

Analysis of Historical Data

for the Village Creek-Lake Arlington Watershed Protection Plan

January 2017

On the cover: Looking upstream at a historical data collection site on Village Creek at the Rendon Road crossing. Analysis of Historical Data

for

The Village Creek-Lake Arlington Watershed Protection Plan

Funded by

The Texas Commission on Environmental Quality (Contract No. 582-15-53835)

Investigating Entities

The Trinity River Authority of Texas Tarleton State University, Texas Institute for Applied Environmental Research

Prepared by

Aaron Hoff, Trinity River Authority Angela Kilpatrick, Trinity River Authority

January 2017

Funding provided by the Texas Commission on Environmental Quality through a Clean Water Act § 319(h) grant from the U.S. Environmental Protection Agency, with match funding from the City of Arlington and in-kind contributions from TRA.

Table of Contents

List of	Figure	S	. ii		
List of	Tables		iii		
List of	Acrony	yms	iv		
1.0	Introd	duction	.1		
1.1	Pro	pject Overview and Objectives	.1		
1.2	Rev	view of the Watershed and Impairments	. 3		
2.0	Data I	Inventory	. 3		
2.1	Geo	ographic and Spatial Data	. 3		
2.2	Otł	her Studies and Reports	.8		
2.	2.1	Lake Arlington Master Plan	. 8		
2.	2.2	Trinity River Greenprinting Study	.8		
2.	2.3	Village Creek Master Plan and Flood Study	.9		
3.0	Data l	Review Methods	.9		
3.1	TCE	EQ Water Quality Standards	.9		
3.2	Nut	trient Screening Levels and Reference Criteria	10		
3.3	Des	scription of Assessments	10		
3.	3.1	TCEQ 2014 Texas Integrated Report	10		
3.	3.2	TRA In-house Assessment	11		
3.4	Dat	ta Collection	12		
3.5	Wa	ater Quality Trends	13		
4.0	Wate	rshed Characteristics	13		
4.1	Gei	neral Information	13		
4.2	Clir	mate	13		
4.3	Geo	ology	13		
4.4	4.4 Soils				
4.5	4.5 Land Use and Land Cover				
4.6	Ecc	blogy	17		
5.0					
5.1	Gei	neral Information	21		
5.2	Hydraulics				
5.3	Wa	ater Quality Monitoring Data	24		

5.	.3.1	Aquatic Life Use Assessments			
5.	.3.2	Contact Recreation Use Assessments			
5.	.3.3	General Use Assessments			
5.	.3.4	Fish Consumption Use Assessments			
5.	.3.5	Public Water Supply Use Assessments			
6.0	Stream	Characteristics			
6.1	Flow				
6.2	Wat	er Quality Monitoring Data			
6.	.2.1	Aquatic Life Use Assessments			
6.	.2.2	Contact Recreation Use Assessments			
6.	.2.3	General Use Assessments			
6.	.2.4	Fish Consumption Use Assessments			
6.	.2.5	Public Water Supply Use Assessments			
7.0	Trend	Analysis			
7.1	Trer	ds in Lake Arlington34			
7.2	Trer	ds in Village Creek			
8.0	Source	Identification Analysis			
8.1	Base	line Watershed Monitoring			
8.2	3.2 Flow and Load Duration Curves				
8.3	3.3 SELECT Analysis				
9.0	Conclu	sions			
9.1	Lake	Arlington (Segment 0828)42			
9.2	.2 Village Creek (Segment 0828A)				
10.0	Refere	nces44			

List of Figures

Figure 1. Location of Village Creek-Lake Arlington watershed	2
Figure 2. 2012 NLCD land cover classes in the Village Creek-Lake Arlington watershed	15
Figure 3. 2013 NCTCOG land use classifications in the Village Creek-Lake Arlington watershed	16
Figure 4. Pipeline right-of-way (ROW) showing connectivity between reservoirs within the Trinity Rive	۶r
Diversion Water Supply Project with area of interest (in purple) showing detail for the location of the	
Arlington Outlet	22
Figure 5. Daily Observed Water Surface Elevation in Lake Arlington, 1988-2016	24
Figure 6. Water quality monitoring stations, hydrography, and Lake Assessment Units	25
Figure 7. E. coli, Flow, & Lake Elevation in Lake Arlington Assessment Unit 0828_07	27

Figure 9. Nitrate and total phosphorus in Lake Arlington assessment unit 0828_07	29
Figure 10. E. coli and flow in Village Creek, segment 0828A.	32
Figure 11. Relationship between TDS in Village Creek (0828A) and elevation in Lake Arlington (0828)	33
Figure 12. pH trend in Village Creek (0828A)	37
Figure 13. Flow duration curve example from Plum Creek watershed (log scale Y-axis)	38
Figure 14. Load duration curve example from Plum Creek watershed (log scale Y-axis)	39
Figure 15. Load duration curve example for E. coli, with flow condition breakdowns and load reduct	ion
estimates (log scale Y-axis).	39
Figure 16. Regions of likely pollutant sources along load duration curve (normal scale Y-axis, log scal	e X-
axis)	40
Figure 17. Visual output examples from SELECT analysis for separate estimated populations of dogs	(left)
and feral hogs (right)	41

List of Tables

Table 1. Geospatial data sources used for source assessment analysis	4
Table 2. Site-specific water quality criteria for the Village Creek-Lake Arlington watershed	9
Table 3. Texas Nutrient Screening Levels and EPA Nutrient Reference Criteria.	10
Table 4. 2014 Texas Integrated Report & 2015 TRA In-house Assessment information for the Village	
Creek-Lake Arlington watershed	12
Table 5. Federal and state status of threatened and endangered species in Tarrant and Johnson	
Counties.	18
Table 6. Sources of supply and uses of water in Lake Arlington	23
Table 7. Aquatic life use assessment results for Lake Arlington	26
Table 8. Contact recreation use assessment results for Lake Arlington	27
Table 9. General use assessment results for Lake Arlington.	28
Table 10. Fish consumption use assessment results for Lake Arlington	29
Table 11. Public water supply use assessment results for Lake Arlington	30
Table 12. Use assessment results for Village Creek	31
Table 13. Trend analysis results summary for Village Creek (0828A) and Lake Arlington (0828)	34
Table 14. Detailed trend analysis results for Lake Arlington (0828)	35
Table 15. Detailed trend analysis results for Village Creek (0828A)	36

