans for Chlorophyll-a samples collected June 2019-April 2020; a)	Walnut
Creek, b) Mountain Creek, c) JPL.	60
Figure 3-8. Boxplots and geomeans for TDS samples collected June 2019-April 2020; a) Walnut Co	reek, b)
Mountain Creek, c) JPL	61
Figure 3-9. NO _x exceedance at Station 13621 and Station 22134.	63
Figure 3-10. Load Duration Curve NO _x Station 16434 Mountain Creek at US 287	64
Figure 3-11. Load Duration Curve NO _x Site 22134 Soap Creek	65
Figure 3-12. TKN exceedance for all flow conditions at five stations in the JPL watershed	67
Figure 3-13. LDC for TKN at monitoring station 22134	68
Figure 3-14. E.coli exceedances for all flow conditions at seven stations in the JPL watershed	70
Figure 3-15. LDC for E.coli at monitoring station 13621	72
Figure 3-16. LDC for E.coli at monitoring station 16434	73
Figure 3-17. Relative severity of E.coli loads from cattle, sheep & goats, and horses, by subwaters	shed. 75

Figure 3-18. Relative severity of E.coli loads from deer, feral hogs, and dogs & cats, by subwatershed7	'6
Figure 3-19. Relative severity of E.coli loads from human waste sources, by subwatershed	'6
Figure 3-20. Relative severity of E.coli loads from all sources by subwatershed	'8
Figure 3-21 Daily potential E.coli load ranges by source categories. All values are area-normalized7	/8

Figure B - 1. LDC for NO _x at monitoring station 16433.	.90
Figure B - 2. LDC for TKN at monitoring station 16433	.90
Figure B - 3. LDC for OP at monitoring station 16433	.91
Figure B - 4. LDC for TP at monitoring station 16433	.91
Figure B - 5. LDC for <i>E.coli</i> at monitoring station 16433	.92
Figure B - 6. LDC for NO _x at monitoring station 22135.	.93
Figure B - 7. LDC for TKN at monitoring station 22135	.93
Figure B - 8. LDC for OP at monitoring station 22135	.94
Figure B - 9. LDC for TP at monitoring station 22135	.94
Figure B - 10. LDC for <i>E.coli</i> at monitoring station 22135	.95
Figure B - 11. LDC for NO _x at monitoring station 22134.	.96
Figure B - 12. LDC for TKN at monitoring station 22134	.96
Figure B - 13. LDC for OP at monitoring station 22134	.97
Figure B - 14. LDC for TP at monitoring station 22134	.97
Figure B - 15. LDC for <i>E.coli</i> at monitoring station 22134	.98
Figure B - 16. LDC for NO _x at monitoring station 16434.	.99
Figure B - 17. LDC for TKN at monitoring station 16434	.99
Figure B - 18. LDC for OP at monitoring station 164341	100
Figure B - 19. LDC for TP at monitoring station 164341	100
Figure B - 20. LDC for <i>E.coli</i> at monitoring station 164341	L01
Figure B - 21. LDC for NO _x at monitoring station 136221	L02
Figure B - 22. LDC for TKN at monitoring station 136221	102
Figure B - 23. LDC for OP at monitoring station 136221	L03
Figure B - 24. LDC for TP at monitoring station 136221	L03
Figure B - 25. LDC for <i>E.coli</i> at monitoring station 136221	L04
Figure B - 26. LDC for NO _x at monitoring station 221331	L05
Figure B - 27. LDC for TKN at monitoring station 221331	L05
Figure B - 28. LDC for OP at monitoring station 221331	L06
Figure B - 29. LDC for TP at monitoring station 221331	L06
Figure B - 30. LDC for <i>E.coli</i> at monitoring station 221331	L07
Figure B - 31. LDC for NO _x at monitoring station 136211	108
Figure B - 32. LDC for TKN at monitoring station 136211	108
Figure B - 33. LDC for OP at monitoring station 136211	109
Figure B - 34. LDC for TP at monitoring station 136211	109
Figure B - 35. LDC for <i>E.coli</i> at monitoring station 136211	110
Figure B - 36. LDC for NO _x at monitoring station 219901	111
Figure B - 37. LDC for TKN at monitoring station 219901	111
Figure B - 38. LDC for OP at monitoring station 219901	12
Figure B - 39. LDC for TP at monitoring station 219901	L12
Figure B - 40. LDC for <i>E.coli</i> at monitoring station 219901	L13
Figure B - 41. LDC for NO _x at monitoring station 207901	114
Figure B - 42. LDC for TKN at monitoring station 207901	114
Figure B - 43. LDC for OP at monitoring station 207901	L15
Figure B - 44. LDC for TP at monitoring station 207901	L15

Figure B - 45. LDC for <i>E.coli</i> at monitoring station 2079011	16
--	----

Figure D - 1. Hydrology and E.coli parameters, Walnut Creek @ FM 2738 (22131)	
Figure D - 2. Hydrology and E.coli parameters, Walnut Creek @ Retta Road (20790)	
Figure D - 3. Hydrology and E.coli parameters, Walnut Creek @ Katherine Rose Park(21990)	
Figure D - 4. Hydrology and E.coli Parameters, Mountain Creek @ US 287 (16434)	
Figure D - 5. Hydrology and E.coli Parameters, Mountain Creek @ FM 157 (13622)	
Figure D - 6. Hydrology and E.coli parameters, Soap Creek 1.1 km upstream of Mountain Creek	(22134).
Figure D - 7. Hydrology and E.coli parameters, Hollings Branch @ Tangle Ridge Road (16433)	
Figure D - 8. Hydrology and E.coli parameters, Low Branch @ South Holland Rd (22135)	126

List of Tables

Table 1-1. Summary of Land use for the JPL watershed from 2019 LiDAR	. 19
Table 2-1. Percent of land cover upstream from each monitoring stations across the JPL watershed	. 23
Table 2-2. List of monitoring stations, site description, location, and data period of record	.24
Table 2-3. Designated uses and site-specific water quality standards for segments in the watershed	. 25
Table 2-4. TCEQ Water Quality Screening Criteria for different constituents	. 25
Table 2-5. Record of impairments and concerns in the JPL watershed	. 28
Table 2-6. Summary of statistics obtained during calibration of streamflow at the outlet of two	
monitoring stations in JPL watershed	.31
Table 2-7. List of SWAT calibration parameters, their minimum, maximum, fitted value, and significance	ce
statistics found using KGE for JPL watershed.	. 32
Table 2-8. E.coli loading factors for calculating E.coli loads from various sources	. 38
Table 2-9. Compliance history for active WWTFs in the JPL watershed	.41
Table 2-10. Location, start and end date of overflow, cause of overflow, overflow amount, and status	of
the SSOs in JPL watershed.	.44
Table 2-11. Equations to calculate the E.coli loads for various livestock, deer, feral hogs, and avian	.47
Table 2-12. Total land cover acreages for relevant land uses in JPL watershed.	.48
Table 2-13. Percentage of area of different counties falling within the boundary of JPL Watershed from	n
NLCD 2016	. 48
Table 2-14. Assumed populations of various large mammals in the watershed based on Steering	
Committee (SC) recommendations	. 48
Table 2-15. Proposed population density adjustments based on % of each land use type used by each	
animal classification across watershed	. 48
Table 2-16. Estimated animal densities, animals/acre and acres/animal basis.	.49
Table 2-17. Acreages used in calculation of feral hog population (in green).	.49
Table 2-18. Permitted and "non-permitted" Onsite Sewage Facilities (OSSF), their failure rates, average	e
person per household, and average E.coli Load produced by subwatershed	. 53
Table 3-1. Correlation Coefficients for data collected June 2019-April 2020	. 62
Table 3-2. Average allowable loading, estimated loading, and load reduction of NO _x for monitoring	
station 22134.	. 65
Table 3-3. Summary of water quality screening exceedance at different flow conditions for NO _x	.66
Table 3-4. Average allowable loading, estimated loading, and load reduction of TKN for monitoring	
station 22134.	. 68
Table 3-5. Summary of EPA water quality screening level exceedance at different flow conditions for	
TKN	. 69
Table 3-6. E.coli historical statistics from 1998-2016 across the JPL watershed	.71
Table 3-7. Average allowable loading, estimated loading, and load reduction of E.coli loading for	
monitoring station 13621.	.72
Table 3-8. Average allowable loading, estimated loading, and load reduction of E.coli loading for	
monitoring station 16434.	.73
Table 3-9. Summary of TCEQ water quality standard exceedance at different flow conditions for E.coli.	.74
Table 3-10. Potential Load of E.coli (MPN/day) from point and nonpoint sources for subbasins in JPL	
watershed as predicted by SELECT analysis	. 79

7
ē
8
9
0
1

List of Acronyms

AMLE	Adjusted Maximum Likelihood Estimation	
AU	assessment unit	
BG	block groups	
BMP	Best Management Practice	
CFS	Cubic Feet Per Second	
Chl-a	Chlorophyll-a	
DO	Dissolved Oxygen	
DFW	Dallas-Fort Worth Metroplex	
DWU	Dallas Water Utilities	
EC	E.coli	
EPA	U.S. Environmental Protection Agency	
E.coli	Escherichia coli	
FC	Fecal Coliform	
FDC	Flow Duration Curve	
GIS	geographic information system	
НН	households	
HRU	Hydrologic Response Unit	
HUC	Hydrologic Unit Code	
I/I	inflow/infiltration	
IPL	Integrated Pipeline Project	
IR	TCEQ Integrated Report of Surface Water Quality	
JPL	Joe Pool Lake	
KGE	Kling-Gupta efficiency	
LDC	Load Duration Curve	
LAD	Least Absolute Deviation	
LOADEST	LOAD Estimation program	
LULC	Land Use and Land Cover	
MLE	Maximum Likelihood Estimation	
MS4	Municipal Separate Sewer System	
NAAS	National Agricultural Statistics Service	
NHD	National Hydrography Dataset	
NLCD	National Land Cover Database	
NO ₂	nitrite	
NO ₃	nitrate	
NOx	nitrogen (NO ₃ + NO ₂)	
NSE	Nash-Sutcliffe Efficiency	
OP	ortho-phosphate phosphorous	
OSSF	on-site sewage facility (septic system)	
PBIAS	percent bias	
R ²	coefficient of determination	
SELECT	Spatially Explicit Load Enrichment Calculation Tool	
SSO	sanitary sewer overflow	
SWAT	Soil and Water Assessment Tool	
SWQM	Surface Water Quality Monitoring	
TAMU	Texas A&M AgriLife	
TCEQ	Texas Commission on Environmental Quality	

TKN	total Kjedahl nitrogen
TMDL	total maximum daily load
TNRIS	Texas Natural Resources Information System
ТР	total phosphorous
TPWD	Texas Parks and Wildlife Department
TRA	Trinity River Authority
TRWD	Tarrant Regional Water District
TSWQS	Texas Surface Water Quality Standards
USACE	U.S. Army Corps of Engineers
USDA	United States Department of Agriculture
USGS	U.S. Geological Survey
VSS	volatile suspended solids
WPP	watershed protection plan
WWTF	wastewater treatment facility

1.0 Introduction

This technical report was prepared as part of an effort to address the growing water quality concerns associated with the rapid development expected within the Joe Pool Lake (JPL) watershed in recent and coming years. Drinking water from JPL is utilized by over forty-thousand people in the city of Midlothian and the communities of Venus, Rockett, Mountain Peak, Sardis, and parts of southern Grand Prairie. Additionally, JPL is expected to be further developed by the cities of Cedar Hill, Duncanville, and Grand Prairie for their own municipal use. JPL has also been designated as a potential terminal storage reservoir for the Tarrant Regional Water District (TRWD) and Dallas Water Utilities (DWU) Integrated Pipeline Project (IPL), which seeks to connect three reservoirs in east Texas (Richland Chambers, Cedar Creek, and Lake Palestine) to other reservoirs in the Dallas-Fort Worth (DFW) metroplex to enhance the future water supply of the region and to provide for redundancy in the water supply system (Figure 1-1). This project will identify sources, quantify load reduction targets, and result in the creation of a watershed protection plan (WPP) document. The WPP will provide best management practice (BMP) recommendations to achieve those targets to local stakeholder groups who will implement those recommended BMPs to mitigate water quality concerns throughout the watershed. These recommendations will be based on targeted water quality sampling, analysis, and modeling for water quality constituents including, but not limited to, Escherichia coli (E.coli), Nitrite (NO₂), Nitrate (NO₃), Total Kjedahl Nitrogen (TKN), Total Phosphorous (TP), and Ortho-phosphate Phosphorous (OP).

Basemap: ESRI; Stream data source: NHD Figure 1-1. JPL watershed.

1.1 Problem Statement

Portions of JPL and Mountain Creek have experienced elevated levels of nitrate and *E.coli*. Walnut Creek, one of Joe Pool's two main tributaries, was listed on the 2014 Texas Commission on Environmental Quality (TCEQ) Texas Water Quality Inventory and 303(d) List due to elevated levels of *E.coli*, with its first listing occurring in 2006. Most of the impaired segment flows through the city limits of Mansfield. As of the 2018 TCEQ Integrated Report of Surface Water Quality (IR) Walnut Creek has been delisted. Additionally, the Mountain Creek arm of JPL was listed on the 2014 Water Quality Inventory—Water Bodies with Concerns for Use Attainment and Screening Levels for general use concerns due to elevated levels of nitrate. The Cities of Cedar Hill, Grand Prairie, and Mansfield all border this segment of concern. As of the 2018 TCEQ IR, the Mountain Creek arm of JPL has been

removed as a concern for nitrate. The WPP will be integral to keep both Walnut Creek and Mountain Creek off the TCEQ IR list as the region is further developed.

1.2 Pollutant Source Assessment and Load Evaluation

To ensure that a thorough characterization of the watershed's status was achieved, several assessment methods were employed so that a clearer picture of the water quality impacts in the watershed could be obtained. Pollutant loadings were assessed using a variety of methods utilizing both empirical data and estimations based on literature values from multiple sources. The methods used in this study included routine and flow-biased water quality data analysis, the Load Estimation program (LOADEST), Load Duration Curve (LDC) analysis based on collected data for multiple pollutants, Flow Duration Curves (FDCs), spatial analysis of potential *E.coli* sources using the Spatially Explicit Load Enrichment Calculation Tool (SELECT) analysis, and hydrological modeling using the Soil and Water Assessment Tool (SWAT).

Water Quality Monitoring

The Trinity River Authority (TRA) of Texas conducted routine water quality monitoring and targeted high flow monitoring in JPL and its tributaries in partnership with the cities of Cedar Hill, Duncanville, Grand Prairie, and Midlothian. Monitoring data for Nitrite and Nitrate Nitrogen (mg/L), Total Kjedahl Nitrogen (mg/L), Total Phosphorous (mg/L), Orthophosphate Phosphorous (mg/L), *E.coli* (MPN/100ml) as well as field and flow parameters were collected bi-monthly between 2019 and 2020 at three lake sites, fifteen tributary sites, and two intake sites. TRA obtained historical data from monitoring events held quarterly since November 2013.

Trends in water quality data from 20 sites collected from June 2019 to May 2020 were analyzed. Analysts related these trends to water quantity, considering influences from natural precipitation, groundwater inputs, and anthropogenically-driven sources. The influences from climatic conditions, land use and land cover (LULC) conditions, lake storage levels, and water withdrawals were also considered. Geometric means for concentrations were calculated for the parameters of interest and compared to relevant water quality indicators. These geometric means were then analyzed at temporal scales at each station and between stations during the same sampling event, with more intense analysis when unexpected data values or other events of interest were apparent.

LOADEST

The Load Estimation program is a modeling tool used to estimate constituent loads in streams for missing observations using the observed flow and constituent concentrations (Runkel, Crawford and Cohn, 2004). It was developed by U.S. Geological Survey (USGS) and has been extensively used for the estimation of daily constituent loads for several water quality parameters(Gao et al., 2021). It generates a regression model using available streamflow and constituent concentration with the help of three statistical methods, Adjusted Maximum Likelihood Estimation (AMLE), Maximum Likelihood Estimation (MLE), and Least Absolute Deviation (LAD). Based on the regression model developed, it estimates constituent load over a time interval specified by the user.

SWAT

The Soil and Water Assessment Tool, the most widely used hydrological model in the world, simulates flow and watershed potential pollutant loadings under various scenarios. SWAT is a physically based, deterministic, continuous, watershed-scale simulation model developed by USDA Agricultural Research Service (Arnold et al., 1998) and tested for a wide range of regions, conditions, practices, and time scales (Gassman et al., 2007). SWAT model subdivides a basin/watershed into subwatersheds connected by a stream network, and further delineates hydrologic response units (HRUs) consisting of unique combinations of land cover and soils in each subbasin. The HRU is the smallest landscape component of SWAT used for simulating hydrologic processes. Hydrological processes are divided into two phases - land phase and channel/floodplain phase. The land phase calculates the upland loadings of flow, sediment, nutrients, and pesticides from each HRU, which are then area-weighted to subwatershed level. The channel/floodplain phase calculates the routing from the upland loadings from each subwatershed through the channel/stream and dam/reservoirs network.

The SWAT model requires spatial (e.g., digital elevation model, land use, soil) and temporal (e.g., weather and streamflow) data to simulate various biophysical processes in the watershed that generate streamflow. Land management and dam characteristics/operation data are also important for capturing the impacts of various management interventions. The outputs from the SWAT model will provide information to develop LDCs and load reduction strategies.

LDC

The Load Duration Curve analysis takes the traditional water quality data analysis a step further by combining each parameter's concentration by the instantaneous flow value collected, resulting in an

estimated total annual pollutant load for each parameter of interest. In other words, LDCs convert discrete sample concentrations to load, for example, milligrams per liter (mg/L) to tons per day (ton/day). These measurements are useful for providing a realistic representation of the existing amount of a pollutant within a waterbody, especially if a lake or other water storage facility is the endpoint of the system where these pollutant loads can accumulate. Furthermore, pollutant load reductions are also the accepted metric used by the TCEQ and the U.S. Environmental Protection Agency (EPA) for determining the success of both total maximum daily load (TMDL) and WPP projects. The development of LDC analyses is beneficial for tracking progress on these projects.

SELECT

Constituent loads can be related to potential pollutant sources within the watershed using the Spatially Explicit Load Enrichment Calculation Tool. SELECT uses the LULC classes and estimated populations of humans, pets, farm animals, and various other animals to estimate a subwatersheds potential loading of fecal bacteria. SELECT spatially references the sources, then calculates and allocates potential pathogen loadings to a stream from various sources within a watershed. As a result, all loads will be spatially referenced. Allocation of the bacteria loads throughout the JPL watershed were made by estimating source contributions from various sources identified during the watershed characterization process. This in turn allows the sources and locations to be ranked according to their potential contribution for each sub-watershed. The populations of agricultural animals, wildlife, and domestic pets were calculated and distributed throughout each watershed according to appropriate land use. Human influences, such as inputs from wastewater infrastructure and on-site sewage facilities (OSSF), were also considered. Septic system contribution was estimated based on criteria including distance to a stream, soil type, failure rate, and age of system. Once the watershed profile was developed for each potential source, the information was aggregated to the subwatershed level to identify the top contributing areas in the watershed.

1.3 Study Area Description

JPL is a 11.2 mi² (7,145 acres) reservoir in the southern part of the DFW metroplex. The construction of JPL started in 1981, impoundment started in 1986, and the reservoir was filled by 1989. It is a source of municipal water supply and a recreational destination. The dam is operated by the U.S. Army Corps of Engineers (USACE) with the water rights held by the TRA. The total drainage area of the JPL watershed is 223.6 mi² (143,091 acres). The watershed is divided into two major subwatersheds, Mountain Creek and

Walnut Creek, that span Johnson, Ellis, Tarrant, and Dallas counties in Texas (Table 2-13). The headwaters of Walnut Creek are located south of Burleson and drain to the northeast. The headwaters of Mountain Creek are located north of Alvarado, draining northward to form JPL (Figure 1-1). Mountain Creek and Walnut Creek tributaries have multiple branches that regularly contribute flow, and multiple smaller creeks feed directly into the lake from both the east and the west. JPL receives natural flow mixed with stormwater runoff and treated wastewater effluent from Mountain Creek Regional wastewater treatment facility (WWTF) and several smaller domestic sewage discharges within the watershed (Figure 1-2) (USACE, 2019).

Figure 1-2. Discharges to JPL watershed.

The JPL watershed is generally located within the Grand Prairie physiographic province according to the Physiographic Map of Texas (BEG, 1996). A physiographic province has similar geomorphology that is significantly different than adjacent areas. The majority of the watershed is underlain by units from the Austin Chalk, Eagle Ford (undivided), and Woodbine groups, with some fluviatile terrace deposits and alluvial floodplain deposits in areas underlying or near larger waterbodies.

Soils in the vicinity of the lake are composed mainly of fine sandy loams and silty clays. Some of the more common upland soil groups in the watershed include Crosstell fine sandy loams, Heiden clays, Houston black clays, and Rader fine sandy loams. Several hydric soils occupy the bottom land areas of the watershed, with Trinity clays, Tinn clays, and Pulexas fine sandy loams being most common.