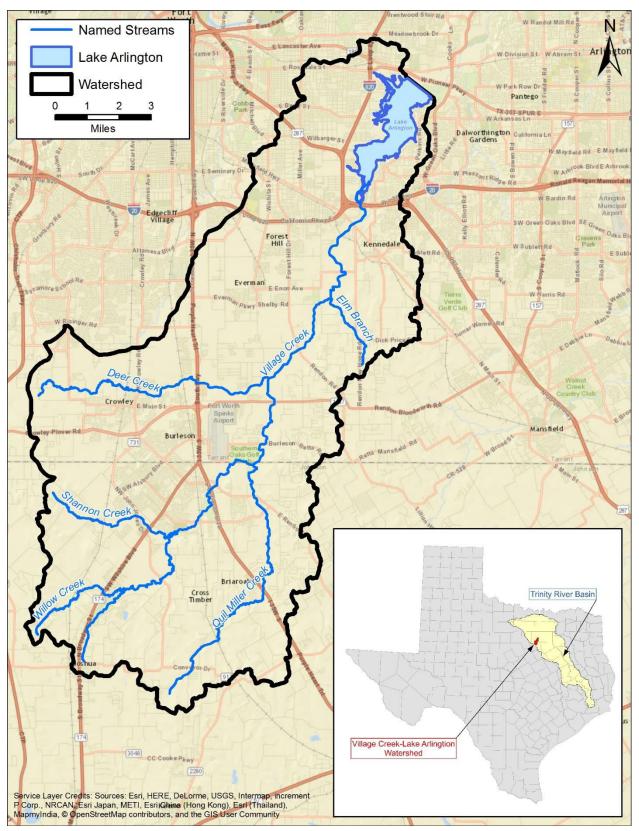
List of Acronyms

	51191115
AU	Assessment Unit
BMP	best management practice
BSR	Basin Summary Report
CCN	Certificate of Convenience and Necessity
Cl⁻	chloride
COG	Council of Governments
CRP	Clean Rivers Program
DO	dissolved oxygen
DOQQ	Digital Orthogonal Quarter Quadrangle
DFW	Dallas-Fort Worth metropolitan area
E. coli	Escherichia coli
EPA	Environmental Protection Agency
ESRI	Environmental Systems Research Institute
FEMA	Federal Emergency Management Agency
FWS	U.S. Fish & Wildlife Service
GIS	geographic information system
	General Land Office
GLO LAMP	
	Lake Arlington Master Plan
LDC	load duration curve
LULC	land use/land cover
MSL	mean sea level
NAIP	National Aerial Imagery Program
NASS	National Agricultural Statistics Service
NH_3	ammonia
NHD	National Hydrography Dataset
NO ₂ -	nitrite
NO ₃ ⁻	nitrate
NCTCOG	North Central Texas Council of Governments
NRCS	U.S. Department of Agriculture - Natural Resource Conservation Service
NWS	National Weather Service
OP	orthophosphate
OSSF	on-site sewage facility
PLOAD	Pollutant Load Allocation Model
POR	period of record
ROW	right-of-way
RRC	Texas Railroad Commission
SELECT	Spatially Explicit Load Enrichment Calculation Tool
SO4 ⁻²	sulfate
SWCD	Soil & Water Conservation District
SWQM	Surface Water Quality Monitoring
SWQMIS	Surface Water Quality Monitoring Information System
TAC	Texas Administrative Code
TAG	Technical Advisory Group
TCEQ	Texas Commission on Environmental Quality
TCWSP	Tarrant County Water Supply Project
TDS	Total Dissolved Solids

TIAER	Texas Institute for Applied Environmental Research
TKN	total Kjeldahl nitrogen
TNRIS	Texas Natural Resource Information System
ТОР	Texas Orthoimagery Program
ТР	total phosphorous
TPWD	Texas Parks and Wildlife Service
TRA	Trinity River Authority of Texas
TRWD	Tarrant Regional Water District
TSS	total suspended solids
TSSWCB	Texas State Soil & Water Conservation Board
TSWQS	Texas Surface Water Quality Standards
TWDB	Texas Water Development Board
USDOT	U.S. Department of Transportation
USGS	U.S. Geological Survey
VCLA	Village Creek-Lake Arlington Watershed
WPP	watershed protection plan
WTP	water treatment plant
WWTF	wastewater treatment facilities

1.0 Introduction

1.1 Project Overview and Objectives


This analysis of historical data was performed as part of an effort to restore water quality within Village Creek, with a further goal of protecting water quality in Lake Arlington, which utilizes the creek as its main tributary. This analysis will support the development of the Village Creek-Lake Arlington Watershed Protection Plan (WPP) by assessing existing water quality data in the watershed and analyzing it within the context of various watershed characteristics (e.g., climate, land use, land cover, geology, ecology) to ascertain current and historical conditions and trends.

Due to Village Creek's classification as an impaired waterbody due to elevated levels of bacteria, there will be an emphasis on that constituent throughout the report. However, several other constituents of interest have also been identified through historical data review and stakeholder interaction. These include several nutrients, as well as other in-stream parameters that may indicate concerns for one or more designated uses of Village Creek and Lake Arlington. Quality assured data retrieved from the Texas Commission on Environmental Quality (TCEQ) Surface Water Quality Monitoring Information System (SWQMIS) database will be processed with the use of statistical and geospatial analyses to evaluate temporal/spatial trends and relationships. Specific analyses to be run will include:

- 1) Regression of *E. coli* concentrations against other water quality constituents as well as flow (or a surrogate such as precipitation);
- 2) Evaluation of occurrences of high *E. coli* values and other constituents of interest spatially within the watershed via geographic information systems (GIS) analysis to determine likely sources or subwatersheds for further evaluation; and
- 3) Plotting data spatially to identify temporal trends.

The overall goal of this WPP is to restore water quality in Village Creek and thus protect the water quality in Lake Arlington. In pursuit of this goal, the analyses conducted using the results of this historical data report will be used to achieve several objectives, which include:

- Developing a dataset to support modeling and assessment activities for quantifying pollutant loadings to the lake, especially for those constituents of interest where water quality standards are not being met;
- 2) Performing the modeling and assessment activities necessary to identify potential pollutant sources and quantifying the loadings of the constituents of interest for all segments;
- 3) Providing watershed stakeholders with the tools needed to take a proactive approach to watershed protection by engaging them through public outreach and education efforts; and
- 4) Utilizing stakeholder recommendations and expert technical knowledge within the watershed to develop a WPP that describes specific best management practices (BMPs) intended to reduce pollutant loadings and achieve target reductions for the watershed.

Basemap: ESRI World Streetmap.

Figure 1. Location of Village Creek-Lake Arlington watershed.

1.2 Review of the Watershed and Impairments

The Village Creek-Lake Arlington watershed begins at Village Creek's headwaters near the town of Joshua in northern Johnson County, extending approximately 35 miles before emptying into Lake Arlington in southeastern Tarrant County (Figure 1). Urban and suburban areas dominate the northern end of the watershed, with a few industrial and municipal complexes near its center, and trending more towards agricultural use in the southern extent.

Lake Arlington serves as a drinking water source to over 500,000 people in the Dallas-Fort Worth (DFW) Metroplex. Village Creek, Lake Arlington's main tributary, is listed on TCEQ's 2014 Texas Water Quality Inventory-303(d) List (TCEQ 2015b) as impaired for bacteria (first listed in 2010), and several segments within Lake Arlington are listed on TCEQ's 2014 Water Quality Inventory—Water Bodies with Concerns for Use Attainment and Screening Levels (TCEQ 2015c) for chlorophyll-a and nitrate (NO₃⁻). Past studies conducted within the watershed and rapid development indicate that water quality has and will continue to be negatively affected unless more vigorous management measures are put in place.

2.0 Data Inventory

2.1 Geographic and Spatial Data

Data from a wide variety of sources will be used to characterize the Village Creek-Lake Arlington watershed and support the development of the WPP. Data related to water quality/quantity, potential point sources, land use/land cover, soils/geology, and climate were identified, with relevant datasets compiled. In addition to watershed characterization, the datasets listed in Table 1 will be used to characterize potential pollutant sources throughout the watershed, to be analyzed using the Spatially Explicit Load Enrichment Calculation Tool (SELECT) analysis. More information about this analysis is provided in Section 8.3.

Geospatial Data			Analysis and/or	
Туре	Source	Date(s)	Processing	Data Use
Aerial imagery	National Aerial Imagery Program (NAIP), Texas Orthoimagery Program (TOP)	2014, 1996	Mosaic and clip raster files to watershed	Determine ground conditions of watershed
Topographic maps (1:24,000 scale)	U.S. Geological Survey (USGS)	1996	Isolate DOQQs situated inside/tangent to watershed boundary	Characterize watershed, reference for hydrologic features
Detailed streets and highways	Environmental Systems Research Institute (ESRI)	2016	None	Public outreach component, orient map viewers to watershed extents
City boundaries	TCEQ	2012	Clip features to watershed boundary	Public outreach component
County boundaries	TCEQ	2012	Clip features to watershed boundary	Public outreach component
Lake Arlington- Village Creek watershed	National Hydrography Dataset (NHD)	2009	Aggregate of HUC 12 subwatersheds upstream of the Lake Arlington dam and outlet structure	Clipping boundary for isolating other data sources
Census data	U.S. Census Bureau	2010	Distribute population density characteristics appropriately to watershed	Determine population characteristics, base data for several <i>E.coli</i> loading components
911 address structures points	North Central Texas Council of Governments (NCTCOG)	2015	Clip source points to watershed boundary	Determine location, density of structures
SWQM stations	TRA, TCEQ	Varies (2012)	Relate to surface water quality data sampling results	Document locations of surface water quality monitoring stations
County Soils Maps	Natural Resource Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO)	2014	Identify areas that may prove problematic for modeling and/or pollutant transport	Characterize watershed, watershed delineation
General Soils Maps	NRCS State Soil Geographic Database (STATSGO)	1997	Identify areas that may prove problematic for modeling and/or pollutant transport	Characterize watershed, watershed delineation
National Land Cover Database (NLCD)	Texas Natural Resource Information System (TNRIS)	2011	Clip database to watershed boundary, identify areas that may prove problematic for modeling and/or pollutant transport	Determine land use/land cover in watershed, watershed delineation