Land Use and Land Cover (LULC)

LULC characteristics govern many of the operations within both the data collection and data analysis tasks. Regarding data collection activities, water quality monitoring stations should not only be welldistributed geographically throughout the watershed, but should also be representative of all the major LULC conditions found within the watershed boundary. This distribution will provide reasonable assurance that effort has been made to account for a variety of pollutant sources during characterization, such as those from rural, urban, and industrial areas. When interpreting the results from these stations, data analysts must be mindful of LULC conditions in the upstream contributing watershed, whether analyzing individual sampling event results, relating multiple sampling events at a specific station, or aggregating multiple sampling events and multiple stations to develop LDCs for the watershed. In doing so, analysts can make more informed decisions by relating water quality impairments or concerns to possible pollutant sources that are typical to specific LULC characteristics. Knowledge of LULC conditions and their potential water quality influences are also an important consideration within the scope of the SELECT analysis. SELECT uses the LULC classes from digitized maps and relates them to estimated populations of humans, pets, farm animals, and various other warmblooded organisms to estimate the amount of fecal bacteria produced in the watershed. SELECT then uses a variety of techniques to estimate the amount that is likely to end up in the various water bodies in the watershed. For these reasons, it is important for water quality analysts to ensure that they are using the most up-to-date version of LULC maps in their analyses. It may also be useful to perform infield ground truthing surveys to verify LULC conditions, especially in areas with widespread, ongoing urban development.

The northcentral and southeastern regions of the JPL watershed are urbanized, while the upstream, southwestern regions of the watershed have remained generally rural, dominated by herbaceous cover, with some pastureland and row-crop agriculture. Cedar Hill State Park is located east of the lake and dominated by forest land. Loyd Park and Lynn Creek Park are located on the western edge of the lake and Estes Park is located on the peninsula; all are popular recreation centers within the watershed. Major population centers include Midlothian and suburbs in southwest DFW, which include Mansfield, Arlington, Grand Prairie, and Cedar Hill. These population centers comprise most of the developed land. JPL Land Use is shown in Figure 1-3. Land cover within the watershed is depicted in Figure 1-4, which relates a use category (residential, industrial, undeveloped, etc.) to the land use information. The urban centers in the JPL watershed are defined as low and medium density urban land made up of 90% single family homes, but the majority of the industrial complexes within the basin appear in the vicinity of Midlothian, with smaller complexes near the center of the watershed. Outside of the urbanized areas, ranch land is dominant, with pockets of farmland and undeveloped open lots.

About 41% of the watershed is covered by rangelands and pasturelands, 17% by forest, 25% by urban, 6% by open water and wetlands, and 10% by agricultural lands. The amount of land cover by categories are shown in Table 1-1.

Class Name	Area (acres)	% of Watershed Area
Open Water	7,145	5.0
Developed, Open Space	11,258	7.9
Developed, Low Density	12,917	9.0
Developed, Medium Density	9,414	6.6
Developed, High Density	2,376	1.7
Barren Land	708	0.5
Deciduous Forest	19,622	13.7
Evergreen Forest	4252	3.0
Mixed Forest	369	0.3
Shrub/Scrub	1,679	1.2
Herbaceous	45,670	31.9
Hay/Pasture	12,943	9.0
Cultivated Crops	14,167	9.9
Woody Wetlands	161	0.1
Emergent Herbaceous Wetlands	408	0.3
Total	145,091	100%

Table 1-1. Summary of Land use for the JPL watershed from 2019 LiDAR.

Basemap: ESRI World Street Map; land data: USGS NLCD and USDA-NASS-CDL Figure 1-3. Land Use across the JPL watershed.

Basemap: ESRI World Street Map; Land data: USGS NLCD 2016 Figure 1-4. Land cover across the JPL watershed.

2.0 Methods

2.1 Data Collection Activities

The data analyzed in this report includes both routinely-collected and flow-targeted water quality sampling for several parameters, including *E.coli*, NO₂, NO₃, TKN, TP, and OP. The monitoring regime was designed to facilitate the creation of a WPP, using the collected data to inform this and other reports developed as part of this project, which will evaluate annual and seasonal trends, spatial patterns, hydrologic characteristics (*i.e.*, flow characterization), and other relational patterns that will help identify how and when *E.coli* and other pollutants are entering the system. A fully-detailed account of the data collection activities is provided in the Data Collection Report for this project (TRA, 2020).

The monitoring data for water quality parameters, NO₂, NO₃, TKN, TP, OP, and *E.coli* collected from twenty different monitoring stations were used for water quality analysis. Of these sites, eight drain into the Mountain Creek arm of JPL, seven drain into the Walnut Creek arm of JPL, and 5 sites are within the body of the lake. Sites were selected based on the following criteria: safety, access to the stream, access to the centroid of flow, location of stream confluences, location of potential sources of pollution, and placement at downstream locations to maximize watershed capture. The location of JPL watershed, JPL subbasins, USGS gages, monitoring stations, and stream network is presented in Figure 2-1. The land cover distribution above each monitoring station is shown in Figure 2-2 with a detailed description found in Table 2-1.

Basemap: ESRI World Street Map; Stream data source: NHD; gauge data: USGS NWIS Figure 2-1. JPL watershed, its subbasins, USGS gages, monitoring stations, and stream network.

Modeling and Data Analysis Report for Joe Pool Lake Watershed

Figure 2-2. Land Cover Distribution upland of monitoring stations across the JPL watershed.

Monitoring Station	Forest	Rangeland	Urban	Agriculture	Water
22133	3%	6%	64%	12%	15%
13621	19%	49%	16%	3%	13%
21990	20%	55%	10%	3%	12%
20790	21%	58%	6%	4%	11%
22135	7%	35%	41%	5%	12%
16433	49%	34%	11%	0%	6%
13622	5%	54%	6%	27%	8%
16434	5%	52%	7%	29%	7%
22134	9%	45%	14%	26%	6%

Table 2-1. Percent of land cover upstream from each monitoring stations across the JPL watershed.

A list of the water quality data monitoring stations, the site description, their locations, and period of record for the data are presented in Table 2-2.

Station	Period of	Site Description	Latitude	Longitude
ID	Record			
11071	2019-2020	Mountain Creek arm at Lakeridge pkwy	32.58417	-97.02310
		JPL Walnut Creek arm at Lake Ridge		
11072	2019-2020	Parkway	32.61972	-97.04000
11073	2013-2020	JPL mid lake at dam	32.64028	-96.99670
13621	2013-2020	Walnut Creek at Matlock road	32.58086	-97.10214
13622	2019-2020	Mountain Creek at FM 157 north of Venus	32.49132	-97.12315
16433	2013-2020	Hollings branch at Tangle ridge road	32.56000	-97.02278
16434	2013-2020	Mountain Creek at US 287	32.51278	-97.06756
17198	2019-2020	Lynn Creek downstream of Webb Lynn road	32.63722	-97.06561
20790	2019-2020	Walnut Creek at Retta Road	32.56340	-97.17204
21990	2019-2020	Walnut Creek at Katherine rose park foot		
		bridge	32.56931	-97.13768
22131	2019-2020	Walnut Creek at CR 2738 northwest of		
		Lillian	32.52291	-97.19673
22132	2019-2020	Walnut Creek at CR 519 west of Lillian	32.50090	-97.21668
22133	2013-2020	Bowman branch at South SH 360	32.62338	-97.07134
22134	2013-2020	Soap Creek upstream of Mountain Creek	32.52540	-97.05278
22135	2019-2020	Low branch at South Holland Road	32.56664	-97.06613
		Baggett Branch at Mansfield Road in Cedar		
22136	2019-2020	Hill	32.58577	-97.00044
		Mountain Creek Trib2 at FM 1382/belt line		
22137	2019-2020	road	32.63711	-96.97309
		Mountain Creek at CR 2738 northwest of		
22138	2019-2020	Venus	32.45158	-97.16903
22139	2019-2020	JPL at Intake in Cedar Hill State Park	32.62698	-96.98700
22140	2019-2020	JPL intake near Lakeridge pkwy	32.58664	-97.01640

Table 2-2. List of monitoring stations.	site description. location	n. and data period of record.
· · · · · · · · · · · · · · · · · · ·		.,

2.1.1 Texas Surface Water Quality Standards

Site-specific numeric water quality criteria, based on the Texas Surface Water Quality Standards (TSWQS) for JPL (Segment 0838), Mountain Creek (Segment 0838A), Sugar Creek (Segment 0838B), Walnut Creek (Segment 0838C), Hollings Branch (Segment 0838D), Soap Creek (Segment 0838E), and an unnamed tributary (Segment 0838F) are presented in Table 2-3, along with the designated uses associated with each criteria parameter (TCEQ, 2018). All parameters must be evaluated with a minimum of 10 samples (excluding *E.coli*, which requires 20) from a seven-year period to determine whether a designated use is being met (TCEQ, 2018).

Table 2-3. Designated uses and site-specific water quality standards for segments in the watershed.										
Parameter	Seg	Seg	Seg	Seg	*Seg	Seg	Seg	Seg	Seg	Designated
	0838	0838	0838	0838A	0838B	0838C	0838D	0838E	0838F	Use
Station ID	11073	11072	11071	16434	*17680	13621	16433	22134	22135	
DO 24-hour	5/35	5/35	5/35	3/23	3/23	3/23	2/1.52	2/1.52	2/1.52	Aquatic Life
ave/min (mg/l)										
E.coli	126	126	126	126	126	126	126	126	126	Recreation
(MPN/100 ml)										
SO4 (mg/l)	250	250	250							General Use
рН	9-6.5	9-6.6	9-6.7							General Use
Temp (°C)	32.2	32.2	32.2							General Use
Chloride	100	100	100							
(mg/L)										
TDS (mg/L)	500	500	500							

*Segment 0838B not sampled under this project. Data available on TCEQ SWQMIS from 2002-2014.

2.1.2 Nutrient Screening Levels and Reference Criteria

TCEQ Screening Level

Currently, no numeric standards exist for nutrients in streams in the state of Texas. However, TCEQ continues to screen for parameters such as nitrogen, phosphorus, and chlorophyll-a (chl-a) as preliminary indicators for waterbodies of possible concern for 303(d) impairments. To support this effort, nutrient screening levels are often used to compare a waterbody to screening levels that are set at the 85th percentile for those parameters of interest seen in similar waterbodies (Table 2-4). The Texas Nutrient Screening Levels are based on statistical analyses of Surface Water Quality Monitoring (SWQM) data (TCEQ, 2019b).

		TCEQ Screening	EPA F	Other					
Parameter		Lake/Reservoir	Stream	Lake/Rese	Lake/Reservoir		Stream		
TKN	(mg/L)	-	-	0.38ª	0.41 ^b	0.3ª	0.4 ^b		
NH₃	(mg/L)	0.11	0.33	-	-	-	-		
NO_2^-	(mg/L)	-	-	-	-	-	-	0.02 ^c	
NO ₃ ⁻	(mg/L)	0.37	1.95	-	-	-	-		
NO ₂ ⁻ +NO ₃ ⁻	(mg/L)	-	-	0.017ª	0.01 ^b	0.125ª	0.078 ^b		
ТР	(mg/L)	0.20	0.69	0.02ª	0.019 ^b	0.037ª	0.038 ^b		
OP ^d	(mg/L)	0.05	0.37	-	-	-	-		
Chlorophyll-a ^e	(µg/L)	26.7	14.1	5.18ª	2.875 ^b	0.93ª	1.238 ^b		
(a) (b) (c)	Reference conditions for aggregate Ecoregion IX waterbodies, upper 25th percentile of data from all seasons, 1990-1999. Reference conditions for level III Ecoregion 29 waterbodies, upper 25th percentile of data from all seasons. For nitrite, concentrations above 0.02 mg/L (ppm) usually indicate polluted waters (Mesner, N., J. Geiger. 2010). Understanding Your Watershed: Nitrogen. Utah State University, Water Quality Extension.								
(d) (e)	OP is no longer used for TCEQ screening purposes, as of the 2014 Texas Integrated Report. Chlorophyll-a, as measured by Spectrophotometric method with acid correction.								

Table 2-4. TCEQ Water Quality Screening Criteria for different constituents.

EPA Reference Criteria

The EPA Reference Criteria are regional values based on data from reservoirs and streams within specific ecoregion units and subunits (USEPA, 2000). It is worth noting that these Reference Criteria differ from the Texas Nutrient Screening Levels in that EPA developed the Reference Criteria using conditions that are indicative of minimally impacted (or in some cases, pristine) waterbodies, attainment of which would result in protection of all designated uses within those specific units and subunits. As such, Reference Criteria thresholds are much lower than those for state screening levels, and surpassing Reference Criteria thresholds may not necessarily indicate a concern, as is the case with the state thresholds (Table 2-4). Where state screening levels or national reference criteria were non-existent, other sources were used, for nitrite in particular (Mesner and Geiger, 2010).

2.1.3 Segment Impairments and Concerns

When a sufficient number of elevated water quality measurements cause the waterbody to surpass the water quality criteria (min, max, average, or geomean), the waterbody is considered impaired and may not be supportive of one or several of its designated uses. Although the most recent assessment period covered by the 2020 Texas Integrated Report did not identify concerns or impairments in JPL, the impetus to conduct water quality monitoring in JPL watershed was based on the TCEQ 2014 IR that did identify concerns and an impairment (TCEQ 2015b). This impairment was for elevated bacteria counts in Walnut Creek (0838C_01) (TCEQ 2015b).

If more than 20% of a waterbody's samples from the assessment period exceed a screening level, then on average, it will experience higher pollutant concentrations than 85% of the streams in Texas and thus is considered to have a concern for elevated nutrients. For the same 2014 assessment period, there was one assessment unit (AU) in the lake (Mountain Creek arm, Segment 0838_02) with a concern for nitrate (Figure 2-3) (TCEQ 2015b). No other concerns were identified in JPL or other tributaries in the watershed in the TCEQ 2014 IR or the current TCEQ 2020 IR. (TCEQ 2015b, 2020). A record of impairments and concerns in the watershed are listed in Table 2-5.

Basemap: ESRI World Street Map; Stream data source: NHD; AU source: TCEQ Figure 2-3. Historically impaired segments and water quality concerns in the watershed.

	Joe Pool	Lake-Mountain	Creek Arm		Walnut Creek			
Texas Integrated Report	AUs	Mean Exceed	Screening Level	AUs	Mean Exceed	Criteria		
Recreation Impairment - <i>E.coli</i> (MPN/100 mL)								
2006		-			284.00			
2008		-			284.00			
2010		-			256.63			
2012		-		0838C_01	285.01	126		
2014		-			195.60			
2016		-			126.62			
2018		-			94.75°			
		General	Concern - nit	rate (mg/L)		_		
2006		Concern ^a			-			
2008		_a			_			
2010	0838 03	0.76	0 27		_			
2012	0838_02	0.86	0.57		-			
2014		0.74			-			
2016		1.52 ^b			-			

Table 2-5. Record of impairments and concerns in the JPL watershed.

(a) parameter was assessed but means values were not reported in the assessment for this year.

(b) this geomean is composed of 3 carry-forward samples from the 2014 assessment, no new samples were included in this assessment. (c) Walnut Creek *E.coli* value that supported the delisting in the 2018 Texas Integrated Report of Surface Water Quality

2.1.4 Geospatial Data Collection

Geospatial datasets from local, regional, state, and federal organizations were used for the different components of the project. These datasets were essential for selecting and locating monitoring sites. Moreover, geospatial data provided the foundation for determining the extent and severity of various pollutant sources and provided the opportunity to visually display the analysis results to stakeholders. A list of geospatial data sources utilized in this project are provided in Appendix A. Geospatial Data Sources Used for Watershed Analysis.

2.2 Statistical Analysis

Statistical analysis is important in the evaluation of model performance. The performance of LOADEST was evaluated using coefficient of determination (R²) and Nash-Sutcliffe Efficiency (NSE), and the performance of SWAT was evaluated using R², NSE, Percent Bias (PBIAS), and the Kling-Gupta efficiency (KGE).

The R² describes the proportion of the variance in the observations explained by the model. The range of R² is from 0 to 1 where a higher value (1) gives less error variance and the values greater than 0.5 are considered acceptable range (Santhi et al., 2001, Van Liew et al., 2003). It only measures the deviation from the best fit line.

The value of R² is found by:

$$R^2 = \left(\frac{\sum_{i=1}^N (\mathbf{0}_i - \overline{\mathbf{0}}) \cdot (\mathbf{S}_i - \overline{\mathbf{S}})}{\sqrt{\sum_{i=1}^N (\mathbf{0}_i - \overline{\mathbf{0}})^2} \cdot \sqrt{\sum_{i=1}^N (\mathbf{S}_i - \overline{\mathbf{S}})^2}}\right)^2$$

Where O_i is the observed value, \overline{O} is average of observed values, S_i is the simulated value and \overline{S} is the average of simulated values and N is the total number of observations.

NSE is a normalized statistic that determines the relative magnitude of the residual variance ("noise") compared to the measured data variance ("information") (Nash and Sutcliffe, 1970). NSE indicates how well the plot of observed versus simulated data fits the 1:1 line. The value of NSE ranges from $-\infty$ to 1 where the value near 1 refers to a good fit of the model. The value for NSE is calculated by:

NSE =
$$1 - \frac{\sum_{i=1}^{N} (O_i - S_i)^2}{\sum_{i=1}^{N} (O_i - \overline{O})^2}$$

Where O_i is the observed value, S_i is the simulated value, \overline{O} is average of observed values, and N is the total number of observations.

PBIAS measures the average tendency of the simulated data to be larger or smaller than their observed counterparts (Moriasi et al., 2007). The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model simulation. Positive values of PBIAS indicate model underestimation bias, and negative values indicate model overestimation bias of total volume (Gupta et al., 1999). The PBIAS is calculated by:

$$PBIAS = 100 \left(\frac{\sum_{i=1}^{N} (S_i - O_i)}{\sum_{i=1}^{N} O_i} \right)$$

Where O_i is the observed value, S_i is the simulated value and N is the total number of observations.

Similarly, KGE is the statistical tool that combines the correlation, bias, and coefficients of variation in a balanced way and has been widely used in evaluating hydrological models in recent years (Gupta et al., 2009). KGE is calculated by:

KGE =
$$1 - \sqrt{(cc-1)^2 + (\frac{cd}{rd} - 1)^2 + (\frac{cm}{rm} - 1)^2}$$

Where *cc* is the Pearson coefficient, *cd* is standard deviation of forecast values, *rd* is standard deviation of observation values, *cm* is average of forecast values, and *rm* is the average of observed values.

2.3 SWAT

The SWAT model was developed for the JPL watershed to obtain flow data at each monitoring location. High quality flow data obtained from two USGS gaging stations, USGS 8049700 located at monitoring station 13621 (Walnut Creek at Matlock Road) and USGS 8049580 located at monitoring station 13622 (Mountain Creek at FM 157 north of Venus), was used for model calibration and validation.

SWAT Calibration

Model calibration is the process of adjusting the model parameters and forcing within the margins of the uncertainties (in model parameters and /or model forcing) to obtain a model representation of the processes of interest that satisfy pre-agreed criteria. This approach aims to improve the model by developing correction factors that can be applied to generate predicted values and improve model description. The reliability of the model depends on the model simulated results, and when the model results match with the observed values from streamflow measurement, then the users get greater confidence. To facilitate the evaluation of the model performance, statistical analysis was employed with the use of NSE, R², PBAIS, and KGE. For the calibration and uncertainty program for this project, the SWAT-CUP, a computer program for calibration of SWAT models, was used.

Daily calibration for streamflow was conducted from 1/1/2000 to 12/31/2018 at monitoring stations 13621 and 13622 of JPL watershed. The KGE was used as an objective function to optimize the set of parameter values during calibration as it is a reliable and widely used statistic for assessing the goodness of fit during SWAT calibration. The value of KGE ranges from -∞ to 1 where the value near 1 refers to a good fit of the model.

The SWAT model performance for streamflow during calibration was reasonable based on statistical analysis. Model simulations are considered satisfactory for streamflow if NSE and KGE values are greater than 0.50 and the absolute magnitude of the PBIAS value is less than 25% (Moriasi et al., 2007). The summary statistics obtained during the streamflow calibration at the outlet for the two monitoring stations USGS 8049700 (Monitoring stations 13621) and USGS 8049580 (Monitoring station 13622) in JPL watershed are presented in Table 2-6.