Table 1. Geospatial data sources	s used for source assessment analysis
----------------------------------	---------------------------------------

Coornetial Data			Applysic and for	
Geospatial Data	Courses		Analysis and/or	Data Llas
Туре	Source	Date(s)	Processing	Data Use
LULC field verification points	TRA	2016-2017	Compare to NLCD data	Determine accuracy of NLCD data
Soil/Water Conservation District (SWCD) boundaries	Texas State Soil & Water Conservation Board (TSSWCB)	2014	Isolate Dalworth/Johnson SWCDs	Public outreach strategy
List of steering committee member locations	TRA	2016	Gather geographic information at stakeholder meetings, personal communication, email	Determine distribution of committee member locations to ensure adequate watershed representation
Recreational Use Attainability Analysis (RUAA) sampling locations	TCEQ	n/a	Generalize sampling location results to applicable extents within watershed – no formal RUAA report for watershed located	Determine extent of recreational use in watershed for bacteria standards applicability
Digital Elevation Models (DEMs)	USGS	2015	Mosaic and clip raster files to watershed mask, process to develop stream network.	Watershed delineation
Weather data	National Weather Service (NWS)	2006-2017	Isolate precipitation, evaporation, and temperature data; isolate for time period dictated by modeling constraints	Watershed delineation
Hydrology - existing lakes and reservoirs	NHD	2009	Ground truth feature margins for accuracy	Watershed delineation
Hydrology – streams	NHD	2009	Clip NHD features to watershed boundary	Watershed delineation
Named streams	NHD	2009	Generalize NHD data for streams, isolate named streams to new layer	Public outreach – use for general information maps
TCEQ stream segments	TCEQ	2016	Clip features to watershed boundary	Watershed delineation
TCEQ assessment units (AUs)	TCEQ	2016	Clip features to watershed boundary	Watershed delineation
Aquifers – major and minor	Texas Water Development Board (TWDB)	2006	None	Public outreach component
New TCEQ surface water quality monitoring stations	TRA/TCEQ	Created through project	Identify new/existing station locations at strategic points along stream path	Watershed delineation

Geospatial Data			Analysis and/or	
Туре	Source	Date(s)	Processing	Data Use
Floodplain data	National Flood Hazard Layer – Federal Emergency Management Agency (FEMA)	2015	Compare and adjust LULC maps as appropriate	Used to update LULC maps as necessary, public outreach component
Oil & natural gas wells, pipelines, leases	Railroad Commission (RRC) of Texas; Texas General Land Office (GLO)	Varies	Clip features to watershed boundary	Locate and determine density of oil/natural gas wells for potential pollutant point source identification
Public water system wells & surface water intakes	TCEQ	2016	Append well constituent tables to spatial network of wells	Determine if wells may be subject to pollution from nearby sources
Bridge locations	National Bridge Inventory (USDOT)	2012	Append bridge location data to well information tables, apply to watershed	Component of approximating <i>E. coli</i> loading rate from avian sources
Municipal solid waste (MSW) sites/landfills	TCEQ	2007	Verify activity & history of sites clipped to watershed	Potential pollutant point source identification
Solid waste sites/landfills/ illegal dump site field verification	TRA	Created through project	Compare to MSW/landfill database points, add points for illegal dump sites found in watershed	Determine accuracy of municipal solid waste sites/landfills data, identify other dump site point sources
Water control structures database	NRCS/TRA	Created through project	Comparison and integration of TRA and NRCS records	Identify and verify significant impoundments in watershed
Superfund sites	TCEQ	2015	Clip database to watershed boundary	Potential pollutant point source identification
Petroleum storage tanks	TCEQ	2014	Clip database to watershed boundary	Potential pollutant point source identification
Permitted industrial/ hazardous waste sites	TCEQ	n/a	Clip database to watershed boundary – none in watershed	Locate sites for potential pollutant point source identification
Concentrated Animal Feeding Operations (CAFOs)	TCEQ	n/a	Clip database to watershed boundary – none in watershed	Locate sites for potential pollutant point source identification
Cattle – population density	USGS National Agricultural Statistics Service (NASS)	2016	Clip database to watershed boundary	E. Coli load calculation

Coordial Data			Applycic and /or	
Geospatial Data Type	Source	Date(s)	Analysis and/or Processing	Data Use
Sheep – population density	USGS NASS	2015	Clip database to watershed boundary	E. Coli load calculation
Goats – population density	USGS NASS	2015	Clip database to watershed boundary	E. Coli load calculation
Horses – population density	USGS NASS	2012	Clip database to watershed boundary	E. Coli load calculation
Deer – population density	Texas Parks & Wildlife Department (TPWD) deer density study (Lockwood 2007)	2007	Clip database to watershed boundary	<i>E. Coli</i> load calculation
Waterfowl – population density	Stakeholder input, using other WPP data as benchmarks	Created through project	Bias to riparian buffers, other areas of interest identified by stakeholders	<i>E. Coli</i> load calculation
Other avian – population density	Stakeholder input, using other WPP data as benchmarks	Created through project	Bias to bridge crossings, other areas of interest identified by stakeholders	<i>E. Coli</i> load calculation
Feral Hogs – population density	Stakeholder input, using peer- reviewed literature and other WPP data as benchmarks	Created through project	Bias to riparian buffers, other areas of interest identified by stakeholders	<i>E. Coli</i> load calculation
wastewater treatment facilities (WWTFs)	TCEQ	2016	Clip to watershed boundary, verify operational state	E. Coli load calculation
Certificates of Convenience and Necessity (CCNs)	Public Utility Commission of Texas (PUC)	2014	Clip to watershed, verify extents	E. Coli load calculation
On-site sewage facilities (OSSFs)	Census Bureau	2010	census data, total households – CCNs = total households w/OSSFs	E. Coli load calculation
Domestic dogs	Census Bureau and stakeholder input	2010	Census data, households *0.8 = dogs	E. Coli load calculation

Note: Metadata that contains the Federal Geographic Data Committee (FGDC) minimum documentation requirements will be created for any acquired spatial data manipulated through data analysis and/or processing.

2.2 Other Studies and Reports

The proposed project seeks to build upon several past and ongoing initiatives in the watershed with water quality improvement components. These projects will be supported and/or progressed by developing an effective WPP. This WPP is expected to identify and provide the groundwork for implementation of strategies to address the current water quality issues of bacteria in Village Creek, nutrients and chlorophyll a in Lake Arlington, and other potential constituents of interest identified during the project and sampling activities. The watershed stakeholders have demonstrated a long-term commitment towards this goal and have asked TRA to work with them to produce such a WPP. The WPP will not only provide specific direction towards meeting current challenges, but will also provide a holistic framework for protecting water quality as the watershed develops.

2.2.1 Lake Arlington Master Plan

Stakeholders within the watershed are active and have demonstrated their concern about water quality issues within the watershed through several past projects. The Lake Arlington Master Plan (LAMP) is one such project, which included water quality modeling for nutrients, sediment, and fecal bacteria. It also illustrated how the various forms of development may impact water supply and quality. BMPs to mitigate impacts from future development in the watershed (rather than existing impairments) were suggested based on the results of a screening-level water-quality modeling effort (Malcolm Pirnie 2011). Since being adopted by Arlington's City Council in April 2011, many development standards from the LAMP have been codified into Arlington ordinances. LAMP was also adopted by City of Fort Worth City Council. During the development of the LAMP, water quality samples were collected and analyzed and a Pollutant Load Application (PLOAD) model was developed. The results of the sampling and modeling effort identified nutrients and chlorophyll a as important parameters of concern. While well-suited to the objectives of the LAMP, the sampling and modeling performed is not of sufficient quantity and specificity to allow load reductions to be calculated for existing impairments. In addition, the LAMP served to aggregate a significant amount of information on land use and watershed activities that stakeholders may use to develop a WPP. For instance, numerous potential sources of pollution from salvage yards were identified in the immediate upstream floodplain of the reservoir.

As part of the process for developing LAMP, stakeholders were identified and stakeholder participation was elicited. Bimonthly meetings of the various stakeholders within Lake Arlington's watershed to discuss opportunities to collaborate on watershed protection initiatives were held beginning in 2011, and was instrumental in creating the Clean Water Act Section 319(h) grant application. An assessment of the LAMP was undertaken in May 2012 by these stakeholders to identify and prioritize the suggested projects.

2.2.2 Trinity River Greenprinting Study

As the trend of rapid urbanization continues throughout North Central Texas, impacts to water quality and quantity are expected to become increasingly apparent. The Trust for Public Land (TPL) has developed a GIS analysis technique called "Greenprinting" which is used to identify land areas that would provide increased levels of water quality protection if left undeveloped. This tactic was applied to two watersheds in North Texas, one of which being the Lake Arlington Watershed.

Several sources of information were utilized during the development of the analysis framework, including water quality inventories and the pollutant load information derived, watershed conditions, and supporting research from universities, agencies, and the private sector. Similar water quality protection analyses were also reviewed for comparison and applicability. Prioritization of the areas

deemed critical for water quality protection was based on six key landscape characteristics: 1) land use with natural vegetated cover, 2) proximity to streams, 3) water erosion potential, 4) floodplains, 5) proximity to the reservoir, and 6) proximity to ponds and wetlands (TPL 2011).

2.2.3 Village Creek Master Plan and Flood Study

In the past decade, the City of Kennedale has initiated intensive local planning efforts within their city limits, which includes downstream portions of Village Creek. To support this effort, the City initiated a flood damage reduction alternative analysis to evaluate the runoff and flooding impacts of expanded development that has taken place since past rainfall-runoff and flood insurance studies were conducted.

Light Detection and Ranging (LIDAR) data from the Texas Natural Resources Information Systems (TNRIS) was used to update the previous hydraulic model for Village Creek. Model results were then used to develop a Flood Damage Analysis (FDA) model, which was used to develop several flood reduction plans. The City elected to adopt a phased approach to implement these plans, which involve the buyout and removal of properties within the effective Federal Emergency Management Agency (FEMA) floodplain with plans for redevelopment with lower-risk alternatives (Halff 2012).

3.0 Data Review Methods

3.1 TCEQ Water Quality Standards

TCEQ is responsible for establishing numeric and narrative goals for water quality in the state of Texas. These goals are described in TCEQ's Texas Surface Water Quality Standards (TSWQS) and are approved by the U.S. Environmental Protection Agency (EPA). These standards are codified in the Texas Administrative Code (TAC), Title 30, Chapter 307, hereto referred to as TAC 307 (TCEQ 2014) and are used by TCEQ regulatory programs to establish reasonable methods of assessing water bodies of the state with the intent of implementing targeted strategies aimed at specific water quality goals. Sitespecific water quality criteria for Lake Arlington (Segment 0828) and Village Creek (Segment 0828A), as defined in TAC 307, are presented in Table 2. For additional information about the collection, preservation, and laboratory analysis of samples collected for these parameters, please consult TCEQ's *SWQM Procedures Manual, Volume 1: Physical and Chemical Monitoring Methods* (TCEQ 2012).

	Segm	ent ID
Parameter	0828	0828A
Cl⁻ (mg/L)	100	100
SO ₄ ⁻² (mg/L)	100	-
TDS (mg/L)	300	300
DO (mg/L) grab minimum	3.0	2.0
DO (mg/L) 24 hour average	5.0	3.0
DO (mg/L) 24 hour minimum	3.0	2.0
pH range	6.5-9.0	6.5-9.0
E. coli (#/100ml) geomean	126	126
Temperature (°F; °C)	95; 35	95; 35

Table 2. Site-specific water quality criteria for the Village Creek-Lake Arlington watershed.

3.2 Nutrient Screening Levels and Reference Criteria

Currently, no numeric criteria exist for nutrients in streams in the state of Texas. Numeric criteria for chlorophyll-a have been approved by EPA for 75 reservoirs in the state; however, Lake Arlington is not one of these reservoirs. In such situations where no water quality standards exist or are in the process of being developed, controls such as narrative criteria and antidegradation considerations are often used. Despite this lack of narrative criteria, TCEQ continues to screen for parameters such as nitrogen, phosphorus, and chlorophyll-a as preliminary indicators in waterbodies of possible concern for 303(d) impairments. To support this effort, nutrient screening levels and reference conditions are often used to compare a waterbody to reference values at a local, regional, or national level. Table 3 provides screening values from various sources. The Texas Nutrient Screening Levels are based on statistical analyses of SWQM monitoring data (TCEQ 2015) and the EPA Reference Criteria are regional values based on data from reservoirs and streams within specific ecoregion units and subunits (USEPA 2000a, USEPA 2000b). It is worth noting that these Reference Criteria differ from the Texas Nutrient Screening Levels in that EPA developed the Reference Criteria using conditions that are indicative of minimally impacted (or in some cases, pristine) waterbodies, attainment of which would result in protection of all designated uses within those specific units and subunits. As such, Reference Criteria thresholds are much lower than those for state screening levels, and surpassing them may not necessarily indicate a concern, as is the case with the state thresholds. Where state screening levels or national reference criteria were non-existent, other sources were used. In particular, other sources were used as a reference for screening values of nitrite (NO_2) (Mesner and Geiger 2010).

		TCEQ Scree	EP	Other				
Paramete	er	Lake/Reservoir	Stream	Lake/Re	eservoir	Stream		Sources
TKN	(mg/L)	-	-	0.38 ^a	0.41 ^b	0.3 ^a	0.4 ^b	
NO ₂	(mg/L)	-	-	-	-	-	-	0.02 ^c
NO ₃ ⁻	(mg/L)	0.37	1.95	-	-	-	-	
NO ₂ ⁺ +NO ₃	(mg/L)	-	-	0.017 ^a	0.01 ^b	0.125 ^a	0.078 ^b	
ТР	(mg/L)	0.20	0.69	0.02 ^a	0.019 ^b	0.037 ^a	0.038 ^b	
OP ^d	(mg/L)	0.05	0.37	-	-	-	-	
Chlorophyll a ^e	(µg/L)	26.7	14.1	5.18 ^a	2.875 ^b	0.93 ^a	1.238 ^b	

Table 3. Texas Nutrient Screening Levels and EPA Nutrient Reference Criteria.

(a) Reference conditions for aggregate Ecoregion IX waterbodies, upper 25th percentile of data from all seasons, 1990-1999.

(b) Reference conditions for level III Ecoregion 29 waterbodies, upper 25th percentile of data from all seasons.

(c) For nitrite, concentrations above 0.02 mg/L (ppm) usually indicate polluted waters (Mesner, N., J. Geiger. 2010. Understanding Your Watershed: Nitrogen. Utah State University, Water Quality Extension.

(d) OP is no longer used for TCEQ screening purposes, as of the 2014 Texas Integrated Report.

(e) Chlorophyll a, as measured by Spectrophotometric method with acid correction.

3.3 Description of Assessments

3.3.1 TCEQ 2014 Texas Integrated Report

The TCEQ Draft 2014 Texas Integrated Report covers a seven-year assessment period from December 1, 2005 to November 30, 2012. In cases where additional data was needed to make an informed assessment, data from an additional three-year segment beginning December 1, 2003 were used. The

methods used for this assessment are described in the TCEQ's 2014 *Guidance for Assessing and Reporting Surface Water Quality in Texas* (TCEQ 2015a).