6. Summary of statistics ob	tained during calibration of streamflow at the c	outlet of two monitoring stations in JPL wa	tershed
Statistic Name	USGS 8049700	USGS 8049580	
	(Monitoring stations 13621)	(Monitoring station 13622)	
R ²	0.73	0.57	
NSE	0.73	0.54	
PBIAS	13.2	-4.2	
KGE	0.71	0.74	
	6. Summary of statistics obt Statistic Name R ² NSE PBIAS KGE	6. Summary of statistics obtained during calibration of streamflow at the original statistic Name USGS 8049700 (Monitoring stations 13621) R ² 0.73 NSE 0.73 PBIAS 13.2 KGE 0.71	6. Summary of statistics obtained during calibration of streamflow at the outlet of two monitoring stations in JPL was Statistic NameStatistic NameUSGS 8049700 (Monitoring stations 13621)USGS 8049580 (Monitoring station 13622)R20.730.57NSE0.730.54PBIAS13.2-4.2KGE0.710.74

Overall, all performance metrics showed significant results. The KGE matrix performed the best for both monitoring stations during calibration, therefore the corresponding best fit parameters from the KGE calibration were used in SWAT for final calibration of the model. Parameters with larger T statistic values indicate more influence on the simulated streamflow and P values below 0.05 indicate significance at the 95% threshold. The list of parameters including their range, significance statistics and fitted value used to calibrate the SWAT model are presented in Table 2-7.

		watershea.			
Parameter Name	Fitted Value	Minimum Value	Maximum Value	T Statistic	P Value
RCN2.mgt	-0.068	-0.1	0.1	-27.94	0.0
VALPHA_BF.gw	0.342	0	1	-0.43	0.7
AGW_DELAY.gw	-3.188	-30	90	0.95	0.3
AGWQMN.gw	165.625	-1000	1000	7.18	0.0
VGW_REVAP.gw	0.094	0.02	0.1	2.39	0.0
ARCHRG_DP.gw	0.043	-0.05	0.05	0.85	0.4
AREVAPMN.gw	-377.344	-750	750	-1.35	0.2
VESCO.hru	0.721	0.5	0.8	-6.07	0.0
RSOL_AWC().sol	0.002	0	0.05	1.69	0.1
VCANMX.hru	7.328	0	10	0.22	0.8
VSLSOIL.hru	68.203	0	150	0.61	0.5
VLAT_TTIME.hru	7.634	0	14	-0.24	0.8
VALPHA_BF_D.gw	0.727	0	1	0.98	0.3
RCH_S2.rte	-0.405	-0.5	0.5	1.59	0.1
VCH_K2.rte	0.023	0	3	-0.82	0.4
VOV_N.hru	0.039	0.01	0.1	1.12	0.3
VCH_K1.sub	0.192	0	3	0.33	0.7
VCH_N1.sub	0.028	0.01	0.1	0.27	0.8
VCH_N2.rte	0.021	0.01	0.1	-0.24	0.8
VSURLAG.bsn	7.613	0	24	1.24	0.2

Table 2-7. List of SWAT calibration parameters, their minimum, maximum, fitted value, and significance statistics found using KGE for JPL

R-indicates existing parameter value is multiplied by (1+fittedvalue), *V*- indicates existing parameter was replaced by the fitted value, and *A*-indicates existing parameter value is added by the fitted value.

The simulated flow data obtained from SWAT was used to develop LDCs at various locations within JPL watershed where USGS flow data were not available. In addition to the LDCs, SWAT provided information on watershed characteristics used in the prediction of possible spatiotemporal pollution loads and their sources.

2.4 LDC and FDC

LDCs are useful tools for illustrating the relationship between stream flow, pollutant concentration, and the resulting pollutant loads in watersheds. The pollutant loads during each monitoring event can be compared to the maximum allowable load at that flow rate. This data can then be used to calculate the reduction needed to meet the water quality goal for each pollutant. Although LDCs cannot be used to differentiate between specific sources (e.g., livestock, pets, OSSFs), they can be used to determine whether point sources or nonpoint sources are the primary concern by identifying whether exceedances occur within a specific flow regime. If exceedances are only observed during periods of high flow or midrange flow conditions associated with storm events, then nonpoint sources are the likely contributor.

However, if allowable load exceedances are also present during dry conditions or periods of low flow, then it is likely that point sources are also contributing to the overall load, becoming more prominent as flows decrease (Figure 2-4). Both stakeholders and regulatory entities recognize that exceedances at the higher flows are usually attributed to flooding, and thus inherently unmanageable. Therefore, stakeholders agreed that reductions demonstrated in the mid-range flow regime would be most appropriate for representing the water quality reduction goal at each site.

Figure 2-4. Flow categories and regions of likely pollutant sources along an example load duration curve.

LDCs allow for a visual interpretation of load exceedances in comparison to the allowable load at specific flow conditions. Using flow and *E.coli* data collected from a specific monitoring campaign, flow duration curves (FDCs) and LDCs can be built to further evaluate the contaminant sources. First, all flow values are aggregated and ranked from lowest to highest. This data is then graphically depicted to show the general flow regime, complete with the percentage of time that the waterbody is expected to be dry, as well as its response to storm flows (Figure 2-5).

Source: FDC for streamflow conditions at monitoring station 13621 on Walnut Creek, near Mansfield, TX Figure 2-5. Flow duration curve example from JPL watershed (log scale Y-axis).

The FDC can then be used to develop a LDC for a specific pollutant of interest, given that there is pollutant concentration data that complements the flow data. Figure 2-6 depicts an example LDC based on the FDC shown in Figure 2-5. The first step in the process is to apply the pollutant's allowable limit concentration to all available flow values to produce the allowable load limit curve. In the case of bacteria, this value is 126 MPN/100 mL (blue line in Figure 2-6). Then, the baseline monitoring data values for *E.coli* in MPN/100 mL are multiplied by their associated flow values to get loads for each data point (pink squares in Figure 2-6). This can be developed further by performing regression analysis on the monitored data points, as depicted in Figure 2-7. Here, the allowable load limit is depicted in red, while the regression line for the data points is depicted in blue. Regression analysis can be completed using one of many techniques. In this case, a USGS program LOADEST is utilized. For each of the different flow regimes (High Flows, Moist Conditions, Mid-Range Conditions, Dry Conditions, and Low Flows), a load reduction estimate can be calculated. Achieving these reductions will become one of the primary targets for success once the WPP moves into the implementation stage.

Monitoring Station 13621, USGS gage 08049700 (1/1/2000 to 12/21/2020)

LOAD DURATION CURVE for E. Coli at MONITORING STATION 16433

Source: LDC for E.coli at monitoring station 16433 on Hollings branch, near Joe Pool Lake. Figure 2-6. Load duration curve example from JPL watershed (log scale Y-axis).

However, it is worth noting that some of these reductions, specifically those within the "High Flows" range, may not be achievable due to feasibility of applying management measures to storm flows that fall within the extreme range. It is therefore customary to focus efforts on the load reductions identified at the lower flow conditions, where it becomes easier to separate potential point source contributors from nonpoint source contributors. In most cases, if a waterbody exhibits high pollutant loads on the extreme right of the graph where low flows are represented (Figure 2-4), it is highly likely that this may be attributable to a point source, such as a malfunctioning WWTF or leaking/failing wastewater infrastructure somewhere in the watershed. These types of contributions can typically be easily addressed and are worth investigating early on in the process. Conversely, if pollutant loads tend towards the middle of the graph, it is likely that they are attributed to stormwater runoff during periods of normal or moderate rainfall. While typically not as easily addressed as point sources, load reductions in these areas may also be targeted for watershed pollutant load reductions through BMP recommendations.

Load regression Model on Load Duration Curve Plot

A minimum of 12 paired stream flow-pollutant concentration data points are required to properly execute the LDC analysis tool. During the monitoring effort, nine paired samples were successfully collected from the 20 monitoring sites. LDCs were developed at each of the nine stations for five key constituents, *E.coli*, TP, OP, TKN, $NO_X(NO_3 + NO_2)$ so that any trends between stations could be analyzed. Although the LDCs for all sites were instrumental in developing an understanding of pollutant load dynamics throughout the watershed, this project focused on only a few sites to determine several short-term and long-term water quality goals.

For planning purposes, site 22134 (Soap Creek upstream of Mountain Creek confluence), site 13621 (Walnut Creek at Matlock Rd), site 16434 (Mountain Creek at US 287), site 16433 (Hollings Branch at Tangle Ridge Rd), site 22135 (Low Branch at South Holland Rd) and site 22133 (Bowman Branch at South SH 360) were selected for establishing water quality goals for pollutant reductions. These sites represent distinct catchment or containment areas within the JPL watershed (Figure 2-2, Table 2-1).

2.5 SELECT

Watershed prioritization and BMP recommendations were further refined with the use of the SELECT analysis, which distributes potential *E.coli* loads into 25 modeled catchments, or subwatersheds (Figure
2-8), based on likely *E.coli* sources as identified by watershed stakeholders. Using a combination of geographic information system (GIS) and spreadsheet tools, estimated populations of various warmblooded animal species (humans, pets, livestock, wildlife) were distributed spatially throughout the watershed based on each population's applicability to different LULC characteristics. Once distributed, species-specific *E.coli* load production values published in scientific literature were applied to each population (Table 2-8), producing the *E.coli* loads that may eventually find their way to waterways (Figure 3-17, Figure 3-18, Figure 3-19). To account for the variety in the sizes of the subwatersheds, these loads were then normalized to a per-acre basis to ensure that contributions from larger subwatersheds did not overshadow those from several smaller ones. Finally, the separate, normalized sources are then aggregated to produce an overall normalized *E.coli* load for each subwatershed. It should be noted that SELECT was designed specifically for calculating loads from *E.coli* sources, and thus cannot be used to calculate loads from other pollutants of interest to stakeholders, despite their relative importance.

Proper distribution of populations is of paramount importance in the analysis, and stakeholders took care to ensure that distributions accurately reflected conditions experienced in watersheds existing along urban-rural fringes outside of major metropolitan areas like DFW. For example, it is unlikely that you would find a large cow/calf operation in the middle of a dense urban area, so no portion of the watershed's cattle population was distributed to urban land uses, instead they were placed in range and pasture lands. Conversely, while it is likely that the majority of the watershed's horse population will also be found in range and pasture land use classes, it is also likely that some portion may be found in low-density urban areas, on what are commonly known as small-acreage or "hobby" farms, typically 5 acres or less. Therefore, the stakeholder group elected to account for these "pocket populations" by distributing very small portions (5%) of applicable species populations to these low-density urban areas so that a more accurate characterization of the watershed conditions could be achieved.

Raw SELECT output is often seen as a "worst case scenario" for estimating *E.coli* loads, as the tool does not contain any built-in functionality that automatically adjusts for *E.coli* die-off, predation, soil entrainment, or other forms of mitigation between the time of deposition up to its introduction to a waterway. However, these processes can be partially accounted for by applying weights to the loads based on their distance to a waterway. For example, manure deposition within riparian buffer areas (<100-m (330-ft) from a stream), carry more weight than would deposition in an upland area further away (Figure 2-8). Use of this tactic will allow for further refinement of critical areas for BMP implementation.

Stream data source: NHD; watershed source: TCEQ, subwatershed source: TNRIS LiDAR 30m DEM Figure 2-8. JPL subwatersheds and stream network for the use in SELECT analysis.

Source	E.coli Loading Factor	Literature Source	
Cattle	2.70E+9 MPN/AU-day	Metcalf and Eddy, 1991	
Sheep/Goats	9.00E+9 MPN/AU-day	Metcalf and Eddy, 1991	
Horses	2.10E+8 MPN/AU-day	ASAE, 1998	
Deer	1.75E+8 MPN/AU-day	Teague et al., 2009	
Feral Hogs	4.45E+9 MPN/AU-day	Metcalf and Eddy, 1991	
Dogs/Cats	2.50E+9 MPN/AU-day	Horsley and Witten, 1996	
Ducks	5.50E+9 MPN/AU-day	Metcalf and Eddy, 1991	
Geese	2.45E+10 MPN/AU-day	LIRPB, 1978	
OSSFs	1.33E+9 MPN/person- day	Teague et al., 2009	
SSOs	1.89E+7 MPN/gal; daily volume varies based on reported release volumes (gal) from database	USEPA, 2001	
WWTFs	4.78E+9 MPN/MGD; daily volume varies based on self-reported release volumes (MGD) from facility	Teague et al., 2009	

Table 2-8. E.coli loading factors for calculating E.coli loads from various sources.

2.5.1 General Approach

To further identify the extent of a certain source type's likely contribution to the bacteria load in a specific subwatershed, the SELECT analysis can be conducted for any number of potential bacteria source types, including urban/municipal runoff, agricultural runoff, failing septic systems, wildlife, and even invasive species.

The SELECT approach first uses spatial data for LULC data to determine where representatives from a particular contributing source might be located, and then uses watershed boundaries, topography, and stream network information to further determine suitability and range. Then, an estimated population density is applied to these suitable areas. Population density data can come in the form of census estimates for humans, literature values from published resource agency materials, or in some cases, anecdotal evidence from watershed stakeholders.

Finally, published literature values for *E.coli* production from these sources are applied to the estimated population so that a potential *E.coli* load can be calculated for each subwatershed in the analysis. This yields visual output that can be color-coded to show the severity of the load's potential contribution to the watershed, which can be used to pinpoint areas where management measures would provide the most cost-to-benefit ratio. Details about the process for calculating each source category's load estimate are provided below.

Two categories of pollutant sources known as point source and nonpoint source impacts the water quality in a watershed. Visible sources of pollution such as wastewater treatment facilities (WWTFs), and overflows from OSSFs are considered point sources whereas those that are not directly identifiable such as urban and agricultural runoff containing nutrients from excess fertilizers, pesticides crop residues, pathogens, livestock and pet waste, domestic waste etc. are the nonpoint source pollutants. The sources of potential *E.coli* load in the JPL watershed assessed throughout this report consist of waste from pets, livestock, OSSFs, wildlife, and WWTFs. The distribution of these potential bacteria load sources JPL watershed is presented in Figure 2-9.

Figure 2-9. Potential Sources of E.coli loading in JPL watershed.

2.5.2 Point Source: WWTFs

There are six permitted and active WWTFs within the JPL watershed. Details about the six active WWTFs and any associated permit limit exceedances for water quality parameters are provided in Table 2-9. The WWTFs do not exceed the maximum allowable average daily discharge. WWTFs are not a significant source of *E.coli* for the JPL watershed as it contributes only about 0.002% of the load. The details of the permitted and active WWTFs locations and their permit limits are shown in Table 2-9.

The equation to calculate the E.coli (EC) for WWTFs is given as (Teague, 2009):

$$EC = Average flow (MGD) \cdot \frac{\text{Reported } E. coli \text{ geomeanMPN}}{100 \text{ mL}} \cdot \frac{10^6 \text{gal}}{\text{MG}} \cdot \frac{3785.41 \text{ mL}}{\text{gal}}$$

Total *E.coli* calculations for each subwatershed (in MPN/day) are normalized across the watershed by dividing by the sub-watershed's area (MPN/ac-day).

			Tab	le 2-9. Compliance hi	istory for active WWTFs	in the JPL watershed				
								Exceedan	ces ⁽⁴⁾	
			Flow (daily ave	erage, MGD)	<i>E. coli</i> (daily MPN/10	v average, 00 mL)				
NPDES Permit	Facility Name	Receiving Waterbody	Permitted	Reported ⁽¹⁾	Permitted	Reported ⁽²⁾	E.coli	Ammonia	BOD ₅	TSS
TX0083437	Ash Grove Texas LP	Bedford Branch	0.3	0.1865	126	N/A	0	0	0	0
TX0083437	Ash Grove Texas LP	Bedford Branch	0.006	0.00138	126	1.19	0	0	0	12
TX0119229	Alvarado ISD	Unnamed Trib to King Branch to Walnut Creek	0.035	0.00139	126	4.596 ⁽³⁾	0	0	1	1
TX0113573	Country Vista WWTP	Unnamed Trib to Valley Branch to Walnut Creek	0.042	0.0255	126	4.265 ⁽³⁾	0	0	3	8
TX0133388	Mansfield ISD	Unnamed Trib to Valley Branch to Walnut Creek	0.02	0.0116	126	2.888 ⁽³⁾	0	0	14	16
TX0025011	Mountain Creek Regional WWTF	Unnamed Trib to Soap Creek	3	2.371	126	4.93	2	0	0	2
TX0118770	Walnut Creek MHP	Walnut Creek	0.0225	0.0139	126	66.93 ⁽³⁾	2	0	26	33

(1) 4-year average based on daily measurements from USEPA data, 03/01/2017 - 06/01/2021.

(2) 4-year geomean based on daily measurements from USEPA data, 03/01/2017-06/01/2021.

(3) Reported quarterly rather than monthly.

(4) USEPA data, 03/01/2017-06/01/2021

2.5.3 Point Source: SSOs

Subwatershed Analysis

Sanitary sewer overflows (SSOs) can be a significant contributor of *E.coli* in urban watersheds if they occur near waterways. SSOs are not predictable and can occur when pipes are blocked, broken, or when deteriorating pipes and connections allow infiltration of stormwater or groundwater into the wastewater system. These inflow/infiltration (I/I) issues often result in combined stormwater/wastewater volumes that exceed the design capacity of the pipes, causing backups that will eventually find a relief point, often a manhole cover or other surface access. From this relief point, untreated sewage can potentially reach streams and lakes if not contained properly or in a timely manner. Older neighborhoods tend to be more prone to SSOs, as they tend to be serviced by older infrastructure that may be subject to the deterioration or design capacity issues. In addition, continued development over the years can outgrow the design capacity making these older systems more prone to SSOs. In general, SSOs are combined with pet waste nonpoint sources and used as surrogates for urban runoff when calculating pollutant loads from urban sources.

The compendium of past reports of SSO occurrences was used to illustrate locations, overflow amount, cause of SSOs, and potentially determine impacts of SSOs on the day of occurrence. NCTCOG acquired SSO data from TCEQ for the region for the period 2016-2020 across the 25 subwatersheds. For each subwatershed, the number of SSOs and the total gallons discharged were used. However, the amount of SSOs in the JPL watershed were too few to expand on in analysis and determine a daily discharge, as these are sporadic overflows. It is possible to calculate if there is a chronic overflow. BMPs for SSOs require infrastructure assessments and proper maintenance that are usually built into a Municipal Separate Sewer System (MS4) program.

Load Calculation

Although it was not possible to conduct load calculations for SSOs, the equation to calculate the EC for SSOs is provided below. EC is obtained from combined sewer overflow and septic equations in EPA's Protocol for Developing Pathogen TMDLs (USEPA, 2001), and given as:

$$EC = \frac{Avg \text{ discharge in gal}}{day} \cdot \frac{5 \cdot 10^3 \text{ MPN}}{mL} \cdot \frac{3785.41 \text{ mL}}{gal}$$

The *E.coli* load assigned to raw sewage is 5*10³ MPN/mL (USEPA, 2001). Total *E.coli* calculations for each subwatershed (in MPN/day) are then normalized across the watershed by dividing by the sub watershed's area (MPN/ac-day). According to the SSO data from NCTCOG spanning 2016-2020, there were thirty-nine incidents of overflow in the JPL watershed. The location, start and end date, cause, amount, and status of the overflow is presented in Table 2-10 and shown in Figure 2-10.

Basemap: ESRI World Street Map; Stream data source: NHD; station data Figure 2-10. Location of Sanitary Sewer Overflows in the JPL watershed.

Location	Latitude	Longitude	Start Date	End Date	Cause	Overflow	Status
						amount (Gallon)	
CITY OF MANSFIELD	32.5813690	-97.0802680	3/30/2017	3/30/2017	EQUIPMENT FAILURE	10000	CLOSED
CITY OF CEDAR HILL	32.5855620	-97.0007370	9/8/2018	9/8/2018	POWER OUTAGE	810	CLOSED
CITY OF CEDAR HILL	32.5517220	-97.0041850	9/8/2018	9/8/2018	POWER OUTAGE	1080	CLOSED
CITY OF CEDAR HILL	32.5517270	-97.0042010	9/22/2018	9/22/2018	POWER OUTAGE	7200	CLOSED
CITY OF CEDAR HILL	32.6323580	-96.9571390	9/22/2018	9/22/2018	POWER OUTAGE	8400	CLOSED
CITY OF CEDAR HILL	32.5760090	-96.9776060	9/22/2018	9/22/2018	POWER OUTAGE	3600	CLOSED
CITY OF CEDAR HILL	32.5517270	-97.0041910	10/9/2018	10/9/2018	INFILTRATION AND INFLOW	6300	CLOSED
CITY OF CEDAR HILL	32.5760090	-96.9775870	10/9/2018	10/9/2018	POWER OUTAGE	32400	CLOSED
CITY OF CEDAR HILL	32.5502000	-97.0049160	10/13/2018	10/13/2018	INFILTRATION AND INFLOW	1200	CLOSED
CITY OF CEDAR HILL	32.5760090	-96.9776010	10/13/2018	10/13/2018	INFILTRATION AND INFLOW	3150	CLOSED
CITY OF CEDAR HILL	32.5760100	-96.9776050	10/17/2018	10/17/2018	INFILTRATION AND INFLOW	2700	CLOSED
CITY OF CEDAR HILL	32.5760080	-96.9776000	10/24/2018	10/25/2018	INFILTRATION AND INFLOW	900	CLOSED
CITY OF CEDAR HILL	32.5760110	-96.9776030	11/7/2018	11/7/2018	POWER OUTAGE	1560	CLOSED
CITY OF CEDAR HILL	32.5760110	-96.9776300	11/10/2018	11/10/2018	INFILTRATION AND INFLOW	600	CLOSED
CITY OF CEDAR HILL	32.5760110	-96.9776030	11/11/2018	11/11/2018	INFILTRATION AND INFLOW	450	CLOSED
CITY OF CEDAR HILL	32.6061270	-96.9886840	11/25/2018	11/25/2018	EQUIPMENT FAILURE	2700	CLOSED
CITY OF MIDLOTHIAN	32.4946380	-96.9935910	2/27/2018	2/27/2018	LINE BREAK	30000	CLOSED
CITY OF MIDLOTHIAN	32.4804430	-97.0006890	3/5/2018	3/5/2018	LINE BLOCKAGE (NON-GREASE)	335	CLOSED
CITY OF MIDLOTHIAN	32.4804430	-97.0006890	3/13/2018	3/13/2018	GREASE BLOCKAGE	225	CLOSED
MOUNTAIN CREEK REGIONAL WWTP	32.4976500	-97.0036650	10/16/2018	10/18/2018	INFILTRATION AND INFLOW	213750	CLOSED
JOHNSON COUNTY SUD WWTF	32.5683270	-97.1428000	9/22/2018	9/24/2018	LINE BLOCKAGE (NON-GREASE)	300	CLOSED
CITY OF KEMP	32.5571480	-97.0888060	10/9/2018	10/9/2018	LINE BLOCKAGE (NON-GREASE)	3600	CLOSED
CITY OF KEMP	32.5571480	-97.0888060	10/9/2018	10/9/2018	GREASE BLOCKAGE	3600	CLOSED
CITY OF ARLINGTON COLLECTION SYSTEM	32.6204190	-97.1118500	1/4/2018	1/4/2018	GREASE BLOCKAGE	285	CLOSED
CITY OF ARLINGTON COLLECTION SYSTEM	32.6343820	-97.1288510	1/21/2018	1/21/2018	GREASE BLOCKAGE	404	CLOSED
CITY OF MANSFIELD	32.5503790	-97.1182570	3/9/2018	3/9/2018	LINE BLOCKAGE (NON-GREASE)	17500	CLOSED
CITY OF MANSFIELD	32.5567650	-97.1384060	3/13/2018	3/13/2018	GREASE BLOCKAGE	5000	CLOSED
CITY OF ARLINGTON COLLECTION SYSTEM	32.6198620	-97.1155830	3/18/2018	3/18/2018	GREASE BLOCKAGE	680	CLOSED

Table 2-10. Location, start and end date of overflow, cause of overflow, overflow amount, and status of the SSOs in JPL watershed.

CITY OF ARLINGTON COLLECTION SYSTEM	32.6352340	-97.0982490	5/21/2018	5/21/2018	GREASE BLOCKAGE	30	CLOSED
CITY OF ARLINGTON COLLECTION SYSTEM	32.6210100	-97.0856650	11/27/2018	11/27/2018	GREASE BLOCKAGE	225	CLOSED
CITY OF ARLINGTON COLLECTION SYSTEM	32.5844750	-97.1622950	12/31/2018	12/31/2018	HUMAN ERROR	860	CLOSED
WALNUT CREEK MHP	32.4651100	-97.2307300	5/32/2019	6/5/2019	INFILTRATION AND INFLOW	25000	CLOSED
CITY OF MANSFIELD	32.5695100	-97.1284550	7/8/2019	7/8/2019	LINE BREAK	10000	CLOSED
CITY OF MANSFIELD	32.5813660	-97.0802270	6/6/2019	6/6/2019	EQUIPMENT FAILURE	5760	CLOSED
CITY OF GRAND PRAIRIE	32.5716325	-97.0176299	8/4/2020	8/4/2020	LINE BREAK	520	CLOSED
CITY OF GRAND PRAIRIE	32.5703580	-97.0140819	8/7/2020	8/7/2020	GREASE BLOCKAGE	200	CLOSED
CITY OF MIDLOTHIAN	32.4976517	-97.0036628	2/12/2020	2/12/2020	INFILTRATION AND INFLOW	24000	CLOSED
CITY OF VENUS WWTP SITE B	32.5478720	-97.1266490	6/5/2020	6/5/2020	LINE BREAK	12000	CLOSED
CITY OF MANSFIELD	32.5617232	-97.1640219	12/23/2020	12/23/2020	LINE BLOCKAGE (NON-GREASE)	800	CLOSED

2.5.4 Nonpoint Source: Dogs & Cats

Households Analysis

The 2020 Traffic Survey Zones (TSZs) (NCTCOG, 2011) population and household estimates were obtained from the North Central Texas 2045 Demographic Forecast dataset provided by NCTCOG. The population projections were based on a combination of the Gravity Land Use Model (G-LUM) and the UPlan urban growth model with inputs derived from the 2000 and 2010 Census data.

For each subwatershed, if the TSZ was completely within the sub-watershed, its entire population was used. If the TSZ was partially in the sub-watershed, the population in the sub-watershed was estimated by multiplying the block group population to the proportion of its area in the sub-watershed. The area of JPL sub-watershed was removed from the TSZ shapefile before applying the population and household over the block group area to avoid applying population projections to the lake area.

Approximately 36.5% of U.S. households have dogs, with 30.4% owning cats, and it is estimated that there are 1.6 dogs per HH with dogs, an average of 0.614 dogs per household overall, 1.8 cats per HH with cats, and an average of 0.457 cats per household overall (AVMA, 2018).

Load Calculation

The equation to calculate the EC for dogs and separately for cats is given as:

EC = Number of households
$$*\frac{\text{fraction of pets}}{\text{household}} * 2.5 * 10^9 \text{ MPN d}^{-1} \text{ head}^{-1}$$

The EC loading of 2.5*10⁹ MPN/day-head comes from fecal coliform estimate of 5.0*10⁹ MPN/day-head (Horsley and Witten, 1996) with the 50% fecal coliform (FC) to *E.coli* "rule of thumb" conversion applied. A 90% contribution was assumed to reach waterways within the 330-ft (100-m) riparian buffers, with a presumed 50% contribution from upland areas. Total EC calculations for each subwatershed (in MPN/day) are then normalized across the watershed by dividing by the subwatersheds area (MPN/ac-day).

2.5.5 Nonpoint Source: Livestock, Deer, Horse & Feral Hogs

Estimating Population Density

Similar steps were taken when developing the EC loads for larger mammals, such as domestic livestock, deer, and feral hogs. First, land use categories were considered for their suitability as habitat for the species of interest. Total watershed acreage of land uses relevant to large mammal populations were calculated based on the NCLD 2016 database (Table 2-12). County-wide National Agricultural Statistics Service (NASS) population estimates were then extrapolated to the watershed using a percent-area basis (Table 2-13). Animal populations were originally based on proportioned NASS, Texas Parks and Wildlife Department (TPWD), or Texas A&M University (TAMU) data. These were then modified based on steering committee recommendations (Table 2-14). If a particular land use was only partially utilized as habitat by a species, population density adjustments were made to that land use category (Table 2-15). Population densities for each species were then calculated using the stakeholder-recommended populations and the land use-based density adjustments (Table 2-16, Table 2-17).

Load Calculation

The adjusted animal population densities were used to calculate the *E.coli* loads for various livestock, deer, and feral hogs with the equations as shown in Table 2-11 (Teague, 2009):

Source	Calculation
Cattle	$EC = #cattle * 2.7 * 10^9 MPNd^{-1}head^{-1}$
Horses	$EC = \#horses * 2.1 * 10^8 MPNd^{-1}head^{-1}$
Sheep and goats	$EC = \#sheep * 9 * 10^9 MPNd^{-1}head^{-1}$
Deer	$EC = #deer * 1.75 * 10^8 MPNd^{-1}head^{-1}$
Feral Hogs	$EC = \#hogs * 4.45 * 10^9 MPNd^{-1}head^{-1}$
Ducks	$EC = #ducks * 5.5 * 10^9 MPNd^{-1}head^{-1}$
Geese	$EC = #geese * 2.45 * 10^{10} MPNd^{-1}head^{-1}$

Table 2-11. Equations to calculate the E.coli loads for various livestock, deer, feral hogs, and avian.

Total *E.coli* calculations for each subwatershed (in MPN/day) are then normalized across the watershed by dividing by the subwatersheds area (MPN/ac-day).

Land Cover	Acres
Grassland	45,670
Pasture/Hay	12,943
Deciduous Forest	19,622
Evergreen Forest	4,252
Mixed forest	370
Developed	35,965

Table 2-12. Total land cover acreages for relevant land uses in JPL watershed.

Table 2-13. Percentage of area of different counties falling within the boundary of JPL Watershed from NLCD 2016.

County	Total Acres	Acres in Watershed	% of County	% of Watershed
Johnson	469,950	55,998	11.92%	39.13%
Ellis	609,282	30,550	5.01%	21.35%
Tarrant	577,376	38,508	6.67%	26.91%
Dallas	581,676	18,036	3.10%	12.61%
Total	2,238,284	143,091		100%

Table 2-14. Assumed populations of various large mammals in the watershed based on Steering Committee (SC) recommendations.

SC Recommendations				
Large Mammals	Number	Notes		
Cattle	11,165	Original estimates based on USDA-NASS data		
Equine	1,207	Original estimates based on USDA-NASS data,		
		added 130 across low density urban land		
Sheep	736	Original estimates based on USDA-NASS data		
Goats	1,255	Original estimates based on USDA-NASS data		
Deer	902	Original estimates based on TPWD annual		
		median density estimate for DMU #20,21,22		
Feral Hogs	593	Original estimates based on TAMU		
Cats	28,698	Original estimates based on AVMA data		
Dogs	38,558	Original estimates based on AVMA data		

T	able 2-15. Proposed population dens	ity adjustments ba	sed on % of each land	use type used by each anima	l classification across watershed.

Density Adjustments	Grassland	Pasture/Hay	Shrub/Scrub	Low Density Urban
Cattle	1	1	1	
Equine	1	1	1	1
Sheep	1	1	1	
Goat	1	1	1	

Table 2-16. Estimated animal densities, animals/acre and acres/animal basis.						
Species	animal/ac	ac/animal	Notes			
Cattle	0.19	5.39	100% pasture, 100% grassland, 100% shrub/scrub			
Equine	0.02	56.03	100% pasture, 100% grassland, 100% shrub/scrub			
Equine	0.2	5	5% low density urban			
Sheep	0.01	81.7	100% pasture, 100% grassland, 100% shrub/scrub			
Goat	0.02	48	100% pasture, 100% grassland, 100% shrub/scrub			
Deer	0.02	53.7	whole watershed except developed (all), open water			
Feral Hogs	0.02	50.4	100 % riparian zones, 100 % forest land uses			

Table 2-17. Acreages used in calculation of feral hog population (in green).

LULC Category	Acres		
	Riparian	Upland	
Open Water	1,772	5,373	
Developed, Open Space	550	10,708	
Developed, Low Density	355	12,561	
Developed, Med Density	158	9,256	
Developed, High Density	41	2,335	
Barren land (Rock/Sand/Clay)	10	698	
Deciduous Forest	4,944	14,678	
Evergreen Forest	86	4,166	
Mixed Forest	52	318	
Shrub/Scrub	149	1,530	
Grassland/Herbaceous	3,030	42,640	
Pasture/Hay	754	12,190	
Cultivated Crops	180	13,988	
Woody Wetlands	104	58	
Emergent Herbaceous Wetlands	291	117	
Total Suitable Acreage	10,704	19,162	
Total Composite Acreage		29,866	

2.5.6 Nonpoint Source: OSSFs

There are several unincorporated and rural areas in the watershed where OSSFs are used by residents for wastewater treatment. When not functioning properly, OSSFs can become sources of pollution for *E.coli*, nutrients, and solids, both in groundwater and surface water bodies. A variety of causes can be to blame for reduced performance or malfunctions, including improper design/installation, lack of maintenance, unsuitable soil types (Figure 2-11), age of the system, and proximity to other systems.

Basemap: ESRI World Street Map; Soil data: NRCS-SSURGO Figure 2-11. Permeability of soils in the JPL watershed.

Since 1989, counties are responsible for maintaining records of permitted OSSFs, which must be inspected to ensure compliance with state regulations. Many of the known existing systems in the watershed installed prior to 1989 are not tied to a current permit, indicating that they have not been recently inspected, and thus have a much higher likelihood for failure. Since many of these systems were constructed before stricter permitting requirements were put in place, it is possible that many were either designed or installed improperly, especially in areas where soils are less suitable and unable to treat and absorb effluent loads. These "non-permitted" systems present a greater contamination risk to water quality. However, it is expected that even some permitted systems are currently in a state of failure, usually due to neglect or lack of homeowner knowledge regarding OSSF operation. Designated representatives (DRs) for counties in the watershed, as well as other stakeholders, agreed with statewide estimates of 50% failure rate for "non-permitted" and 12% for permitted systems used in several other WPP efforts in Texas (Reed et al., 2002).

Permitted OSSFs were pulled from Johnson, Ellis, and Tarrant counties, and from the cities of Grand Prairie and Arlington. Only the last 7 years of permits were available from Johnson County therefore the number of total permitted OSSFs could be higher across the JPL watershed in this county. Based on the available data for permitted OSSFs a total of 4,756 were located within the JPL watershed (Figure 2-12). No information was available for the actual number of "non-permitted" OSSFs across the JPL watershed. Stakeholders indicated there are about two "non-permitted" OSSFs present for every permitted OSSF across the watershed. Using this ratio, a total of 9,512 "non-permitted" OSSFs were designated for the SELECT analysis.

Stakeholders realized that while some element of upland-located OSSFs may be contributing, this riparian-focused approach would provide the most benefit while remaining economical. This decision was made due to the high costs associated with OSSF rehabilitation/replacement. Of the total 14,268 OSSFs estimated to exist in the watershed, only 4,756 have existing permits. If the scope is limited to those OSSFs inside the riparian buffer, 115 OSSFs (Figure 2-12) have associated permits and potentially 230 "non-permitted" OSSFs could be present. Proximity to other systems can also affect OSSF performance, particularly in areas where systems are densely spaced. In these situations, multiple failures are possible if one drain field exceeds its capacity and impacts adjacent fields, potentially resulting in drain field contaminants reaching waterbodies.

In the JPL watershed, OSSF's contribute 8.8% of the total *E.coli* load (Table 3-10). Failure rates of 50% for "non-permitted" systems and 12% for permitted systems were assumed to calculate the number of failing systems (Reed et al., 2001). The details for OSSFs, their failure rates, average person per household, and average *E.coli* load produced is presented in Table 2-18 for each subwatershed.

Basemap: ESRI World Street Map; OSSF data: Ellis, Johnson, and Tarrant County and the cities of Grand Prairie and Arlington Figure 2-12. Permitted OSSFs across the JPL (left) and permitted OSSFs within the 330-ft riparian buffer (right).

			Number of			
	Number of		"non-		Average	
	Permitted	Failure	permitted"	Failure	persons per	Load
Subwatershed	OSSFs	Rate	OSSF	rate	Household	(MPN/day)
JP1	0	0.12	0	0.5	0.00	1.46E+12
MC1	0	0.12	0	0.5	2.76	7.28E+12
MC2	1	0.12	2	0.5	2.88	4.28E+12
MC3	137	0.12	274	0.5	3.14	2.06E+12
MC4	85	0.12	170	0.5	3.37	1.61E+13
MC5	7	0.12	14	0.5	2.84	2.37E+12
MC6	4	0.12	8	0.5	2.95	4.49E+11
MC7	29	0.12	58	0.5	3.36	1.86E+12
MC8	9	0.12	18	0.5	3.16	8.34E+12
MC9	134	0.12	268	0.5	3.03	8.56E+12
MC10	105	0.12	210	0.5	3.05	4.21E+12
MC11	300	0.12	600	0.5	3.32	1.65E+13
SC1	24	0.12	48	0.5	3.04	8.14E+11
SC2	712	0.12	1,424	0.5	2.90	1.45E+13
SC3	714	0.12	1,428	0.5	2.97	1.02E+13
WC1	0	0.12	0	0.5	3.35	2.46E+12
WC2	17	0.12	34	0.5	3.44	1.88E+13
WC3	5	0.12	10	0.5	3.15	6.19E+12
WC4	116	0.12	232	0.5	3.48	2.17E+13
WC5	19	0.12	38	0.5	3.20	1.31E+13
WC6	144	0.12	288	0.5	2.89	2.80E+13
WC7	35	0.12	70	0.5	2.99	7.41E+12
WC8	1,111	0.12	2,222	0.5	3.10	1.50E+13
WC9	557	0.12	1,114	0.5	3.05	7.21E+12
WC10	491	0.12	982	0.5	2.86	2.32E+13
Total	4,756		9,512			2.42E+14

 Table 2-18. Permitted and "non-permitted" Onsite Sewage Facilities (OSSF), their failure rates, average person per household, and average E.coli

 Load produced by subwatershed.

Load Calculation

The equation to calculate EC for OSSFs is:

$$EC = \# failing systems \cdot \frac{5 \cdot 10^3 \text{ MPN}}{\text{mL}} \cdot \frac{2.65 \cdot 10^5 \text{ mL}}{\text{person} \cdot \text{day}} \cdot \frac{\text{Avg \# persons}}{\text{household}}$$

The *E.coli* load assigned to OSSFs: 5*10⁵ MPN/100 mL, with the average per-person water use estimated at 70gal/person-day (2.65*10⁵ mL) to be delivered to the OSSF (Teague, 2009).

3.0 Results and Discussion

3.1 Statistical Analysis

For Figure 3-1, investigators related flow to *E.coli*. Flow is represented by black horizontal bars. *E.coli* is represented by the vertical bars. The red dotted line represents the water quality criteria for *E.coli* (126 MPN/100 mL), which is technically only appropriate for geomean measurements, but is shown here simply for comparison. For all sites on Walnut Creek (upstream of station 13621), *E.coli* concentrations appeared to be closely related to precipitation events and thus higher flows, indicating that nonpoint sources and/or resuspension of existing instream colonies are likely to be the significant contributors of *E.coli*. Figure 3-1 provides an example of the flow-concentration relationship typical of these stations. Additional site summaries for *E.coli* and streamflow can be found in Appendix D. Site Summaries for *E.coli* and Streamflow.

Figure 3-1. Hydrology and E.coli parameters, Walnut Creek at Matlock Road (13621).

3.1.1 *E.coli*

The additional monitoring conducted in 2019-2020 indicates that contact recreational use is not supported in Walnut Creek due to elevated *E.coli* levels. Contact recreational use is supported in Mountain Creek albeit at one site, Soap Creek MC-C/22134. Contact recreational use is supported in JPL.

Figure 3-2. Boxplots and geomeans for E.coli samples collected June 2019-April 2020; a) Walnut Creek, b) Mountain Creek, c) JPL. A boxplot analysis of all stations revealed that JPL and Mountain Creek stations maintained a geomean concentration below the water quality standard (126 MPN/100 mL) with the exception of Station 22134 (MC-C/Soap Creek) that had a geomean concentration of 147 MPN/100mL. All Walnut Creek stations exceeded the water quality standard with geomeans ranging from 268 MPN/100mL (WC-D/Walnut Creek at Matlock) to 614 MPN/100mL (WC-C/Walnut Creek at Katherine Rose Park).

3.1.2 Nutrients

Nitrate

Figure 3-3. Boxplots and geomeans for Nitrate samples collected June 2019-April 2020; a) Walnut Creek, b) Mountain Creek, c) JPL.

A boxplot analysis of all stations revealed that JPL, Walnut Creek and Mountain Creek stations maintained an average concentration below the water quality screening level (1.95 mg/L streams and 0.37 mg/L lakes) with the exception of Station 22134 (MC-C/Soap Creek) that had an average concentration of 2.00 mg/L.

Results and Discussion

Total Kjedahl Nitrogen

Figure 3-4. Boxplots and geomeans for TKN samples collected June 2019-April 2020; a) Walnut Creek, b) Mountain Creek, c) JPL.

A boxplot analysis of all stations revealed that all stations within Walnut Creek and majority of Mountain Creek stations exceeded the EPA reference water quality screening level (0.4 mg/L streams and 0.41 mg/L lakes) with the exception of Station 16433 (MC-D/Hollings Branch) that had an average concentration of 0.15 mg/L and Station 22135 (MC-E/Low Branch) that had an average concentration of 0.39 mg/L. Walnut Creek stations ranged from 0.44 mg/L to 0.69 mg/L. JPL stations did not exceed the EPA reference water quality screening level.

Total Phosphorus

Figure 3-5. Boxplots and geomeans for TP samples collected June 2019 - April 2020; a) Walnut Creek, b) Mountain Creek, c) JPL. A boxplot analysis of all stations revealed that all stations within JPL Watershed maintained an average concentration below the water quality screening level (0.69 mg/L streams and 0.20 mg/L lakes).