Findings of the Integrated Report are classified as Fully Supporting, No Concern, Use Concern, Screening Level Concern, and Not Supporting. To simplify data presentation in this report, the Use Concern and Screening Level Concern classifications were combined into a single "Concern" category. Use Concern findings are given for assessments against designated use standards for water quality parameters such as dissolved oxygen (DO) and *E. coli*. Use Concerns can apply to datasets with limited data where the threshold number of exceedances are met or to datasets with adequate data where there are less than the threshold number of exceedances required for a Not Supporting finding. Screening Level Concerns apply to General Use parameters, such as nutrients and chlorophyll-a, as well as a few other parameters for other designated uses. These parameters have screening levels rather than standards.

3.3.2 TRA In-house Assessment

To determine the status of more recently collected data, TRA conducted an in-house assessment using the most recent available and complete data. This includes data collected between December 1, 2008 and November 30, 2013. Data were compared to standards and screening levels in a manner similar to TCEQ methods. The exception to this is for orthophosphate (OP), which is no longer assessed by TCEQ. However, because TRA and many other partners within the Trinity Basin still collect this parameter, it has been included in the in-house assessment and has been compared to old TCEQ screening levels. This in-house assessment may provide information on emerging issues that may not be readily apparent in the results of the TCEQ Integrated Report. The results of both assessments are shown in Table 4 below, which call out any impairments or concerns identified in each segment. The results are accompanied by an evaluation of which of a segment's designated uses have data that was available for a use assessment.

		D	esign	atec	Use	s*	2014 TCEQ Report		5-year TRA In-house Review	
Waterbody	Assessment Unit	Aquatic Life	Contact Recreation	General Use	Fish Consumption	Public Water Supply	Impairments	Concerns	Impairments	Concerns
Lake Arlington: Lowermost portion of lake along western half of dam	0828_01			•	•	•				
Lake Arlington: Lowermost portion of lake along eastern half of dam	0828_02	•	•	•	•	•		• chlorophyll-a		• chlorophyll-a
Lake Arlington: Western half of lower portion of lake	0828_03			•	•	•				
Lake Arlington: Eastern half of Iower portion of Iake	0828_04	•		•	•	•				
Lake Arlington: Western half of upper portion of lake	0828_05	•	•	•	•	•		• chlorophyll-a		• chlorophyll-a
Lake Arlington: Eastern half of upper portion of lake	0828_06	•	•	•	•	•		• chlorophyll-a		• chlorophyll-a
Lake Arlington: Uppermost portion of lake	0828_07	•	•	•	•	•		• nitrate	• bacteria	• nitrate
Lake Arlington: Remainder of lake	0828_08			•	•	•				
Village Creek: From Lake Arlington to the headwaters	0828A_01	•	•	•	•		• bacteria		• bacteria	

Table 4. 2014 Texas Integrated Report & 2015 TRA In-house Assessment information for the Village Creek-Lake Arlington watershed.

*note: blanks in the "Designated Uses" column indicate that no data was available for a specific designated use in the corresponding segment.

3.4 Data Collection

The majority of data represented in this report was collected at two TCEQ SWQMIS stations existing on Village Creek, generated by TRA's partners within the Clean Rivers Program (CRP). Many of these partners have utilized monitoring programs that have been in place well before the establishment of the Clean Rivers Program, and were used to support such efforts as stormwater permitting or protection of public water supplies. As a result, this report borrows heavily from TRA's Clean Rivers Program 2015 Basin Summary Report (BSR), where the majority of these results were originally presented (TRA 2015).

3.5 Water Quality Trends

Trend analyses were conducted on all datasets determined to be adequately normal. Those datasets that passed significance testing were determined to have trends that warranted further discussion and investigation. The methods used for data preparation and trend analysis are discussed in detail in the 2015 Basin Summary Report (TRA 2015). Please consult the 2015 BSR for additional information regarding normality, significance, and trends.

4.0 Watershed Characteristics

4.1 General Information

The Village Creek-Lake Arlington watershed extends approximately 28 river miles from its headwaters near the city of Joshua in Johnson County to the Lake Arlington dam in Tarrant County. The watershed consists of only two TCEQ-monitored segments, Lake Arlington (0828), a classified segment, and Village Creek (0828A), an unclassified segment.

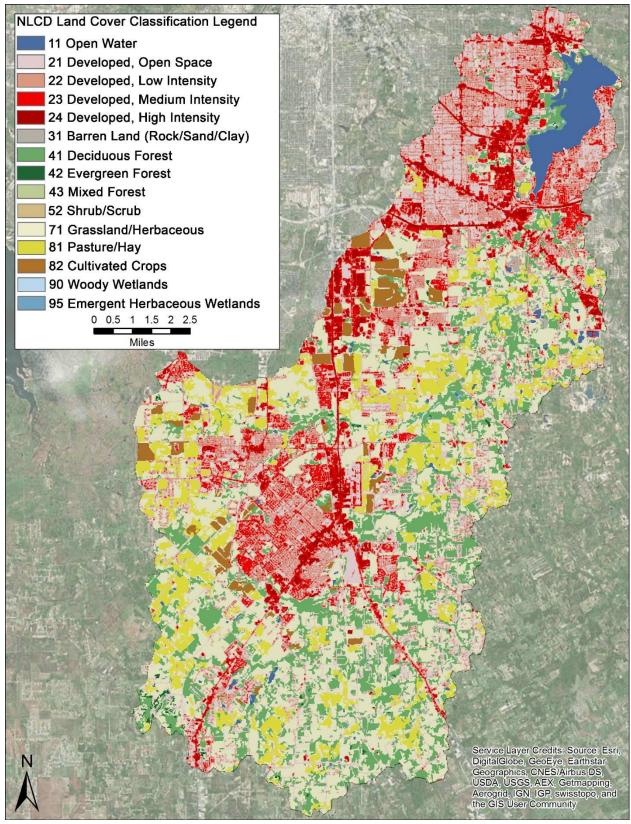
4.2 Climate

Mean annual daily temperature from the National Weather Service database for the Dallas/Fort Worth Metroplex (<u>https://www.weather.gov/fwd/dfwclimo</u>) is 65.9 °F for the entire period of record (POR) between 1899 and 2015. Temperatures are generally lowest in January and highest in July, with POR daily annual averages of 45.5 °F and 85 °F, respectively.

The watershed generally receives between 32 and 36 inches of precipitation annually, while the mean annual precipitation for the Dallas/Fort Worth Metropolitan area is 33.1 inches for the entire period of record (POR) between 1899 and 2015. The lowest yearly total came in 1921, with only 17.9 inches, with the highest yearly total occurring in 2015, when prolonged storms brought 62.8 inches of rain, along with historic flooding.

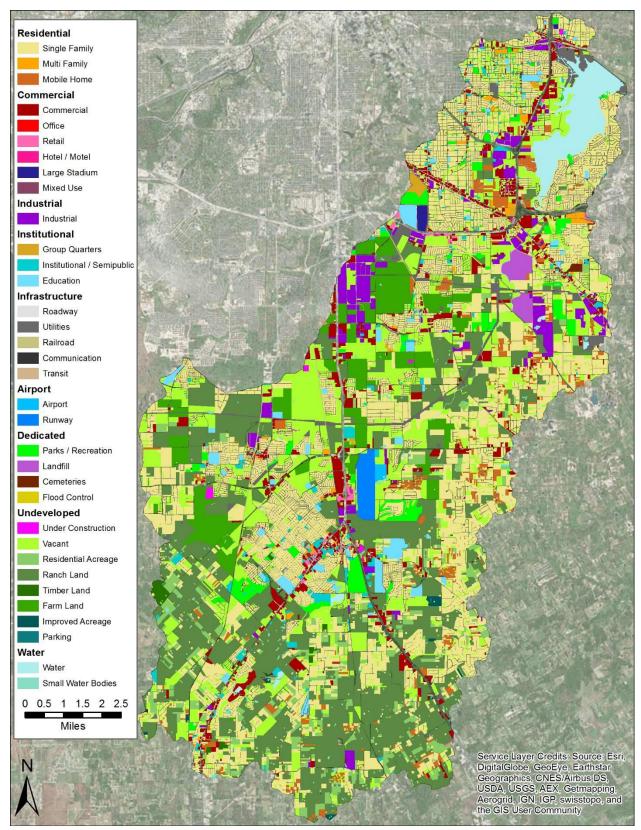
4.3 Geology

The Village Creek-Lake Arlington watershed is generally located within the Grand Prairie physiographic province according to the Physiographic Map of Texas (Bureau of Economic Geology 1996). The majority of the watershed is underlain by units from the Washita and Woodbine groups, with some fluviatile terrace deposits and alluvial floodplain deposits in areas underlying Lake Arlington and Village Creek.


4.4 Soils

Soils in the vicinity of the lake are composed mainly of fine sandy loams, with silty clays near the transitional zone with Village Creek. Some of the more common upland soil groups in the watershed include Crosstell fine sandy loams, Sanger clays, Crosstell-Urban land complex, and Ponder clay loam. Several hydric soils occupy the bottom land areas of the watershed, with Frio silty clays, Pulexas fine sandy loam, and Hassee fine sandy loam being most common. A complete soils list and map are provided in Appendix A.

4.5 Land Use and Land Cover


The downstream portions of the subwatershed surrounding the lake are urbanized, while the upstream portions of the subwatershed have remained generally rural with some pastureland and row-crop agriculture. Major population centers include the City of Burleson and the communities of the

southwest DFW Metroplex, which includes portions of Fort Worth and Arlington. These population centers compose the majority of the developed land in the area, which is shown at as red areas in Figure 2. Land use within the watershed from 2013 is depicted in Figure 3, which relates a use category (residential, industrial, undeveloped, etc.) to the land cover information. The urban centers previously mentioned are characterized by a high percentage of single family homes, but a significant percentage of industrial complexes are shown to exist immediately south and west of the lake. Outside of these urbanized areas, ranch land is dominant, with pockets of farm land and undeveloped open lots being typical.

Data source: Multi-Resolution Land Characteristics Consortium; Basemap: ESRI World Imagery.

Figure 2. 2012 NLCD land cover classes in the Village Creek-Lake Arlington watershed.

Data source: NCTCOG; Basemap: ESRI World Imagery.

Figure 3. 2013 NCTCOG land use classifications in the Village Creek-Lake Arlington watershed.

4.6 Ecology

The watershed is wholly situated within the Cross Timbers ecoregion. All of segment 0828 is located in the Eastern Cross Timbers ecoregion (29b). Here, post oak (*Quercus stellata*) and blackjack oak (*Q. marilandica*) are common overstory trees, with minor representation from species like black hickory (*Carya texana*), plateau live oak (*Quercus fusiformis*), eastern redcedar (*Juniperus virginiana*), and various sumac species (*Rhus* spp.). with native grasses such as bluestem (*Schizachyrium* spp.), yellow Indiangrass (*Sorghastrum nutans*), and tall dropseed (*Sporobolus asper*) in the understory and within prairie inclusions. In disturbed areas, honey mesquite (*Prosopis glandulosa*) and prickly pear (*Opuntia* spp.) are common.

The majority of segment 0828A also falls within 29b, but the western portion of the watershed, including several Village Creek tributaries, is encompassed within the Grand Prairie ecoregion (29d). The area is dominated by tallgrass prairie species in upland areas. In undisturbed areas, this includes big bluestem (*Andropogon gerardii*), yellow Indiangrass, little bluestem (*Schizachyrium scoparium*), sideoats grama (*Bouteloua curtipendula*), and Texas cupgrass (*Eriochloa sericea*). However, the occurrence of buffalograss (*Buchloe dactyloides*), Texas wintergrass (*Stipa leucotricha*), and gramas (*Bouteloua* spp.) tends to increase with overgrazing and disturbance. In riparian bands, woody species such as elm (*Ulmus* spp.), pecan (*Carya illinoensis*), and hackberry (*Celtis* spp.) are common. With the onset of European settlement, brush/fire control, and urbanization, invasive species such as Ashe juniper (*Juniperus ashei*) and honey mesquite are now also common (Griffith 2007).

Although no instances of critical habitat occur within the watershed for any federally-listed threatened and endangered species, a U.S. Fish and Wildlife Service (FWS) Information, Planning, and Consultation (IPaC) report indicated the possible presence of several threatened and endangered species that may occur intermittently throughout the watershed. Of note were several endangered avian species, including the Black-capped Vireo (*Vireo atricapilla*), Golden-cheeked Warbler (*Dendroica chrysoparia*), Least Tern (*Sterna antillarum*), and Whooping Crane (*Grus Americana*). The list also included one species of clam, the Texas Fawnsfoot (*Truncilla macrodon*), which is currently listed as a Candidate species. The full IPaC report is provided in Appendix B.

In most cases, state lists of threatened and endangered species are more robust, given the increased specificity for critical populations and habitats afforded by the smaller scope of study inherent to state boundaries. As a result of this refined scope, additional avian and mollusk species appear within the state list produced by the Texas Parks and Wildlife Department (TPWD), shown in Table 5 below. The state list also includes several fish, mammal, reptilian, and plant species, which are not shown in the Federal list. Separate reports for Tarrant and Johnson County are provided in Appendix C.

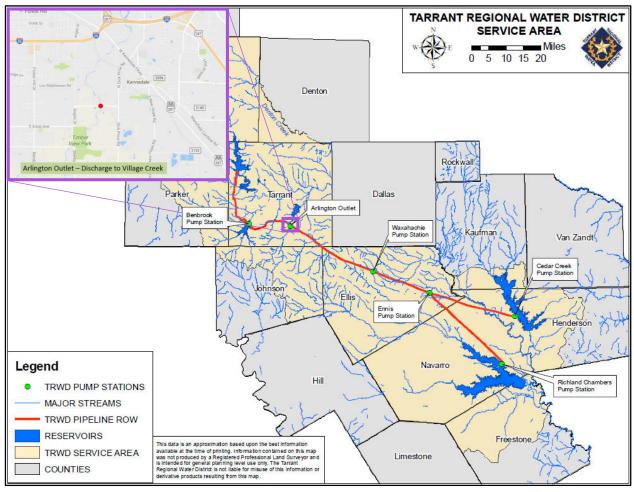
Scientific	Common	Fed.	State					
Name	Name	Status	Status	Description				
Birds								
Plegadis chihi Haliaeetus	White-faced Ibis		т	prefers freshwater marshes, sloughs, and irrigated rice fields, but will attend brackish and saltwater habitats; nests in marshes, in low trees, on the ground in bulrushes or reeds, or on floating mats found primarily near rivers and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and				
leucocephalus	Bald Eagle	DL	т	pirates food from other birds				
Falco peregrinus	Peregrine Falcon	DL	T	both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, F.p. tundrius is no longer listed in Texas; but because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.				
Falco peregrinus anatum	American Peregrine Falcon	DL	Т	year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low- altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.				
Falco peregrinus tundrius	Arctic Peregrine Falcon	DL		migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands.				
Grus americana	Whooping Crane	LE	E	potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties				
Calidris canutus rufa	Red Knot	Т		Red knots migrate long distances in flocks northward through the contiguous United States mainly April-June, southward July-October. The Red Knot prefers the shoreline of coast and bays and also uses mudflats during rare inland encounters. Primary prey items include coquina clam (Donax spp.) on beaches and dwarf surf clam (Mulinia lateralis) in bays, at least in the Laguna Madre. Wintering Range includes- Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kennedy, Kleberg, Matagorda, Nueces, San Patricio, and Willacy. Habitat: Primarily seacoasts on tidal flats and beaches, herbaceous wetland, and Tidal flat/shore.				

Table 5. Federal and state status of threatened and endangered species in Tarrant and Johnson Counties.