Ortho-phosphate Phosphorus

OP is no longer used for TCEQ screening purposes as of the 2014 Texas Integrated report.

Figure 3-6. Boxplots and geomeans for OP samples collected June 2019-April 2020; a) Walnut Creek, b) Mountain Creek, c) JPL.

A boxplot analysis of all stations revealed that all stations within JPL Watershed maintained an average concentration below the water quality screening level (0.37 mg/L streams and 0.05 mg/L lakes).

Results and Discussion

Chlorophyll-a

Figure 3-7. Boxplots and geomeans for Chlorophyll-a samples collected June 2019-April 2020; a) Walnut Creek, b) Mountain Creek, c) JPL.

A boxplot analysis of all stations revealed that the majority of stations within the JPL watershed do not exceed the water quality screening level (14.1 ug/L streams and 26.7 ug/L lakes) with the exception of Station 22134 (MC-C/Soap Creek) that had an average concentration of 40.83 ug/L.

3.1.3 Solids

Total Dissolved Solids

Most of the BMPs aimed at curbing TDS are applicable to reducing E. coli and nutrient inflows, so they

can easily be grouped in with those contaminants for simplicity.

A boxplot analysis of all stations revealed that all stations within Walnut Creek and Mountain Creek exceeded the water quality standard (300 mg/L streams and 500 mg/L lakes). Mountain Creek average concentrations ranged from 535 mg/L to 674 mg/L. Walnut Creek average concentrations ranged from 480 mg/L to 583 mg/L. JPL stations did not exceed the water quality standard.

3.1.4 Correlation Analysis

The correlation coefficients for the combined dataset of all parameters indicate that significant associations exist between flow, E. coli, suspended solids, and nutrients (Table 3-1). This suggests that constituents like E. coli, suspended solids, and nutrients are being introduced to waterways via increase in flow which can stem from permitted or illicit discharges and nonpoint source runoff, and thus should be addressed primarily through management practices targeted to these events. Of note are correlations between a) flow vs. E. coli and b) flow vs. TSS and volatile suspended solids (VSS). Other notable correlations include a) TKN vs. TP, E. coli, and chl-a and b) nitrate vs. Chlorophyll-a and OP.

	1	able 3-1	1. Correl	ation Coe	fficients fo	or data colle	ected June	2019-April 202	0.			
				Secchi								
	24 Hr	72 Hr	Flow	Depth	TSS	VSS	Nitrite	Nitrate	TKN	ТР	Chlorophyll-a	OP
	rain	rain	(cfs)	(m)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)
TSS (mg/L)			0.720									
VSS (mg/L)			0.703	-0.546	0.953							
Nitrate (mg/L)							0.671					
TKN (mg/L)			0.694	-0.653	0.718							
TP (mg/L)			0.741	-0.606	0.775	0.830			0.870			
E. coli (MPN/100mL)			0.541			0.596			0.597			
Chlorophyll-a (ug/L)						0.516	0.654	0.558	0.600	0.639		
OP (mg/L)							0.749	0.584	0.5007	0.621	0.613	
Days Since Precipitation	-0.507											
Turbidity (NTU)					0.830	0.677				0.551		
BGA RFU							0.592		0.514	0.571	0.878	0.541

Table 2.1. Correlation Coefficients for data collected lu

notes: An arbitrary cut-off of +/- 0.5 was defined to indicate those correlations which may be significant.

3.2 LDC Analysis

3.2.1 Nutrients

Nutrients are transient in a flowing system such as a creek or river, but once those nutrients are delivered to a dammed waterbody like a lake or reservoir, flow rates decrease significantly, and will likely even be difficult to accurately measure during reservoir releases at the dam. This increased residence time leads to accumulation of nutrients, sediment, and other solids. Nutrients will continue to accumulate in both the water column and bed sediments, until they are used by organisms, removed by human means (typically through dredging), or resuspended and flushed downstream over the dam. If excessive nutrients begin to accumulate in a lake, this reduces the growth limitations on algae, and algal blooms will often result. This phenomenon is commonly referred to as lake eutrophication. In many cases, eutrophication is a natural process in lakes, but can be intensified with the proliferation of urban environments. These environments and their associated increase in impervious surfaces decrease groundwater infiltration rates. This increases stormwater runoff and elevates the potential for pollutants (including excess nutrients) being delivered to waterways. In addition to the potentially

Results and Discussion

harmful environmental effects, algal blooms may also cause taste and odor problems in municipal water taken from the lake and may impact recreational opportunities.

Phosphorus

TP and OP TCEQ screening level of concern is 0.69 mg/L and 0.37 mg/L, respectively. Based on historical and current data analysis, the geometric mean of calculated concentrations of TP and OP at five flow conditions (high flow, moist conditions, mid-range conditions, dry conditions, and low flow) at all monitoring stations were below the geometric means of respective allowable TCEQ concentrations, with two exceptions; monitoring station 22134 exceeded the allowable concentration for OP during dry and low flow conditions and monitoring station 16433 exceeded the allowable concentration for OP during high flow conditions. It should be noted that OP is no longer used as a TCEQ screening level as of the TCEQ 2014 IR (Appendix B. LDCs Results).

Nitrogen

The geomeans of NO_x for Soap Creek (monitoring station 22134) exceeded the TCEQ screening level of 1.95 mg/L at all 5 flow conditions. Walnut Creek Station at Matlock Road (monitoring station 13621) exceeded the screening level at high flow conditions. All other stations did not exceed the screening level. Figure 3-9 depicts the location of the stations that exceeded the screening level.

Basemap: ESRI World Street Map; Stream data source: NHD Figure 3-9. NO_x exceedance at Station 13621 and Station 22134.

The Mountain Creek arm of JPL was listed for a screening level concern due to heightened levels of nitrate in the TCEQ 2014 IR. A water body is listed as a screening level concern for nitrate if the water quality sample exceeds 0.37 mg/L for lakes and 1.95 mg/L for streams. Based on historic and current data analysis, Mountain Creek monitoring station 16434, upstream of the Mountain Creek arm, did not exceed the allowable screening level. No load reductions are needed on the main stem of Mountain Creek (Figure 3-10).

Figure 3-10. Load Duration Curve NO_x Station 16434 Mountain Creek at US 287.

However, downstream of station 16434, Soap Creek converges with Mountain Creek upstream of the confluence with JPL. The monitoring station 22134 on Soap Creek receives most of the runoff from forest and rangelands. The upstream portion of the monitoring station is covered by 9% of forest land, 14% urban, 26% agriculture and 45% of rangelands (Table 2-1). The majority is rangeland/pastureland and agriculture, but there is some urban land that can be contributing to the nonpoint source runoff of nutrients. Figure 3-11 displays the computation of load duration of NO_x in ton/day spanning high flows to low flows from 2013 to 2020. The LDC was compared to the maximum allowable load which accounts for a 10% MOS and the allowable load (TCEQ water quality standard) in order to determine the amount of reduction needed to meet the allowable load. The LDC depicted in Figure 3-11 exceeded the allowable NO_x level thus load reduction is required. The percentage of reduction of daily NO_x loading

needed at site 22134 is between 40-56% for wetter flow conditions and 1% for low flow conditions.

Table 3-2 provides the allowable and estimated geometric mean daily load along with annual reduction values needed at station 22134.

Figure 3-11. Load Duration Curve NO_x Site 22134 Soap Creek.

The NO_x loading at this monitoring station may be due to waste from livestock like cattle, sheep, goat, and horses from upstream rangelands (Table 2-1). Better management of livestock grazing in the surrounding area could be a viable way to reduce the amount of NO_x loading at this monitoring station.

Table 3-2. Average allowable loading, estimated loading, and load reduction of NO _x for monitoring station 22134.								
Flow	% of Time	Allowable	Daily	% Daily Load	Annual	Annual		
Condition at	Flow	Loading	Loading	Reduction	Loading	Reduction		
site 22134	Exceeds	(ton/day)	(ton/day)	Needed	(ton/yr)	Needed (ton/yr)		
High Flow	0-10%	4.92E-01	8.25E-01	40%	3.01E+02	1.22E+02		
Moist	10-40%	6 94F-02	1 58F-01	56%	5 77F+01	3 24F+01		
Conditions	10 40/0	0.542 02	1.502 01	50/0	5.772.01	5.240.01		
Mid-Range	40-60%	3 75E-02	7 97F-02	53%	2 01F+01	1 54F±01		
Conditions	40-0070	3.73L-02	7.571-02	55/0	2.511101	1.546101		
Dry	60-80%	2 76E-02	4 23F-02	35%	1 54F+01	5 35E+00		
Conditions	00 00/0	2.702 02	4.23L 02	5570	1.546.01	5.552100		
Low Flow	80-100%	2.24E-02	2.27E-02	1%	8.30E+00	1.08E-01		

Similar to the Mountain Creek arm, NO_x reduction was needed at only one of the three monitoring stations along Walnut Creek. No reduction was needed for any flow conditions at station 20790 or station 21990. However further downstream at station 13621 reduction was needed. For high flow events, a 48% reduction in the daily load was needed which translates to an annual reduction of about 270 ton/yr (Table C - 1). All three of these monitoring stations are located adjacent to urban areas. Since the majority of excess NO_x stems from agricultural runoff the lack of NO_x along the Walnut Creek was expected. The exceedance at high flow for station 13621 can be attributed to occasional severe rain and could possibly be mitigated by enhancing or expanding urban buffers along the stream.

Of the nine monitoring stations where LDCs were analyzed, three stations were in the Mountain Creek subwatershed, three were in the Walnut Creek subwatershed, and three stations were located on smaller streams that flow directly into JPL. The stations along the smaller creeks do not require NO_x reduction. The summary of water quality standard exceedance for each of the monitoring stations is summarized in Table 3-3. An annual reduction of 15.4 ton/yr during mid-range conditions is needed at site 22134 (Soap Creek upstream of Mountain Creek confluence) (Appendix C. Geometric mean of Nutrient and Bacteria Load. The complete list of geometric means of allowable loading, estimated loading, and reduction of nutrient loading needed for NO_x at all monitoring stations are presented in Appendix C. Geometric mean of Nutrient and Bacteria Load and the corresponding LDCs are presented in Appendix B. LDCs Results.

		[<u>j</u>	
Monitoring Stations	Low Flow	Dry	Mid-Range	Moist	High Flow
		Conditions	Conditions	Conditions	
16433	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
22135	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
22134	×	×	×	×	×
16434	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
13622	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
22133	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
13621	\checkmark	\checkmark	\checkmark	\checkmark	×
21990	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
20790	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 3-3. Summary of water quality screening exceedance at different flow conditions for NO _x .

Symbol \times indicates exceedance and symbol \checkmark indicates no exceedance

Total Kjedahl Nitrogen

In the case of TKN, no management trigger levels exist, although reference concentrations do (USEPA, 2000). The geomeans of TKN for five stations exceeded the EPA screening level of 0.4 mg/L at all flow conditions. All stations exceeded the screening level for mid-range conditions, moist conditions, and high flow, while 6 of the 9 exceeded the screening level at low flow. Figure 3-12 depicts the location of the stations that exceeded the screening level at all flow conditions.

Basemap: ESRI World Street Map; Stream data source: NHD Figure 3-12. TKN exceedance for all flow conditions at five stations in the JPL watershed.

The screening level criteria of TKN was exceeded at all nine monitoring stations for at least one flow condition. The three stations located on the Mountain Creek arm exceeded the screening level criteria at all flow conditions resulting in larger reduction values further downstream. Station 22134, the furthest downstream station in the mountain creek watershed, resulted in reduction values of 74% for most of the flow conditions with high flow needing an annual reduction of about 105 ton/yr. Table 3-4 provides all screening criteria and load reduction values for station 22134. The LDC for station 22134 is shown in Figure 3-13 which shows almost all observed loadings exceed the allowable screening level criteria across all flow conditions.

A similar scenario was found on Walnut Creek; all three monitoring stations indicate TKN reduction is needed which was compounded downstream. The furthest station downstream, 13621, resulted in a load reduction of 69% for high flow conditions which is an annual reduction of about 130 ton/yr (Table C - 2). The stations located on the smaller streams also exceeded the screening level criteria but not for all flow conditions. Table 3-5 summaries the screening level criteria of TKN for all monitoring stations.

Table 3-4. Average allowable loading, estimated loading, and load reduction of TKN for monitoring station 22134.								
Flow	% of Time	Allowable	Daily	% Daily Load	Annual	Annual		
Condition at	Flow	Loading	Loading	Reduction	Loading	Reduction		
site 22134	Exceeds	(ton/day)	(ton/day)	Needed	(ton/yr)	Needed (ton/yr)		
High Flow	0-10%	1.01E-01	3.88E-01	74%	1.42E+02	1.05E+02		
Moist Conditions	10-40%	1.42E-02	5.44E-02	74%	1.99E+01	1.47E+01		
Mid-Range Conditions	40-60%	7.69E-03	2.91E-02	74%	1.06E+01	7.82E+00		
Dry Conditions	60-80%	5.66E-03	2.13E-02	73%	7.78E+00	5.71E+00		
Low Flow	80-100%	4.60E-03	1.72E-02	73%	6.29E+00	4.61E+00		

Figure 3-13. LDC for TKN at monitoring station 22134.

Results and Discussion

The TKN component of total nitrogen is the sum of organic nitrogen and ammonia which comes mainly from animal manure. The TKN loading exceedance at monitoring station 16433 during high flow conditions was high due to the runoff containing manure from feral hogs and deer from upstream forests (Table 2-1) while the high loading at stations 22134 and 13622 were caused by waste from livestock grazing on rangelands and pasturelands upstream of these monitoring stations (Table 2-1). Additionally, the TKN loading exceedance at low flow conditions may be due to OSSFs and WWTFs. Similarly, the high concentration of TKN at high flow conditions for the Walnut Creek monitoring stations (20790, 21990, and 13621) may be caused by the runoff received from the surrounding grasslands (Table 2-1) containing waste from livestock. TKN at low flow conditions at these monitoring stations may be related to SSO, OSSF, and WWTFs in the area.

Water quality screening level exceedance for TKN at each monitoring station is summarized Table 3-5. To ensure the water quality goals are achieved for TKN, an annual reduction of 7.82 ton/yr during mid-range conditions is needed at site 22134 (Soap Creek upstream of Mountain Creek confluence), an annual reduction of 6.16*10⁻¹ ton/yr during mid-range conditions is needed at site 13621 (Walnut Creek at Matlock Rd), an annual reduction of 1.26 ton/yr during mid-range conditions is needed at site 16434 (Mountain Creek at US 287), an annual reduction of 1.63*10⁻¹ ton/yr during mid-range conditions is needed at site 16434 (Mountain Creek at US 287), an annual reduction of 1.63*10⁻¹ ton/yr during mid-range conditions is needed at site 16433 (Hollings Branch at Tangle Ridge Rd), an annual reduction of 1.39*10⁻² ton/yr during mid-range conditions is needed at site 22135 (Low Branch at South Holland Rd) and an annual reduction of 1.56*10⁻³ ton/yr during mid-range conditions is needed at site 22133 (Bowman Branch at South SH 360). The complete list of geometric means of allowable loading, estimated loading, and reduction of nutrient loading needed for TKN at all monitoring stations are presented in Appendix C. Geometric mean of Nutrient and Bacteria Load and the corresponding LDCs are presented in Appendix B. LDCs Results.

Tuble 3-5. Summary of EPA water quality screening level exceedance at different flow conditions for TKN.									
Monitoring Stations	Low Flow	Dry	Mid-Range	Moist	High Flow				
		Conditions	Conditions	Conditions					
16433	×	×	×	×	×				
22135	\checkmark	×	×	×	×				
22134	×	×	×	×	×				
16434	×	×	×	×	×				
13622	×	×	×	×	×				
22133	×	\checkmark	×	×	×				
13621	×	×	×	×	×				
21990	\checkmark	×	×	×	×				
20790	\checkmark	\checkmark	×	×	×				
Symbol \times indicates exceedance and symbol \checkmark indicates no exceedance									

Table 3-5. Summary of EPA water quality screening level exceedance at different flow conditions for TKN.

Modeling and Data Analysis Report for Joe Pool Lake Watershed

3.2.2 E.coli

To evaluate the potential of *E.coli* concentrations exceeding the standard at each station, geometric means were used. The geometric means of *E.coli* concentration were found to exceed the standard of 126 MPN/100mL at all nine stations at all flow conditions (Table 3-9). This indicates that nonpoint source inputs and in-stream resuspension of *E.coli* from bed sediments are primarily responsible for the exceedances. However, point sources may also need to be addressed. Figure 3-14 depicts the location of the stations that exceeded the standard criteria of *E.coli* at all flow conditions.

Basemap: ESRI World Street Map; Stream data source: NHD Figure 3-14. E.coli exceedances for all flow conditions at seven stations in the JPL watershed.

The *E.coli* historical data available for the stations inside the Lake could not be utilized for LDC analysis. Instead, they were used for the statistical analysis, comparing their minimum, maximum, and geometric mean values which are summarized for all available monitoring stations from 1998 to 2016 in Table 3-6.

Results and Discussion

Table 3-6. E.coli historical statistics from 1998-2016 across the JPL watershed.									
Station	Count	Minimum value of	Maximum value of	Geometric					
		<i>E.coli</i> (MPN/100mL)	<i>E.coli</i> (MPN/100mL)	Mean*(MPN/100mL)					
11073	31	<1	79	3					
11072	30	<1	649	3					
22139	11	1	125	6					
22136	22	2	2,599	40					
22134	6	19	2,419	409					
16433	26	4	4,839	194					
13621	13	24	4,813	183					
22133	31	6	41,100	144					

The geometric mean of *E.coli* concentration was observed to be high compared to the geometric mean of allowable concentration (126 MPN/100 ml) at all flow conditions for both Mountain Creek and Walnut Creek tributaries in JPL watershed. The percentage of reduction required for *E.coli* for high flow conditions was observed to be around 100% for most of the monitoring stations while the reduction required for low flow conditions ranged from 33- 99%. The geometric mean of allowable loading, estimated loading, and required reduction percentage of *E.coli* loading for monitoring stations 13621 (Walnut Creek @ Matlock Rd) and 16434 (Mountain Creek @ FM 287) are presented in Table 3-7 and Table 3-8 respectively. The LDC for *E.coli* at monitoring stations 13621 and 16434 are presented in Figure 3-15 and Figure 3-16, respectively.

Figure 3-15. LDC for E.coli at monitoring station 13621.

Table 3-7. Average allowable loading, estimated loading, and load reduction of E.coli loading for monitoring station 13621.								
Flow Condition	% of Time	Allowable	Daily	% Daily Load	Annual	Annual Reduction		
at site 13621	Flow	Loading	Loading	Reduction	Loading	Needed (MPN/yr)		
	Exceeds	(MPN/day)	(MPN/day)	Needed	(MPN/yr)			
High Flow	0-10%	7.11E+11	2.37E+14	100%	8.64E+16	8.62E+16		
Moist Conditions	10-40%	5.19E+10	1.48E+13	100%	5.40E+15	5.38E+15		
Mid-Range Conditions	40-60%	1.05E+10	1.48E+12	99%	5.41E+14	5.37E+14		
Dry Conditions	60-80%	3.80E+09	2.69E+11	99%	9.83E+13	9.69E+13		
Low Flow	80-100%	5.25E+08	3.33E+09	84%	1.21E+12	1.02E+12		

Table 3-7. Average a	llowable loading	, estimated loading	, and load reduct	tion of E.coli loading	for monitoring stat	ion 13622

Figure 3-16. LDC for E.coli at monitoring station 16434.

Flow	% of Time	Allowable	Daily	% Daily Load	Annual	Annual
Condition at	Flow	Loading	Loading	Reduction	Loading	Reduction
site 16434	Exceeds	(MPN/day)	(MPN/day)	Needed	(MPN/yr)	Needed
						(MPN/yr)
High Flow	0-10%	2.88E+12	8.79E+14	100%	3.21E+17	3.20E+17
Moist	10 /0%	4 06E±11	1 01E+12	0.8%	6 61 5 + 1 5	6 465+15
Conditions	10-40%	4.002+11	1.010+13	9870	0.012+13	0.402+13
Mid-Range	40-60%	2 10F±11	2 02E±12	02%	1.075+15	0 88E±14
Conditions	40-0078	2.19L+11	2.331+12	9370	1.071+13	9.881+14
Dry	60-80%	1 61F+11	1 03F±12	8/1%	3 78F±1/	3 10F±1/
Conditions	00-8078	1.011+11	1.03L+12	0470	5.761+14	5.191+14
Low Flow	80-100%	1.32E+11	4.97E+11	74%	1.82E+14	1.33E+14

Table 3-8. Average allowable logding.	estimated loadina, and load reduction o	of E.coli loadina for monitorina station 1643
, able o of the age anothable loading,	commuted rough and roughted	

E.coli loading at all of the monitoring stations exceeded the *E.coli* water quality standard under all flow conditions. The monitoring stations 22134, 16434, and 13622 in Mountain Creek subwatershed receive the majority of their runoff from rangelands (Table 2-1). Similarly, monitoring stations 16321, 21990, and 20790 in Walnut Creek subwatershed receive runoff from rangelands and forests (Table 2-1). Stations 22135 and 22133 located on individual tributaries to JPL receive most of their runoff from

urban land 41% and 64%, respectively, while station 16433 on the western side of JPL receives the largest amount of runoff from forests (49%, Table 2-1).