Scientific	Common	Fed.	State				
Name	Name	Status	Status	Description			
Birds (continued)							
Sterna antillarum athalassos	Interior Least Tern	LE	E	subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish and crustaceans, when breeding forages within a few hundred feet of colony open grasslands, especially prairie, plains, and savanna,			
Athene cunicularia hypugaea	Western Burrowing Owl			sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows			
Anthus spragueii	Sprague's Pipit			only in Texas during migration and winter, mid September to early April; short to medium distance, diurnal migrant; strongly tied to native upland prairie, can be locally common in coastal grasslands, uncommon to rare further west; sensitive to patch size and avoids edges.			
Vireo atricapilla	Black- capped Vireo	LE	E	oak-juniper woodlands with distinctive patchy, two- layered aspect; shrub and tree layer with open, grassy spaces; requires foliage reaching to ground level for nesting cover; return to same territory, or one nearby, year after year; deciduous and broad-leaved shrubs and trees provide insects for feeding; species composition less important than presence of adequate broad-leaved shrubs, foliage to ground level, and required structure; nesting season March-late summer			
Setophaga chrysoparia Ammodramus	Golden- cheeked Warbler Henslow's	LE	E	juniper-oak woodlands; dependent on Ashe juniper (also known as cedar) for long fine bark strips, only available from mature trees, used in nest construction; nests are placed in various trees other than Ashe juniper; only a few mature junipers or nearby cedar brakes can provide the necessary nest material; forage for insects in broad- leaved trees and shrubs; nesting late March-early summer wintering individuals (not flocks) found in weedy fields or cut-over areas where lots of bunch grasses occur along with vines and brambles; a key component is bare ground			
henslowii	Sparrow			for running/walking			
	· · ·			Fishes			
Scaphirhynchus platorynchus	Shovelnose sturgeon		Т	open, flowing channels with bottoms of sand or gravel; spawns over gravel or rocks in an area with a fast current; Red River below reservoir and rare occurrence in Rio Grande			
Notropis buccula	Smalleye shiner	LE		endemic to upper Brazos River system and its tributaries (Clear Fork and Bosque); apparently introduced into adjacent Colorado River drainage; medium to large prairie streams with sandy substrate and turbid to clear warm water; presumably eats small aquatic invertebrates			

Scientific	Common	Fed.	State						
Name	Name	Status	Status	Description					
Fishes (continued)									
Notropis oxyrhynchus	Sharpnose shiner	LE		endemic to Brazos River drainage; also, apparently introduced into adjacent Colorado River drainage; large turbid river, with bottom a combination of sand, gravel, and clay-mud					
	Mammals								
Canis rufus	Red wolf	LE	E	extirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal prairies					
Canis lupus	Gray wolf	LE	E	extirpated; formerly known throughout the western two- thirds of the state in forests, brushlands, or grasslands					
Spilogale putorius interrupta	Plains spotted skunk			catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie					
			F	Reptiles					
Phrynosoma cornutum	Texas horned lizard		Т	open, arid and semi-arid regions with sparse vegetation, including grass, cactus, scattered brush or scrubby trees; soil may vary in texture from sandy to rocky; burrows into soil, enters rodent burrows, or hides under rock when inactive; breeds March-September					
Nerodia harteri	Brazos water snake		Т	upper Brazos River drainage; riffle specialist, in shallow water with rocky bottom and on rocky portions of banks					
Thamnophis sirtalis annectens	Texas garter snake			wet or moist microhabitats are conducive to the species occurrence, but is not necessarily restricted to them; hibernates underground or in or under surface cover; breeds March-August					
Crotalus horridus	Timber rattlesnake		Т	swamps, floodplains, upland pine and deciduous woodlands, riparian zones, abandoned farmland; limestone bluffs, sandy soil or black clay; prefers dense ground cover, i.e. grapevines or palmetto					
			Ν	1ollusks					
Lampsilis satura	Sandbank pocketbook		Т	small to large rivers with moderate flows and swift current on gravel, gravel-sand, and sand bottoms; east Texas, Sulfur south through San Jacinto River basins; Neches River					
Pleurobema riddellii	Louisiana pigtoe		т	streams and moderate-size rivers, usually flowing water on substrates of mud, sand, and gravel; not generally known from impoundments; Sabine, Neches, and Trinity (historic) River basins					
Potamilus amphichaenus	Texas heel- splitter		т	quiet waters in mud or sand and also in reservoirs. Sabine, Neches, and Trinity River basins					
Truncilla macrodon	Texas fawnsfoot	С	Т	little known; possibly rivers and larger streams, and intolerant of impoundment; flowing rice irrigation canals, possibly sand, gravel, and perhaps sandy-mud bottoms in moderate flows; Brazos and Colorado River basins					

Scientific	Common	Fed.	State				
Name	Name	Status	Status	Description			
Plants							
Echinacea atrorubens	Topeka purple- coneflower			GLOBAL RANK: G3; Occurring mostly in tallgrass prairie of the southern Great Plains, in blackland prairies but also in a variety of other sites like limestone hillsides; Perennial; Flowering Jan-June; Fruiting Jan-May			
Cuscuta exaltata	Tree dodder			GLOBAL RANK: G3; Parasitic on various Quercus, Juglans, Rhus, Vitis, Ulmus, and Diospyros species as well as Acacia berlandieri and other woody plants; Annual; Flowering May-Oct; Fruiting July-Oct			
Astragalus reflexus	Texas milk vetch			GLOBAL RANK: G3; Grasslands, prairies, and roadsides on calcareous and clay substrates; Annual; Flowering Feb- June; Fruiting April-June			
Dalea hallii	Hall's prairie clover			GLOBAL RANK: G3; In grasslands on eroded limestone or chalk and in oak scrub on rocky hillsides; Perennial; Flowering May-Sept; Fruiting June-Sept			
Pediomelum reverchonii	Reverchon's curfpea			GLOBAL RANK: G3; Mostly in prairies on shallow rocky calcareous substrates and limestone outcrops; Perennial; Flowering Jun-Sept; Fruiting June-July			
Agalinis auriculata	Auriculate false foxglove			Known in Texas from one late nineteenth century specimen record labeled -Benbrook-; in Oklahoma, degraded prairies, floodplains, fallow fields, and borders of upland sterile woods; in Arkansas, blackland prairie; Annual; Flowering August - October			
Agalinis densiflora	Osage Plains false foxglove			GLOBAL RANK: G3; Most records are from grasslands on shallow, gravelly, well drained, calcareous soils; Prairies, dry limestone soils; Annual; Flowering Aug-Oct			
Yucca necopina	Glen Rose yucca			Texas endemic; grasslands on sandy soils and limestone outcrops; flowering April-June			


Source: Texas Parks and Wildlife Department.

5.0 Reservoir Characteristics

5.1 General Information

In the early 1950s, City of Arlington staff were met with the challenge of providing water to a growing city and expanding industrial area. To meet this need, the construction of a new reservoir was proposed which would dam water from Village Creek and incorporate the already-existing Lake Erie, which provided cooling water to a nearby power generation plant. Construction on the reservoir was completed in 1957. Once completed, the reservoir filled at an unprecedented rate, thanks in part to a 100-year storm event that took place in the spring of 1957. This sudden influx of water filled the lake in a short 30 days, which was a welcome relief for residents considering that most of Texas has just suffered through the worst drought in recorded history, which occurred from 1946 to 1957 (Malcolm Pirnie 2011). Today, yields of the reservoir from Village Creek are supplemented with water piped in from two other reservoirs in East Texas, the Richland-Chambers and Cedar Creek Reservoirs (Figure 4). This allows Lake Arlington to be used as a terminal storage reservoir in the Tarrant Regional Water District's (TRWD) Trinity River Diversion Water Supply Project. The outlet for this pipeline is situated just

downstream of the Village Creek bridge on Everman-Kennedale Road (32°38'19.90"N, 97°14'32.30"W), shown on the inset map in (see 'Arlington Outlet') on Figure 4. From the Lake Arlington outlet, the pipeline continues on to Lake Benbrook and from there to Eagle Mountain Reservoir. Occasionally, flow in the pipeline is reversed to deliver water from Lake Benbrook to supply Lake Arlington.

Adapted from: Lake Arlington Master Plan, Malcolm Pirnie 2011.

Figure 4. Pipeline right-of-way (ROW) showing connectivity between reservoirs within the Trinity River Diversion Water Supply Project with area of interest (in purple) showing detail for the location of the Arlington Outlet.