E.coli loading is high during high flow, moist conditions, and mid-range conditions which indicate runoff containing nonpoint sources such as pet waste from urban areas, livestock waste from rangeland/pasturelands, and wildlife waste from forested areas to be the source. *E.coli* loading also exceeded the water quality standard during dry and low flow conditions that also indicate nonpoint sources, but could include point sources such as OSSFs in rural areas. The *E.coli* load due to WWTF was negligible for the JPL watershed based on SELECT analysis and will be discuss in further detail in 3.3 SELECT Analysis. The summary of the water quality standard exceedances for each monitoring station for all flow conditions with the exception of low flow at site 16433 for *E.coli* is summarized in Table 3-9.

ruble 3-3. Summary of reed water quality standard Exceedunce at afferent flow conditions for E.com.									
Monitoring Stations	Low Flow	Dry	Mid-Range	Moist	High Flow				
		Conditions	Conditions	Conditions					
16433	\checkmark	×	×	×	×				
22135	×	×	×	×	×				
22134	×	×	×	×	×				
16434	×	×	×	×	×				
13622	×	×	×	×	×				
22133	×	×	×	×	×				
13621	×	×	×	×	×				
21990	×	×	×	×	×				
20790	×	×	×	×	×				

Table 3-9. Summary of TCEQ water quality standard exceedance at different flow conditions for E.coli.

Symbol × indicates exceedance and symbol \checkmark indicates no exceedance

To ensure the water quality goals are achieved, an annual reduction of 7.70*10¹⁴ MPN/yr during midrange conditions is needed at site 22134 (Soap Creek upstream of Mountain Creek confluence), an annual reduction of 5.37*10¹⁴ MPN/yr during mid-range conditions is needed at site 13621 (Walnut Creek at Matlock Rd), an annual reduction of 9.88*10¹⁴ MPN/yr during mid-range conditions is needed at site 16434 (Mountain Creek at US 287), an annual reduction of 5.72*10¹³ MPN/yr during mid-range conditions is needed at site 16433 (Hollings Branch at Tangle Ridge Rd), an annual reduction of 4.8*10¹³ MPN/yr during mid-range conditions is needed at site 22135 (Low Branch at South Holland Rd) and an annual reduction of 1.60*10¹³ MPN/yr during mid-range conditions is needed at site 22133 (Bowman Branch at South SH 360). The Geometric mean of allowable loading, estimated loading, and required reduction of bacteria loading for all monitoring stations are presented in Appendix C. Geometric mean of Nutrient and Bacteria Load and LDCs for *E.coli* for all stations are presented in Appendix B. LDCs Results.

3.3 SELECT Analysis

The management targets generated by the LDCs can now be put into a source context through the application of SELECT's suite of analysis. *E.coli* loads were similar for all livestock species (cattle, sheep & goats, and horses), being generally more prevalent in the more rural areas in the southern region of the JPL watershed, with minimal impacts in the urban areas east and west of JPL. In particular, per-acre loads were most concentrated in subwatersheds MC9, MC11, WC10, and SC1 (Figure 3-17).

Figure 3-17. Relative severity of E.coli loads from cattle, sheep & goats, and horses, by subwatershed.

The largest impacts from deer *E.coli* loads were found in the western side of the watershed (WC8, WC9, and WC10) with moderate loads in the forested area in the northeast. The highest *E.coli* loads for feral hogs were exhibited in subwatersheds MC1 and WC1 located adjacent to northern JPL. Subwatersheds MC2 and MC3 located on the eastern side of JPL also had slightly higher loads. In contrast, *E.coli* loads from dogs and cats tended to be highest in urban dominated subwatersheds, with the highest loads encountered in subwatersheds WC2 and WC4. Slightly higher and moderate loads were found closer on the western rim of the lake (Figure 3-18).

Results and Discussion

Figure 3-18. Relative severity of E.coli loads from deer, feral hogs, and dogs & cats, by subwatershed.

As expected, *E.coli* loads from OSSFs were most significant in the rural areas to the west, with highest loads coming from subwatersheds WC8,WC9, and MC3. For WWTFs, the three subwatersheds containing active facilities WC10, MC11, and SC2, were the only ones with measurable loads with the highest loads found in SC2 where Midlothian is located (Figure 3-19).

Figure 3-19. Relative severity of E.coli loads from human waste sources, by subwatershed.

As with any spatial analysis, aberrations can occur, and unexpected results should be discussed with stakeholders. For example, after the initial stakeholder meeting, it was requested that horses from

"hobby farms" be included. To account for this, 5% of all low density urban land use (9% of the watershed) was used. This was the agreeable amount of viable land within low density urban area. The total low density land use is about 13,000 acres, therefore 650 acres (or 5% of the total) was used for this analysis. One horse was added for every 5 acres of viable land resulting in an increase of 130 horses across the watershed.

Overall, impacts from all combined *E.coli* sources appeared to be most prevalent in the smaller subwatersheds surrounding the lake (Figure 3-20). These watersheds are comprised of urban areas with the predominant *E.coli* loading attributed to pet waste. Although the western subwatersheds on Walnut Creek had high loadings from deer and livestock, the values of high loading were well below the 126 MPN/acre-day allowable loading and therefore did not have a large contribution to the total loading from all sources. OSSFs also supplied high to moderate loads in the south, and WWTFs contributed to the overall *E.coli* loading only in regions where they were located. Figure 3-21 provides a visual comparison of the minimum and maximum loading values for all evaluated *E.coli* sources for the watershed, while Table 3-10 provides an in-depth analysis of all evaluated sources in all 25 subwatersheds. Please note that Figure 3-21 uses units of MPN/acre-day for comparison between pollutant source classes, while Table 3-10 uses units of MPN/day to establish the scope of the reductions needed to meet water quality goals.

As noted previously, there exist several potential *E.coli* sources that could not be included reliably, but the stakeholders still recognize them as viable pollutant management opportunities. These excluded sources will also be considered in the overall management strategy and discussed within the WPP document for this project.

Figure 3-20. Relative severity of E.coli loads from all sources by subwatershed.

Results and Discussion

	Table 3-10. Potential Load of E.coli (MPN/day) from point and nonpoint sources for subbasins in JPL watershed as predicted by SELECT analysis.												
Sub-													
water-	Cattle	Choon	Conto	Herees	Deer	Feral	0555	Dess	Cata		Ducks	Cassa	lotal
sneu	Cattle	Sneep	Goals	HOISES	Deer		USSF	Dogs	Cats		DUCKS	Geese	E.COII
JP1	-	-	-	-	3.50E+08	2.23E+10	-	-	-	-	7.04E+11	7.35E+11	1.46E+12
MC1	3.67E+11	8.1E+10	1.35E+11	3.99E+09	6.83E+09	4.54E+11	-	3.58E+12	2.66E+12	-	-	-	7.28E+12
MC2	6.18E+11	1.35E+11	2.34E+11	5.46E+09	3.50E+09	1.51E+11	3.79E+09	1.79E+12	1.34E+12	-	-	-	4.28E+12
MC3	3.78E+11	8.1E+10	1.44E+11	3.57E+09	2.10E+09	8.90E+10	6.31E+11	4.20E+11	3.13E+11	-	-	-	2.06E+12
MC4	5.15E+11	1.17E+11	1.89E+11	5.88E+09	2.80E+09	1.25E+11	4.21E+11	8.45E+12	6.29E+12	-	-	-	1.61E+13
MC5	9.47E+11	2.07E+11	3.51E+11	7.35E+09	3.50E+09	8.46E+10	2.99E+10	4.23E+11	3.15E+11	-	-	-	2.37E+12
MC6	2.21E+11	4.5E+10	8.1E+10	1.68E+09	1.05E+09	3.12E+10	1.55E+10	3.00E+10	2.25E+10	-	-	-	4.49E+11
MC7	1.64E+11	3.6E+10	6.3E+10	1.47E+09	7.00E+08	1.34E+10	1.42E+11	8.28E+11	6.15E+11	-	-	-	1.86E+12
MC8	7.31E+11	1.62E+11	2.7E+11	6.93E+09	4.03E+09	4.01E+10	4.16E+10	4.06E+12	3.03E+12	-	-	-	8.34E+12
MC9	2.68E+12	5.94E+11	1.008E+12	2.1E+10	1.12E+10	1.20E+11	5.97E+11	2.02E+12	1.51E+12	-	-	-	8.56E+12
MC10	1.35E+12	2.97E+11	5.04E+11	1.09E+10	4.03E+09	4.90E+10	4.73E+11	8.70E+11	6.48E+11	-	-	-	4.21E+12
MC11	4.90E+12	1.08E+12	1.836E+12	3.86E+10	1.49E+10	1.29E+11	1.47E+12	4.06E+12	3.02E+12	-	-	-	1.65E+13
SC1	3.78E+11	8.1E+10	1.44E+11	2.94E+09	1.40E+09	3.56E+10	1.08E+11	3.50E+10	2.75E+10	-	-	-	8.14E+11
SC2	2.84E+12	6.3E+11	1.071E+12	2.33E+10	9.10E+09	1.51E+11	3.04E+12	3.84E+12	2.86E+12	4.39E+08	-	-	1.45E+13
SC3	3.15E+12	6.93E+11	1.188E+12	2.49E+10	9.80E+09	1.34E+11	3.12E+12	1.07E+12	7.95E+11	-	-	-	1.02E+13
WC1	8.91E+10	1.8E+10	3.6E+10	8.4E+08	5.25E+08	3.56E+10	-	1.31E+12	9.70E+11	-	-	-	2.46E+12
WC2	1.35E+11	2.7E+10	5.4E+10	2.52E+09	1.23E+09	3.12E+10	8.61E+10	1.06E+13	7.86E+12	-	-	-	1.88E+13
WC3	1.94E+11	4.5E+10	7.2E+10	2.31E+09	1.40E+09	5.79E+10	2.49E+10	3.32E+12	2.47E+12	-	-	-	6.19E+12
WC4	1.86E+11	4.5E+10	7.2E+10	3.36E+09	1.40E+09	2.23E+10	5.96E+11	1.19E+13	8.86E+12	-	-	-	2.17E+13
WC5	1.83E+11	3.6E+10	7.2E+10	3.15E+09	2.10E+09	4.01E+10	8.84E+10	7.25E+12	5.40E+12	-	-	-	1.31E+13
WC6	6.31E+11	1.35E+11	2.34E+11	8.19E+09	5.78E+09	9.35E+10	6.12E+11	1.50E+13	1.12E+13	-	-	-	2.80E+13
WC7	4.15E+11	9E+10	1.53E+11	4.2E+09	3.85E+09	4.90E+10	1.53E+11	3.75E+12	2.79E+12	-	-	-	7.41E+12
WC8	1.77E+12	3.87E+11	6.66E+11	1.407E+10	1.42E+10	1.42E+11	5.07E+12	4.00E+12	2.98E+12	-	-	-	1.50E+13
WC9	1.22E+12	2.7E+11	4.59E+11	9.66E+09	1.07E+10	1.20E+11	2.50E+12	1.50E+12	1.12E+12	-	-	-	7.21E+12
WC10	6.04E+12	1.33E+12	2.259E+12	4.70E+10	4.15E+10	4.18E+11	2.07E+12	6.30E+12	4.69E+12	4.06E+07	-	-	2.32E+13
Total	3.01E+13	6.62E+12	1.13E+13	2.53E+11	1.58E+11	2.64E+12	2.13E+13	9.64E+13	7.17E+13	4.79E+08	7.04E+11	7.35E+11	2.42E+14

4.0 Conclusions

The geomeans of OP and TP at all five flow conditions for all the nine stations were below the TCEQ screening criteria for concentrations of 0.37 mg/l and 0.69 mg/l, respectively with two exceptions for OP at site 16433 high flow conditions and site 22134 at dry and low flow conditions. The geomeans of NO_X for one station exceeded the screening criteria of 1.95 mg/l at all flow conditions and one station exceeded the screening criteria of 1.95 mg/l at all flow conditions and one stations exceeded the screening criteria at only high flow conditions. The geomeans of TKN for six stations exceeded the screening criteria of 0.4 mg/l at all flow conditions, one station exceeded the screening criteria at dry and low flow conditions, one station exceeded the screening criteria at low flow conditions, one station exceeded the screening criteria at low flow conditions, one station exceeded the screening criteria at low flow conditions, one station exceeded the screening criteria at low flow only, and one station exceeded the screening criteria at dry conditions only. The geomeans of *E.coli* for all nine stations exceeded the TCEQ water quality standard of 126 MPN/100 ml at all five flow conditions with one exception during low flow conditions at site 16433.

The analysis showed that geometric means of estimated concentration of NO_x at monitoring stations 22134 and 13621 were above permissible geometric mean at high flow conditions. Since the NO_x loading dissipated relatively quickly after the storm event, it showed that nonpoint source runoff was the dominant source of nutrient loading. Since nutrients usually come from agricultural runoff, the majority of the stations do not have much concern as the proportion of agricultural land in the watershed is limited at about 10%. The higher concentration of NO_x was due to the grazing activity of domestic livestock like cattle, sheep, goat, and horses at the rangelands and pastures from which the runoff is received. The NO_x concentration at this monitoring station can be reduced with BMPs targeted towards grazing livestock . The monitoring station 13621 located near grasslands and forests has high NO_x loading during high flow condition from nonpoint source runoff that contains livestock and wildlife waste.

The geometric mean of estimated TKN Load was observed to be very high compared to the geometric mean of allowable TKN load based on EPAs screening level at high flow condition for the monitoring stations 22134, 16434, and 13622. Since the TKN component of total nitrogen is the sum of organic nitrogen and ammonia, it comes mainly from the animal manure; so, the runoff from rangelands and pasturelands used for grazing livestock are the main source of TKN loading at these stations. The geometric mean of observed TKN concentration at high flow condition for monitoring stations 22133, which receives runoff from urban areas, and the monitoring station 16433 receiving most of

Conclusions

the runoff from forests were also high compared to geometric mean of allowable TKN concentration. The high concentration of TKN at high flow condition for these stations are due to runoff containing pet waste from the surrounding urban areas and wildlife waste from forests, respectively. Additionally, the high concentration of TKN at low flow conditions were due to SSO, OSSF, and WWTFs in the area.

The geometric mean of *E.coli* concentration was very high compared to the geometric mean of the allowable concentration at all flow conditions for both Mountain Creek and Walnut Creek tributaries in JPL watershed. From the LDC analysis, the E.coli load is very high during high flow conditions for all of the monitoring stations. The sources may be related to the runoff containing pet waste from urban areas, livestock waste from rangeland and pasturelands, and wildlife from the forests. The E.coli load remained higher than the allowable load in mid-range and low flow conditions possibly due to point sources such as OSSF in rural areas. The *E.coli* load due to WWTF was negligible for the JPL watershed based on the SELECT analysis. SELECT analysis found the average potential *E.coli* load was significant due to waste from pets. Dog waste contributed around 40% of E.coli load and cat waste contributed 30% of the *E.coli* load. The contribution from pets was higher in the northern region of JPL where the majority of the urban centers are located. Moreover, the range of *E.coli* load by point sources shows that the loadings are high only during large storm events with runoff from the upland area. However, the median value of potential *E.coli* load from all the sources are well below the average which suggests the main source of E.coli are the nonpoint sources rather than point sources. The dominant source of E.coli from the SELECT analysis across the subwatersheds were in accordance with exceedance of the E.coli load for monitoring stations located within subwatershed.

Based on these analyses, nonpoint source pollution is the main driver of water quality impairments in the Joe Pool Lake tributaries. It is clear that there are several significant sources of *E. coli*, nutrients, and other contaminants distributed throughout the watershed, and that focusing on one particular land use or location will not provide a viable solution. In many cases, wildlife tend to be the primary contributor of *E. coli* in Texas watersheds. Stakeholders have few management options in these cases, and stakeholders in the JPL watershed even expressed interest in avoiding management of wildlife contributions altogether, instead preferring to account for wildlife *E. coli* loads as background or baseline contributions. However, due to the significant amount of urbanized area in the JPL watershed, several sources that are inherently more manageable outranked wildlife sources. For this reason, *E. coli* contributions from dogs and cats are likely the primary source of pollution in the watershed, followed

Conclusions

closely by agricultural livestock. These sources prove to be advantageous for *E. coli* management in the watershed, as several well-known and proven management strategies exist for both source categories, whether it be for *E. coli* or nutrients. Additional BMPs put in place for several of the other source categories will provide additional flexibility for achieving an annual reduction of 7.82 ton/yr TKN, 1.54*10¹ ton/yr NO_x and 7.70*10¹⁴ MPN/yr *E.coli* during mid-range conditions at site 22134 (Soap Creek upstream of Mountain Creek confluence), an annual reduction of 6.16*10⁻¹ ton/yr TKN and 5.37*10¹⁴ MPN/yr *E.coli* during mid-range conditions at site 13621 (Walnut Creek at Matlock Rd), an annual reduction of 1.26 ton/yr TKN and 9.88*10¹⁴ MPN/yr *E.coli* during mid-range conditions at site 16434 (Mountain Creek at US 287), an annual reduction of 1.63*10⁻¹ ton/yr TKN and 5.72*10¹³ *E.coli* during mid-range conditions Branch at Tangle Ridge Rd), an annual reduction of 1.39*10⁻² ton/yr TKN and 4.8*10¹³ MPN/yr *E.coli* during mid-range conditions at site 22135 (Low Branch at South Holland Rd) and an annual reduction of 1.56*10⁻³ ton/yr TKN and 1.60*10¹³ MPN/yr *E.coli* during mid-range conditions at site 22133 (Bowman Branch at South SH 360) (Appendix C. Geometric mean of Nutrient and Bacteria Load).

It is expected that some form of routine monitoring regime resembling that which was used to characterize the watershed will continue into the future. That prospect, if supported by both funding availability and stakeholder willingness, will supply researchers and decision-makers in the watershed with the data and knowledge required to continue application of one or several of the analyses detailed in this report to track progress for the improvement and protection of water quality in the JPL watershed.

Appropriate BMPs must be implemented to reduce TKN, NOx, and *E.coli* concentrations where estimated concentrations exceeded the screening criteria or the water quality standard concentration. In urban regions management of pet waste and in rangelands management of grazing activities can be helpful to reduce both the nutrient and bacteria load. BMPs for SSO events would consist of proper maintenance and prevention measures as the impacts from such events are difficult to simulate or predict.

References

- American Society of Agricultural Engineers (ASAE), 1998. ASAE Standards, 45th Edition. Standards, Engineering Practices, Data.
- Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams. 1998. Large area hydrologic modeling and assessment part I: Model development. J. Amer. Water Resour. Assoc. 34(1): 73-89.
- Arnold, J., 1994, 'SWAT-soil and water assessment tool'.
- AVMA [American Veterinary Medical Association], 2018. 2017-2018 U.S. Pet Ownership Statistics. Retrieved May 19, 2021, from website: www.avma.org/resources-tools/reports-statistics/uspet-ownership-statistics.
- BEG. (1996). *Physiographic Map of Texas*. Bureau of Economic Geology, Austin, TX. Available at: http://www.beg.utexas.edu/UTopia/images/pagesizemaps/physiography.pdf>.
- Berhanu, B. et al., 2015, 'Flow regime classification and hydrological characterization: a case study of Ethiopian rivers', Water, 7(6), pp. 3149–3165.
- Gao, J. et al.,2021, 'Design and development of a Python-based interface for processing massive data with the LOAD ESTimator (LOADEST)', Environmental Modelling & Software, 135, p. 104897.
- Gassman P. W., Reyes M. R., Green C. H. and Arnold J. G. 2007. The Soil and Water Assessment Tool: Historical development, applications and future research directions. Transactions of the ASABE, 50:1211–1250.
- Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrologic Eng. 4(2): 135-143.
- Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology 377 (1-2), 80-91.
- Horsley and Witten, I., 1996. Identification and evaluation of nutrient and bacterial loadings to Maquoit Bay, New Brunswick and Freeport, Maine. Final Report.
- Long Island Regional Planning Board (LIRPB), 1978. The Long Island Comprehensive Waste Treatment Management Plan: Volume II: Summary Documentation. Nassau-Suffolk regional Planning Board. Hauppauge, NY.
- Mesner, Nancy and John Geiger. (2010). Understanding Your Watershed: Nitrogen. Utah State University Water Quality Extension. Available at: http://extension.usu.edu/files/publications/publication/NR_WQ_2005-15.pdf.
- Metcalf E, Eddy H.1991. Wastewater engineering treatment disposal re-use. New York: Metcalf and Eddy.
- Moriasi, D. N. et al., 2007, 'Model evaluation guidelines for systematic quantification of accuracy in watershed simulations', Transactions of the ASABE, 50(3), pp. 885–900.

- Nash, J. E., and J. V. Sutcliffe. 1970. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrology 10(3): 282-290.
- NCTCOG [North Central Texas Council of Governments], 2011. Traffic Survey Zones. Retrieved May 28, 2021, from website: https://data-nctcoggis.opendata.arcgis.com/datasets/traffic-survey-zones-2011/explore.
- Reed, Stowe, and Y.L., 2001. Study to determine the magnitude of, and reasons for chronically malfunctioning on-site sewage facility systems in Texas, pp. vi and x. Texas On-Site Wastewater Treatment Research Council. Austin, Texas.
- Reed, Stowe, and Yanke, LLC, 2002. Study to Determine the Magnitude of, and Reasons for, Chronically Malfunctioning On-site Sewage Facility Systems in Texas. www.tceq.texas.gov/assets/public/compliance/compliance_support/regulatory/ossf/StudyToDe termine.pdf
- Runkel, R. L., Crawford, C. G. and Cohn, T. A. (2004) Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers.
- Santhi, C, J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan, and L. M. Hauck. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. American Water Resources Assoc. 37(5): 1169-1188.
- TCEQ. (2012). Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods. Retrieved from https://www.tceq.texas.gov/assets/public/comm_exec/pubs/rg/rg415/rg-415.pdf
- TCEQ. (2015a). 2014 Guidance for Assessing and Reporting Surface Water Quality in Texas. Retrieved from https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/14txir/2014_guidance.pdf
- TCEQ. (2015b). 2014 Texas Integrated Report Water Bodies with Concerns for Use Attainment and Screening Levels. Texas Commission on Environmental Quality, Austin, TX. Available at: https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/14txir/2014_concerns.p df>. Accessed 14 June 2016.
- TCEQ. (2018). Texas Surface Water Quality Standards. Texas Administrative Code (TAC), Title 30, Chapter 307. Date of last revision: 1 March 2018.
- TCEQ. (2019a). 2016 Texas Integrated Report Texas 303(d) List (Category 5). Texas Commission on Environmental Quality, Austin, TX. Available at: https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/16txir/2016_303d.pdf>. Accessed 16 August 2019.
- TCEQ. (2019b). 2016 Texas Integrated Report Water Bodies with Concerns for Use Attainment and Screening Levels. Texas Commission on Environmental Quality, Austin, TX. Available at: https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/16txir/2016_concerns.p df>. Accessed 16 August 2019.

- TCEQ. 2020. 2020 Texas Integrated Report: Assessment Results for Basin 8 Trinity River. Austin, TX: Texas Commission on Environmental Quality. 356 pp. Available at: https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/20txir/2020_Basin8.pdf >. Accessed 24 September 2020.
- Teague, A., Karthikeyan, R., Babbar-Sebens, M., Srinivasan, R. and Persyn, R.A., 2009. Spatially explicit load enrichment calculation tool to identify potential E. coli sources in watersheds. Transactions of the ASABE, 52(4), pp.1109-1120.
- Teague, A. E., 2007, 'Spatially explicit load enrichment calculation tool and cluster analysis for identification of', *E.coli*.
- TRA. (2020). Joe Pool Lake WPP Data Collection Report, 2020. Trinity River Authority of Texas, Arlington, TX.
- USACE. (2019). Development of Joe Pool Lake. Fort Worth, TX. U.S. Army Corps of Engineers. Available at: http://www.swf-wc.usace.army.mil/joepool/Information/History.asp. Accessed 22 Oct 2019.
- USEPA, D., 2000, 'Ambient Water Quality Criteria Recommendations Information Supporting the Development of State and Tribal Nutrient Criteria Rivers and Streams in Nutrient Ecoregion IX', Washington, DC: Office of Water.
- USEPA, 2001, 'Protocol for Developing Pathogen TMDLs', Office of Water, United States Environmental Protection Agency, Washington, DC.
- USGS [United States Geological Survey], 2019. NLCD 2016 Land Cover Conterminous United States.(Remote sensing image files). Sioux Falls, SD. U.S. Geological Survey. www.mrlc.gov/data
- Van Liew, M. W., J. G. Arnold, and J. D. Garbrecht. 2003. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 46(6): 1539-1551.
- Wang, J. et al., 2019, 'Development of load duration curve system in data-scarce watersheds based on a distributed hydrological model', Hydrology Research, 50(3), pp. 886–900.

Appendix A. Geospatial Data Sources Used for Watershed Analysis

			-	
Geospatial Data	Source	Date	Analysis and/or Processing	Data Use
Digital Elevation	USGS 3D EP	2019	Mosaic and clip raster files to	Watershed delineation in Arc
Mode (30 m)			watershed mask, process to develop	SWAT
			stream network.	
Land Use and Land	USGS NLCD	2016	Merge with CDL LULC to form LULC	HRU delineation
Cover (LULC)			map for modelling	land management input to
				SWAT
				(NLCD LULC provides land use
				data for range, forest, water,
				urban, wetland, etc)
Land use and Land	USDA-NASS-CDL	2017,	Merged with NLCD LULC to form	HRU delineation-
Cover (LULC)		2018,	resulting LULC map for modeling	CDL LULC provides detailed
		2019		crop wise land use category for
				agricultural lands
Soil Database	NRCS-SSURGO	2019	Clip SSURGO soil polygon to	HRU delineation and land
			watershed boundary	management input to SWAT
Wastewater	NPDES	2020	Clip points to watershed boundary	Point source input- ArcSWAT
Treatment Plants				and <i>E.coli</i> load calculation
(WWTPs)				
Wastewater	TCEQ	2019	Clip to watershed boundary, verify	Point source input- ArcSWAT
Treatment Facilities			operational state	and <i>E.coli</i> load calculation
(WWTFs)				
Weather data	NWS,	2000-	Extraction of weather data in the	Application in ArcSWAT
(precipitation,	NOAA	2020	SWAT input format	
Maximum and				
minimum				
temperature,				
relative humidity,				
solar radiation, and				
wind speed)				
Aerial imagery	NAIP, TOP	2016,	Mosaic and clip raster files to	Determine ground conditions
		1996	watershed	of watershed
Topographic maps	USGS	1996	Isolate DOQQs situated	Characterize watershed,
(1.24,000 scale)			inside/tangent to watershed	reference for hydrologic
			boundary	features
Detailed streets and	ESRI	2016	None	Public outreach component,
highways				orient map viewers to
				watershed extents
City boundaries	TCEQ	2014	Clip features to watershed boundary	Public outreach component
County boundaries	TCEQ	2014	Clip features to watershed boundary	Public outreach component
Joe Pool Lake	NHD	2009	Aggregate of HUC 12 subwatersheds	Clipping boundary for isolating
watershed			above Joe Pool Lake outlet	other data sources
Census data	U.S. Census	2010	Distribute population density	Determine population
	Bureau		characteristics appropriately to	characteristics, base data for
			watershed	several <i>E.coli</i> loading
				components
911 address	NCTCOG	2015	Clip source points to watershed	Determine location, density of
structures points			boundary	structures

	1			
Geospatial Data	Source	Date	Analysis and/or Processing	Data Use
SWQM stations	TRA, TCEQ	Varies	Relate to surface water quality data	Document locations of surface
		(1981-	sampling results	water quality monitoring
		2020)		stations
County Soils Maps	NRCS (SSURGO)	2014	Identify areas that may prove	Characterize watershed,
			problematic for modeling and/or	watershed delineation
			pollutant transport	
General Soils Maps	NRCS (STATSGO)	1997	Identify areas that may prove	Characterize watershed,
			problematic for modeling and/or	watershed delineation
			pollutant transport	
LULC field	TRA	2016-	Compare to NLCD database	Determine accuracy of NLCD
verification points		2017		data
SWCD boundaries	TSSWCB	2014	Isolate Dalworth/Johnson SWCDs	Public outreach strategy
List of steering	TRA	2020	Gather geographic information at	Determine distribution of
committee member			stakeholder meetings, personal	committee member locations
locations			communication, email	to ensure adequate watershed
				representation
RUAA sampling	TCEQ	2011	Generalize sampling location results	Determine extent of
locations		(Walnut	to applicable extents within	recreational use in watershed
		Creek)	watershed	for bacteria standards
				applicability
Shape files for	NHD	2009	Ground truth feature margins for	Watershed delineation
existing lakes and			accuracy	
reservoirs			,	
Shape files for	NHD	2009	Clip NHD features to watershed	Watershed delineation
streams			boundary	
Named streams	NHD	2009	Generalize NHD data for streams,	Public outreach – use for
			isolate named streams to new layer	general information maps
TCEQ stream	TCEQ	2016	Clip features to watershed boundary	Watershed delineation
segments				
TCEQ assessment	TCEQ	2016	Clip features to watershed boundary	Watershed delineation
units				
Aquifers – major	TWDB	2006	None	Public outreach component
and minor				
New TCEO surface	TRA/TCEO	Created	Identify new/existing station	Watershed delineation
water quality		through	locations at strategic points along	
monitoring stations		JPL	stream path	
		project		
Floodplain data	National Flood	2015	Compare and adjust LULC maps as	Used to update LULC maps as
	Hazard Laver –		appropriate	necessary, public outreach
	FFMA			component
Public water system	TCEO	2016	Append well constituent tables to	Determine if wells may be
wells & surface			spatial network of wells	subject to pollution from
water intakes				nearby sources
Bridge locations	National Bridge	2012	Append bridge location data to well	Component of approximating
	Inventory		information tables apply to	<i>E coli</i> loading rate from avian
	(USDOT)		watershed	sources
Municinal solid	TCFO	2007	Verify activity & history of sites	Potential pollutant point
waste sites/landfills		2007	clipped to watershed	source identification
	1	1		

Geospatial Data	Source	Date	Analysis and/or Processing	Data Use
Solid waste	TRA	Created	Compare MSW/L database points,	Determine accuracy of
sites/landfills/		through	add points for illegal dump sites	municipal solid waste
illegal dump site		JPL	found in watershed	sites/landfills data, identify
field verification		project		other dump site point sources
Water control	NRCS/TRA	Created	Comparison and integration of TRA	Identify and verify significant
structures database		through	and NRCS records	impoundments in watershed
		JPL		
		project		
Oil & natural gas	RRC of Texas	Varies	Clip database to watershed	Locate and determine density
wells			boundary	of oil/natural gas wells for
				potential pollutant point
				source identification
Permitted industrial	TCEQ	n/a	Clip database to watershed	Locate sites for potential
/hazardous waste			boundary – none in watershed	pollutant point source
sites				identification
Cattle – population	USGS National	2017	Clip database to watershed	E.coli load calculation
density	Agricultural		boundary	
	Statistics Service			
Sheep – population	USGS National	2017	Clip database to watershed	E.coli load calculation
density	Agricultural		boundary	
	Statistics Service			
Goats – population	USGS National	2017	Clip database to watershed	E.coli load calculation
density	Agricultural		boundary	
	Statistics Service			
Horses – population	USGS National	2017	Clip database to watershed	E.coli load calculation
density	Agricultural		boundary	
	Statistics Service			
Deer – population	TPWD deer	2007,	Clip database to watershed	<i>E.coli</i> load calculation
density	density studies	2020	boundary	
	(Lockwood 2006			
	and Cain 2020)			
waterfowi (Ducks	Stakeholder	Created	Blas to riparian buffers, other areas	E.COII load calculation
and Geese) –	input, using	through	of interest identified by stakeholders	
population density	other WPP data	JPL mmsisst		
	as benchmarks,	project,		
	Survoy	2010-		
Foral Hogs	Stakeholder	Created	Pias to riparian huffors, other areas	E coli load calculation
nonulation donsity	input using	through	of interest identified by stakeholders	
population density	neer-reviewed	IDI	of interest identified by stakeholders	
	literature and	project		
	other W/PP data	project		
	as benchmarks			
Certificates of	Public Litility		Clip to watershed verify extents	<i>E coli</i> load calculation
Convenience and	Commission of	2014		
Necessity (CCNs)	Texas	2014		
OSSEs	NCTCOG-level	2017	CCNs - City boundaries with WWTF	<i>E.coli</i> load calculation
	911 address		but no available $CCN = total$	
	points		households w/OSSFs	
	1.1	1	,	I. I

Geospatial Data	Source	Date	Analysis and/or Processing	Data Use
Dog Population	Census Bureau and stakeholder input	2010	Census data, households *0.614 = dogs	<i>E.coli</i> load calculation

Figure B - 1. LDC for NO_x at monitoring station 16433.

Figure B - 2. LDC for TKN at monitoring station 16433.

Figure B - 3. LDC for OP at monitoring station 16433.

Figure B - 4. LDC for TP at monitoring station 16433.

Figure B - 5. LDC for E.coli at monitoring station 16433.

Figure B - 6. LDC for NO_x at monitoring station 22135.

Figure B - 7. LDC for TKN at monitoring station 22135.

Figure B - 8. LDC for OP at monitoring station 22135.

Figure B - 9. LDC for TP at monitoring station 22135.

Figure B - 10. LDC for E.coli at monitoring station 22135.

Figure B - 11. LDC for NO_x at monitoring station 22134.

Figure B - 12. LDC for TKN at monitoring station 22134.

Figure B - 13. LDC for OP at monitoring station 22134.

Figure B - 14. LDC for TP at monitoring station 22134.

Figure B - 15. LDC for E.coli at monitoring station 22134.

Figure B - 16. LDC for NO_x at monitoring station 16434.

Figure B - 17. LDC for TKN at monitoring station 16434.

Figure B - 18. LDC for OP at monitoring station 16434.

Figure B - 19. LDC for TP at monitoring station 16434.

Figure B - 20. LDC for E.coli at monitoring station 16434.

Figure B - 21. LDC for NO_x at monitoring station 13622.

Figure B - 22. LDC for TKN at monitoring station 13622.

Figure B - 23. LDC for OP at monitoring station 13622.

Figure B - 24. LDC for TP at monitoring station 13622.

Figure B - 25. LDC for E.coli at monitoring station 13622.

Figure B - 26. LDC for NO_x at monitoring station 22133.

Figure B - 27. LDC for TKN at monitoring station 22133.

Figure B - 28. LDC for OP at monitoring station 22133.

Figure B - 29. LDC for TP at monitoring station 22133.

Figure B - 30. LDC for E.coli at monitoring station 22133.

Figure B - 31. LDC for NO_x at monitoring station 13621.

Figure B - 32. LDC for TKN at monitoring station 13621.

Figure B - 33. LDC for OP at monitoring station 13621.

Figure B - 34. LDC for TP at monitoring station 13621.

Figure B - 35. LDC for E.coli at monitoring station 13621.

Figure B - 36. LDC for NO_x at monitoring station 21990.

Figure B - 37. LDC for TKN at monitoring station 21990.

Figure B - 38. LDC for OP at monitoring station 21990.

Figure B - 39. LDC for TP at monitoring station 21990.

Figure B - 40. LDC for E.coli at monitoring station 21990.

Figure B - 41. LDC for NO_x at monitoring station 20790.

Figure B - 42. LDC for TKN at monitoring station 20790.

Figure B - 43. LDC for OP at monitoring station 20790.

Figure B - 44. LDC for TP at monitoring station 20790.

Figure B - 45. LDC for E.coli at monitoring station 20790.

Appendix C. Geometric mean of Nutrient and Bacteria Load

Table C - 1. Geometric mean of Allowable and Estimated Nitrate and Nitrite ($NO_3 + NO_2$) Load at each monitoring station across the JPL at

different flow conditions.							
Station		% of Time	Allowable	Daily	% Daily	Annual	Annual
Number	Flow Condition	Flow	Loading	Loading	Reduction	Loading	reduction
Number		Exceeds	(ton/day)	(ton/day)	Needed	(ton/yr)	needed (ton/yr)
	High Flow	0-10%	4.92E-01	6.98E-02	-	2.55E+01	-
	Moist Conditions	10-40%	6.93E-02	6.28E-03	-	2.29E+00	-
16433	Mid-Range Conditions	40-60%	3.74E-02	2.71E-03	-	9.88E-01	-
	Dry Conditions	60-80%	2.75E-02	1.75E-03	-	6.40E-01	-
	Low Flow	80-100%	2.25E-02	1.31E-03	-	4.78E-01	-
	High Flow	0-10%	1.15E-01	1.68E-02	-	6.12E+00	-
	Moist Conditions	10-40%	5.06E-03	1.23E-03	-	4.48E-01	-
22135	Mid-Range Conditions	40-60%	1.01E-03	3.03E-04	-	1.10E-01	-
	Dry Conditions	60-80%	2.80E-04	9.35E-05	-	3.41E-02	-
	Low Flow	80-100%	1.28E-05	5.12E-06	-	1.87E-03	-
	High Flow	0-10%	4.92E-01	8.25E-01	40%	3.01E+02	1.22E+02
	Moist Conditions	10-40%	6.94E-02	1.58E-01	56%	5.77E+01	3.24E+01
22134	Mid-Range Conditions	40-60%	3.75E-02	7.97E-02	53%	2.91E+01	1.54E+01
	Dry Conditions	60-80%	2.76E-02	4.23E-02	35%	1.54E+01	5.35E+00
	Low Flow	80-100%	2.24E-02	2.27E-02	1%	8.30E+00	1.08E-01
	High Flow	0-10%	4.92E-01	6.98E-02	-	2.55E+01	-
	Moist Conditions	10-40%	6.93E-02	6.28E-03	-	2.29E+00	-
16434	Mid-Range Conditions	40-60%	3.74E-02	2.71E-03	-	9.88E-01	-
	Dry Conditions	60-80%	2.75E-02	1.75E-03	-	6.40E-01	-
	Low Flow	80-100%	2.25E-02	1.31E-03	-	4.78E-01	-
	High Flow	0-10%	6.30E-01	2.74E-01	-	1.00E+02	-
	Moist Conditions	10-40%	2.76E-02	9.70E-03	-	3.54E+00	-
13622	Mid-Range Conditions	40-60%	7.43E-03	2.29E-03	-	8.37E-01	-
	Dry Conditions	60-80%	3.51E-03	9.92E-04	-	3.62E-01	-
	Low Flow	80-100%	1.51E-03	3.82E-04	-	1.40E-01	-
	High Flow	0-10%	8.68E-02	5.81E-02	-	2.12E+01	-
	Moist Conditions	10-40%	2.65E-03	8.74E-04	-	3.19E-01	-
22133	Mid-Range Conditions	40-60%	5.54E-04	1.15E-04	-	4.21E-02	-
	Dry Conditions	60-80%	1.64E-04	2.45E-05	-	8.96E-03	-
	Low Flow	80-100%	3.07E-05	2.62E-06	-	9.55E-04	-
	High Flow	0-10%	7.84E-01	1.51E+00	48%	5.51E+02	2.65E+02
	Moist Conditions	10-40%	5.69E-02	2.87E-02	-	1.05E+01	-
13621	Mid-Range Conditions	40-60%	1.16E-02	2.73E-03	-	9.96E-01	-
	Dry Conditions	60-80%	4.19E-03	5.51E-04	-	2.01E-01	-
	Low Flow	80-100%	5.79E-04	2.82E-05	-	1.03E-02	-
	High Flow	0-10%	5.86E-01	1.19E-01	-	4.35E+01	-
	Moist Conditions	10-40%	5.04E-02	4.82E-03	-	1.76E+00	-
21990	Mid-Range Conditions	40-60%	1.23E-02	7.51E-04	-	2.74E-01	-
	Dry Conditions	60-80%	6.08E-03	2.94E-04	-	1.07E-01	-
	Low Flow	80-100%	1.79E-03	5.76E-05	-	2.10E-02	-
	High Flow	0-10%	5.18E-01	1.45E-01	-	5.28E+01	-
	Moist Conditions	10-40%	3.29E-02	3.21E-03	-	1.17E+00	-
20790	Mid-Range Conditions	40-60%	7.72E-03	4.01E-04	-	1.46E-01	-
	Dry Conditions	60-80%	3.89E-03	1.49E-04	-	5.45E-02	-
	Low Flow	80-100%	1.07E-03	2.27E-05	-	8.28E-03	-

r	1	1	conultions.			[
Station		% of Time	Allowable	Daily	% Daily	Annual	Annual
Number	Flow Condition	Flow	Loading	Loading	Reduction	Loading	reduction
Number		Exceeds	(ton/day)	(ton/day)	Needed	(ton/yr)	needed (ton/yr)
	High Flow	0-10%	9.61E-03	2.18E-02	56%	7.94E+00	4.44E+00
	Moist Conditions	10-40%	2.06E-03	3.81E-03	46%	1.39E+00	6.38E-01
16433	Mid-Range Conditions	40-60%	8.26E-04	1.27E-03	35%	4.64E-01	1.63E-01
	Dry Conditions	60-80%	2.87E-04	3.97E-04	28%	1.45E-01	4.02E-02
	Low Flow	80-100%	2.15E-05	2.66E-05	19%	9.69E-03	1.86E-03
	High Flow	0-10%	2.37E-02	4.75E-02	50%	1.73E+01	8.69E+00
	Moist Conditions	10-40%	1.04E-03	1.48E-03	30%	5.40E-01	1.61E-01
22135	Mid-Range Conditions	40-60%	2.07E-04	2.45E-04	16%	8.94E-02	1.39E-02
	Dry Conditions	60-80%	5.75E-05	5.85E-05	2%	2.14E-02	3.80E-04
	Low Flow	80-100%	2.62E-06	1.82E-06	-	6.63E-04	-
	High Flow	0-10%	1.01E-01	3.88E-01	74%	1.42E+02	1.05E+02
	Moist Conditions	10-40%	1.42E-02	5.44E-02	74%	1.99E+01	1.47E+01
22134	Mid-Range Conditions	40-60%	7.69E-03	2.91E-02	74%	1.06E+01	7.82E+00
	Dry Conditions	60-80%	5.66E-03	2.13E-02	73%	7.78E+00	5.71E+00
	Low Flow	80-100%	4.60E-03	1.72E-02	73%	6.29E+00	4.61E+00
	High Flow	0-10%	1.01E-01	1.48E-01	32%	5.39E+01	1.71E+01
	Moist Conditions	10-40%	1.42E-02	2.46E-02	42%	8.98E+00	3.79E+00
16434	Mid-Range Conditions	40-60%	7.68E-03	1.11E-02	31%	4.07E+00	1.26E+00
	Dry Conditions	60-80%	5.65E-03	7.20E-03	22%	2.63E+00	5.68E-01
	Low Flow	80-100%	4.61E-03	5.33E-03	14%	1.94E+00	2.63E-01
	High Flow	0-10%	1.29E-01	1.96E-01	34%	7.16E+01	2.44E+01
	Moist Conditions	10-40%	5.65E-03	1.12E-02	50%	4.10E+00	2.04E+00
13622	Mid-Range Conditions	40-60%	1.52E-03	2.92E-03	48%	1.07E+00	5.11E-01
	Dry Conditions	60-80%	7.20E-04	1.32E-03	45%	4.80E-01	2.18E-01
	Low Flow	80-100%	3.09E-04	5.27E-04	41%	1.92E-01	7.95E-02
	High Flow	0-10%	1.78E-02	5.05E-02	65%	1.84E+01	1.19E+01
	Moist Conditions	10-40%	5.45E-04	6.81E-04	20%	2.49E-01	5.00E-02
22133	Mid-Range Conditions	40-60%	1.14E-04	1.18E-04	4%	4.31E-02	1.56E-03
	Dry Conditions	60-80%	3.37E-05	3.35E-05	-	1.22E-02	-
	Low Flow	80-100%	6.30E-06	6.63E-06	5%	2.42E-03	1.21E-04
	High Flow	0-10%	1.61E-01	5.17E-01	69%	1.89E+02	1.30E+02
	Moist Conditions	10-40%	1.17E-02	2.39E-02	51%	8.73E+00	4.48E+00
13621	Mid-Range Conditions	40-60%	2.37E-03	4.06E-03	42%	1.48E+00	6.16E-01
	Dry Conditions	60-80%	8.59E-04	1.37E-03	37%	5.00E-01	1.87E-01
	Low Flow	80-100%	1.19E-04	1.85E-04	36%	6.74E-02	2.40E-02
21990	High Flow	0-10%	1.20E-01	3.52E-01	66%	1.29E+02	8.47E+01
	Moist Conditions	10-40%	1.03E-02	1.93E-02	46%	7.05E+00	3.27E+00
	Mid-Range Conditions	40-60%	2.53E-03	3.60E-03	30%	1.32E+00	3.93E-01
	Dry Conditions	60-80%	1.25E-03	1.55E-03	19%	5.64E-01	1.09E-01
	Low Flow	80-100%	3.68E-04	3.56E-04	-	1.30E-01	-
	High Flow	0-10%	9.08E-02	5.25E-01	83%	1.92E+02	1.59E+02
	Moist Conditions	10-40%	6.75F-03	1.48F-02	54%	5.40F+00	2.93F+00
20790	Mid-Range Conditions	40-60%	1.58F-03	2.19F-03	28%	7.99F-01	2 21F-01
20750	Dry Conditions	60-80%	7 99F-04	7 85F-04		2 87F-01	
		80.100%	7.55L-04	1 5/15 04		5 625 02	
1	LOW FIOW	00-100%	2.386-04	1.54E-04	-	5.02E-02	

Table C - 2. Geometric mean of Allowable and Estimated TKN Load at each monitoring station across the JPL watershed at different flow conditions.

		Waters	neu ut ufferent fie		-		
Station		% of Time	Allowable	Daily	% Daily	Annual	Annual
Number	Flow Condition	Flow	Loading	Loading	Reduction	Loading	reduction
		Exceeds	(ton/day)	(ton/day)	Needed	(ton/yr)	needed (ton/yr)
	High Flow	0-10%	8.89E-03	2.03E-01	96%	7.42E+01	7.10E+01
	Moist Conditions	10-40%	1.91E-03	1.81E-03	-	6.59E-01	-
16433	Mid-Range Conditions	40-60%	7.64E-04	1.28E-04	-	4.67E-02	-
	Dry Conditions	60-80%	2.65E-04	1.75E-05	-	6.40E-03	-
	Low Flow	80-100%	2.54E-05	-	-	-	-
	High Flow	0-10%	2.19E-02	1.06E-03	-	3.88E-01	-
	Moist Conditions	10-40%	9.60E-04	3.16E-05	-	1.15E-02	-
22135	Mid-Range Conditions	40-60%	1.91E-04	5.57E-06	-	2.03E-03	-
	Dry Conditions	60-80%	5.32E-05	1.48E-06	-	5.42E-04	-
	Low Flow	80-100%	2.42E-06	7.36E-08	-	2.69E-05	-
	High Flow	0-10%	9.33E-02	2.10E-02	-	7.66E+00	-
	Moist Conditions	10-40%	1.32E-02	7.17E-03	-	2.62E+00	-
22134	Mid-Range Conditions	40-60%	7.11E-03	5.93E-03	-	2.16E+00	-
	Dry Conditions	60-80%	5.24E-03	5.48E-03	4%	2.00E+00	8.85E-02
	Low Flow	80-100%	4.26E-03	5.20E-03	18%	1.90E+00	3.44E-01
	High Flow	0-10%	9.34E-02	6.22E-03	-	2.27E+00	-
	Moist Conditions	10-40%	1.32E-02	1.08E-03	-	3.95E-01	-
16434	Mid-Range Conditions	40-60%	7.10E-03	5.86E-04	-	2.14E-01	-
	Dry Conditions	60-80%	5.22E-03	4.26E-04	-	1.55E-01	-
	Low Flow	80-100%	4.26E-03	3.44E-04	-	1.26E-01	
	High Flow	0-10%	1.19F-01	2.12F-02	-	7.73F+00	-
	Moist Conditions	10-40%	5.23E-03	7.82E-04	-	2.85E-01	-
13622	Mid-Range Conditions	40-60%	1.41F-03	1.92F-04	-	7.00F-02	-
	Dry Conditions	60-80%	6.66F-04	8.53E-05	-	3.11F-02	-
	Low Flow	80-100%	2.86F-04	3.40F-05	-	1.24F-02	-
	High Flow	0-10%	1.65E-02	1.90F-03	-	6.92F-01	-
	Moist Conditions	10-40%	5.04F-04	3.62E-05	-	1.32E-02	-
22133	Mid-Range Conditions	40-60%	1.05E-04	6.73F-06	-	2.46F-03	-
	Dry Conditions	60-80%	3 12F-05	1 93E-06	_	7 03F-04	
	Low Flow	80-100%	5.82E-06	3.65E-07	-	1.33E-04	-
	High Flow	0-10%	1 49F-01	4 28F-02	_	1 56F+01	
	Moist Conditions	10-40%	1 08F-02	1 75F-03	_	6 38F-01	
13621	Mid-Range Conditions	40-60%	2 19F-03	2 81F-04	-	1 03F-01	
10011	Dry Conditions	60-80%	7 94F-04	8 85F-05	_	3 23F-02	
	Low Flow	80-100%	1 10F-04	1.07E-05	_	3.91F-03	
	High Flow	0-10%	1 11F-01	1 42F-02	-	5 17F+00	
21990	Moist Conditions	10-40%	9 56E-03	1 38F-03	_	5.02F-01	
	Mid-Range Conditions	40-60%	2 3/F-03	3.42E-04		1 25E-01	
	Dry Conditions	60-80%	1 15E-03	1.67E-04		6 11E-02	
		80-100%	3.40E-04	4 70E-05		1 72E-02	-
	High Flow	0_10%	9.40E-04	4.70E-03		1.72L-02	
	Moist Conditions	10 400/	6 3/E 02	1 225 02		1.120-01	-
20790	Mid Pango Conditions	10-40%	1.465.02	1.22E-03	-	4.400-01	=
		40-00%	1.40E-U3	2.01E-04	-	7.55E-UZ	-
		60-80%	7.39E-04	8.36E-05	-	3.05E-02	-
	Low Flow	80-100%	2.03E-04	1.48E-05	-	5.41E-03	-

 Table C - 3. Geometric mean of Allowable and Estimated Ortho-phosphate phosphorus (OP) Load at each monitoring station across the JPL

 Watershed at different flow conditions.

			ujjerent jiow cont		î.		
Station		% of Time	Allowable	Daily	% Daily	Annual	Annual
Number	Flow Condition	Flow	Loading	Loading	Reduction	Loading	reduction
Humber		Exceeds	(ton/day)	(ton/day)	Needed	(ton/yr)	needed (ton/yr)
	High Flow	0-10%	1.74E-01	4.64E-02	-	1.69E+01	-
	Moist Conditions	10-40%	2.45E-02	5.62E-03	-	2.05E+00	-
16433	Mid-Range Conditions	40-60%	1.32E-02	1.40E-03	-	5.11E-01	-
	Dry Conditions	60-80%	9.74E-03	6.39E-04	-	2.33E-01	-
	Low Flow	80-100%	7.95E-03	2.11E-04	-	7.71E-02	-
	High Flow	0-10%	4.09E-02	1.90E-02	-	6.95E+00	-
	Moist Conditions	10-40%	1.79E-03	1.43E-04	-	5.22E-02	-
22135	Mid-Range Conditions	40-60%	3.57E-04	1.44E-05	-	5.24E-03	-
	Dry Conditions	60-80%	9.92E-05	2.82E-06	-	1.03E-03	-
	Low Flow	80-100%	4.51E-06	1.09E-07	-	3.98E-05	-
	High Flow	0-10%	1.74E-01	1.17E-01	-	4.27E+01	-
	Moist Conditions	10-40%	2.46E-02	2.00E-02	-	7.29E+00	-
22134	Mid-Range Conditions	40-60%	1.33E-02	1.13E-02	-	4.11E+00	-
	Dry Conditions	60-80%	9.77E-03	8.44E-03	-	3.08E+00	-
	Low Flow	80-100%	7.94E-03	6.94E-03	-	2.53E+00	-
	High Flow	0-10%	1.74E-01	4.64E-02	-	1.69E+01	-
	Moist Conditions	10-40%	2.45E-02	5.62E-03	-	2.05E+00	-
16434	Mid-Range Conditions	40-60%	1.32E-02	1.40E-03	-	5.11E-01	-
	Dry Conditions	60-80%	9.74E-03	6.39E-04	-	2.33E-01	-
	Low Flow	80-100%	7.95E-03	2.11E-04	-	7.71E-02	-
	High Flow	0-10%	2.23E-01	4.94E-02	-	1.80E+01	-
	Moist Conditions	10-40%	9.75E-03	1.85E-03	-	6.76E-01	-
13622	Mid-Range Conditions	40-60%	2.63E-03	4.63E-04	-	1.69E-01	-
	Dry Conditions	60-80%	1.24E-03	2.09E-04	-	7.61E-02	-
	Low Flow	80-100%	5.33E-04	8.47E-05	-	3.09E-02	-
	High Flow	0-10%	3.07E-02	9.09E-03	-	3.32E+00	-
	Moist Conditions	10-40%	9.39E-04	8.65E-05	-	3.16E-02	-
22133	Mid-Range Conditions	40-60%	1.96E-04	1.28E-05	-	4.68E-03	-
	Dry Conditions	60-80%	5.82E-05	3.25E-06	-	1.19E-03	-
	Low Flow	80-100%	1.09E-05	5.46E-07	-	1.99E-04	-
	High Flow	0-10%	2.77E-01	1.57E-01	-	5.73E+01	-
	Moist Conditions	10-40%	2.01E-02	3.52E-03	-	1.28E+00	-
13621	Mid-Range Conditions	40-60%	4.09E-03	4.41E-04	-	1.61E-01	-
	Dry Conditions	60-80%	1.48E-03	1.36E-04	-	4.96E-02	-
	Low Flow	80-100%	2.05E-04	1.71E-05	-	6.25E-03	-
	High Flow	0-10%	2.07E-01	8.06E-02	-	2.94E+01	-
21990	Moist Conditions	10-40%	1.78E-02	4.97E-03	-	1.81E+00	-
	Mid-Range Conditions	40-60%	4.36E-03	9.78E-04	-	3.57E-01	-
	Dry Conditions	60-80%	2.15E-03	4.29E-04	-	1.57E-01	-
	Low Flow	80-100%	6.34E-04	1.02E-04	-	3.71E-02	-
20790	High Flow	0-10%	9.82E-02	3.06E-02	-	1.12E+01	-
	Moist Conditions	10-40%	6.24E-03	1.22E-03	-	4.46E-01	-
	Mid-Range Conditions	40-60%	1.46F-03	2.01F-04	-	7.35F-02	
	Dry Conditions	60-80%	7.39F-04	8.36F-05	-	3.05F-02	-
		80-100%	2 03F-04	1 48F-05		5.05E 02	
	201011010	00-100/0	2.031-04	T0L-03	-	J. TIL-03	

Table C - 4. Geometric mean of Allowable and Estimated Total Phosphorous (TP) Load at each monitoring station across the JPL Watershed at different flow conditions.

conditions in first by day.							
Station		% of Time	Allowable	Dailv	% Dailv	Annual	Annual
	Flow Condition	Flow	Loading	Loading	Reduction	Loading	reduction
Number		Exceeds	(MPN/day)	(MPN/day)	Needed	(MPN/yr)	needed
		0.40%		1.045.40	070/	0 705 45	(MPN/yr)
	High Flow	0-10%	2./4E+11	1.04E+13	97%	3.79E+15	3.69E+15
	Moist Conditions	10-40%	5.88E+10	8.88E+11	93%	3.24E+14	3.02E+14
16433	Mid-Range Conditions	40-60%	2.36E+10	1.80E+11	8/%	6.58E+13	5./2E+13
	Dry Conditions	60-80%	8.19E+9	3.22E+10	75%	1.17E+13	8.77E+12
	Low Flow	80-100%	6.14E+08	4.09E+08	-	1.49E+11	-
	High Flow	0-10%	6.77E+11	2.66E+14	100%	9.72E+16	9.70E+16
	Moist Conditions	10-40%	2.97E+10	1.84E+12	98%	6.71E+14	6.60E+14
22135	Mid-Range Conditions	40-60%	5.91E+09	1.37E+11	96%	5.02E+13	4.80E+13
	Dry Conditions	60-80%	1.64E+09	1.73E+10	91%	6.33E+12	5.73E+12
	Low Flow	80-100%	7.48E+07	1.11E+08	33%	4.05E+10	1.32E+10
	High Flow	0-10%	2.88E+12	4.29E+14	99%	1.57E+17	1.55E+17
	Moist Conditions	10-40%	4.07E+11	7.93E+12	95%	2.90E+15	2.75E+15
22134	Mid-Range Conditions	40-60%	2.20E+11	2.33E+12	91%	8.50E+14	7.70E+14
	Dry Conditions	60-80%	1.62E+11	1.49E+12	89%	5.45E+14	4.86E+14
	Low Flow	80-100%	1.31E+11	7.20E+11	82%	2.63E+14	2.15E+14
	High Flow	0-10%	2.88E+12	8.79E+14	100%	3.21E+17	3.20E+17
	Moist Conditions	10-40%	4.06E+11	1.81E+13	98%	6.61E+15	6.46E+15
16434	Mid-Range Conditions	40-60%	2.19E+11	2.93E+12	93%	1.07E+15	9.88E+14
	Dry Conditions	60-80%	1.61E+11	1.03E+12	84%	3.78E+14	3.19E+14
	Low Flow	80-100%	1.32E+11	4.97E+11	74%	1.82E+14	1.33E+14
	High Flow	0-10%	3.69E+13	1.38E+15	97%	5.04E+17	4.90E+17
	Moist Conditions	10-40%	1.61E+12	1.74E+13	91%	6.35E+15	5.76E+15
13622	Mid-Range Conditions	40-60%	4.35E+11	2.67E+12	84%	9.76E+14	8.17E+14
	Dry Conditions	60-80%	2.06E+11	9.04E+11	77%	3.30E+14	2.55E+14
	Low Flow	80-100%	8.83E+10	2.64E+11	67%	9.63E+13	6.40E+13
	High Flow	0-10%	7.87E+10	1.33E+14	100%	4.84E+16	4.84E+16
	Moist Conditions	10-40%	2.41E+09	5.81E+11	100%	2.12E+14	2.11E+14
22133	Mid-Range Conditions	40-60%	5.03E+08	4.42E+10	99%	1.61E+13	1.60E+13
	Dry Conditions	60-80%	1.49E+08	6.36E+09	98%	2.32E+12	2.27E+12
	Low Flow	80-100%	2.78E+07	4.40E+08	94%	1.61E+11	1.50E+11
	High Flow	0-10%	7.11E+11	2.37E+14	100%	8.64E+16	8.62E+16
	Moist Conditions	10-40%	5.19E+10	1.48E+13	100%	5.40E+15	5.38E+15
13621	Mid-Range Conditions	40-60%	1.05E+10	1.48E+12	99%	5.41E+14	5.37E+14
	Dry Conditions	60-80%	3.80E+09	2.69E+11	99%	9.83E+13	9.69E+13
	Low Flow	80-100%	5.25E+08	3.33E+09	84%	1.21E+12	1.02E+12
21990	High Flow	0-10%	5.31E+11	3.04E+15	100%	1.11E+18	1.11E+18
	Moist Conditions	10-40%	4.57E+10	5.29E+13	100%	1.93E+16	1.93E+16
	Mid-Range Conditions	40-60%	1.12E+10	4.71E+12	100%	1.72E+15	1.72E+15
	Dry Conditions	60-80%	5.51E+09	1.36E+12	100%	4.97E+14	4.95E+14
	Low Flow	80-100%	1.63E+09	1.51E+11	99%	5.53E+13	5.47E+13
	High Flow	0-10%	4.70E+11	1.05E+16	100%	3.84E+18	3.84E+18
	Moist Conditions	10-40%	2.98E+10	3.17E+13	100%	1.16E+16	1.16E+16
20790	Mid-Range Conditions	40-60%	7.00E+09	1.21E+12	99%	4.41E+14	4.38E+14
	Dry Conditions	60-80%	3.53E+09	2.44E+11	99%	8.91E+13	8.78E+13
	Low Flow	80-100%	9.69E+08	1.04E+10	91%	3.80E+12	3.44E+12

 Table C - 5. Geometric mean of Allowable and Estimated E.coli Load at each monitoring station across the JPL Watershed at different flow conditions in MPN/day.

Appendix D. Site Summaries for E.coli and Streamflow

Figure D - 1 through Figure D - 8 correlate flow and *E. coli* measurements to rainfall events. Flow is represented by black horizontal bars and *E. coli* is represented by the horizontal bars. The red dotted line represents the water quality criteria for *E. coli* (126 MPN/100 mL), which is technically only appropriate for geomean measurements, but is shown here for a rough comparison.

Figure D - 2. Hydrology and E.coli parameters, Walnut Creek @ Retta Road (20790).

Figure D - 4. Hydrology and E.coli Parameters, Mountain Creek @ US 287 (16434).

Figure D - 3. Hydrology and E.coli parameters, Walnut Creek @ Katherine Rose Park(21990).

123

Figure D - 5. Hydrology and E.coli Parameters, Mountain Creek @ FM 157 (13622).

Figure D - 6. Hydrology and E.coli parameters, Soap Creek 1.1 km upstream of Mountain Creek (22134).

MC-E/22135 10000 50 40 1000 E. coli (MPN/100 mL) 30 Flow (cfs) 100 20 10 10 1 0 Jun-19 Jul-19 Sep-19 Oct-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Aug-19 Nov-19 E. COLI (MPN/100 ML) 🗕 🗕 🗕 E. COLI STANDARD FLOW (CFS) -MC-E/22135 2.5 Rainfall (inches) 2 1.5 1 0.5 0 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 RAIN IN PREVIOUS 72 HOURS (INCHES)

Figure D - 7. Hydrology and E.coli parameters, Hollings Branch @ Tangle Ridge Road (16433).

Figure D - 8. Hydrology and E.coli parameters, Low Branch @ South Holland Rd (22135).