Lake Arlington covers 2,275 acres and impounds Village Creek from the Arlington dam in Tarrant County up to a normal pool elevation of 550 feet. Water rights permits for Lake Arlington are held by the City of Arlington and TXU Electric/Excelon Power. Prior to the construction of the Lake Arlington Dam, Lake Erie inhabited an area in the northwestern corner of the lake. Although it retains some of Lake Erie's former utility as an industrial cooling water source, Lake Arlington water is presently used primarily for municipal purposes, providing drinking water to over half a million residents in the City of Arlington, as well as some surrounding communities in Tarrant County. Drinking water from the lake is treated at two facilities: the Pierce-Burch Water Treatment Plant (WTP), owned and operated by the City of Arlington, and the Tarrant County Water Supply Project (TCWSP) WTP, owned and operated by TRA. Withdrawals for these uses are provided below in Table 6. The lake is also used regularly for public recreation, with several public and privately owned docks allowing for boat entry for fishing and other recreational activities (Malcolm Pirnie 2011).

	Average Annual	Average Annual
Lake Arlington Supplies and Uses	Inflows (acre-ft)	Withdrawals (acre-ft)
Natural supply from watershed	50,995 ⁽¹⁾	N/A
City of Arlington Pierce-Burch WTP	N/A	32,800 ⁽²⁾
TRA TCWSP WTP	N/A	34,000 ⁽²⁾
Excelon Handley Power Plant	N/A	4,000 ⁽³⁾
TRWD Discharge from Cedar Creek and Richland		
Chambers Reservoirs to Village Creek	43 , 500 ⁽⁴⁾	N/A

Table 6. Sources of supply and uses of water in Lake Arlington.

N/A - not applicable

(1) Based on rainfall data from 199202009 and PLOAD model projections. Estimated annual inflow includes baseflow from Village Creek (2,735 acre-ft) and estimated surface runoff.

(2) Average annual withdrawal between 2009 and 2010.

(3) Projected 2010 net demand, taking into consideration diversions and return flows. (Source: TRWD, 1998)

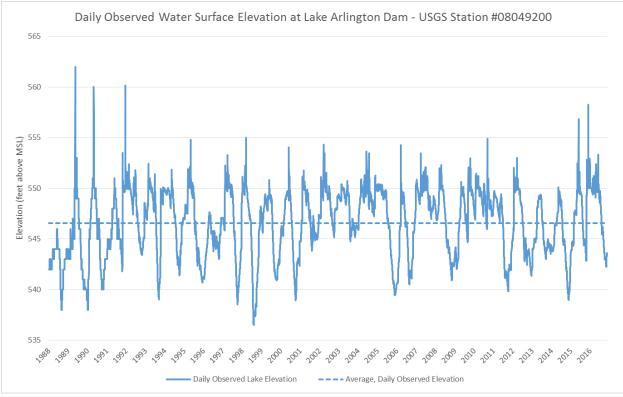
(4) Average of monitored discharges between 2005 and 2009.

Adapted from: Lake Arlington Master Plan, Malcolm Pirnie 2011.

Land uses surrounding the lake are classified as urban, mixed with interspersed open greenspaces. The east side of the lake is almost completely urbanized, with the majority of land use being residential. However, two large parks do exist near the lake. On the west side of the lake, some undeveloped land does exist just south of the power generation plant operated by Excelon Handley (Excelon), but land use again turns to residential near the southern end of the lake (Figure 2, Figure 3).

5.2 Hydraulics

Holders of water rights on Lake Arlington are authorized to impound a total of 45,710 acre-feet of water behind the dam. In contrast, TRA diverts water for their TCWSP plant through contractual agreements with TRWD, utilizing the imported water brought in to Village Creek from TRWD's Trinity River Diversion Water Supply pipeline, instead of the yield from Village Creek itself.

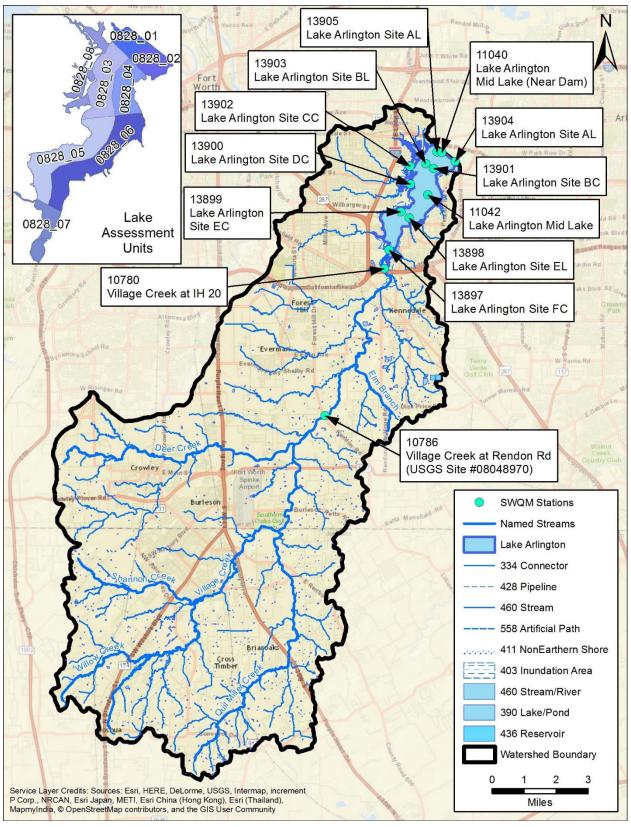

Lake Arlington's operations are based on 4 major factors:

- 1) Normal inflows from Village Creek;
- 2) Additional inflows supplied from the TRWD pipeline;
- 3) Surface evaporation from the lake; and
- 4) Diversions/withdrawals from the lake by the City, TRA, and Excelon/TXU.

The normal conservation pool elevation for Lake Arlington is 550 ft above mean sea level (MSL), which coincides with the elevation of the drop inlet spillway that drains the lake, located near the east end of the Lake Arlington dam. The dam itself is an earthen structure with a total length of 6,482 ft (1.2 mi) and a height of 83 ft. A flood storage easement held by the City of Arlington allows for additional storage up to 560 ft MSL, and the dam itself reaches a total height of 577.5 ft MSL, which accounts for a parapet wall that was added to the dam after initial construction was complete. During flood events, water may be released from an uncontrolled emergency spillway, which has a crest elevation of 559.7 ft MSL and a

width of 882 ft (Malcolm Pirnie 2011). Historical lake elevations from 1988 to 2016 are provided in Figure 5 below.

The management of the lakes' pool elevation relies heavily on the contractual relationships with TRWD, particularly in the summer months. Under a 1971 agreement, TRWD agreed to maintain a minimum lake elevation of 540 ft MSL during the summer months (from June 1 to September 1) and a minimum of 535 ft MSL during the remainder of the year.



Data source: USGS.

Figure 5. Daily Observed Water Surface Elevation in Lake Arlington, 1988-2016.

5.3 Water Quality Monitoring Data

The lake is composed of 8 assessment units (AUs) that are analyzed for water quality, as part of TCEQ's SWQMIS. These assessment units and their location descriptions are listed in Table 7 below, as well as in all other use assessment results tables that follow. Each assessment unit may contain at least one SWQMIS monitoring station, from which data is analyzed to evaluate the unit's use assessment. The locations of these monitoring stations, as well as the locations of the assessment units, are provided in Figure 6. It is important to note that while information from each unit's station is listed separately in the reporting database, the lake is evaluated as a whole segment, compounding data from all 8 assessment units for analysis. Data in SWQMIS is available from 1971 to present, although data for *E. coli* is only available from 2002 forward, and data for flow is only available from 2007 forward.

Basemap: ESRI World Streetmap.

Figure 6. Water quality monitoring stations, hydrography, and Lake Assessment Units.

5.3.1 Aquatic Life Use Assessments

Adequate aquatic life use data was available for assessment units 0828_02, 0828_05, 0828_06, and 0828_07 (Table 7). The water quality parameter associated with aquatic life assessments is DO. The available data showed that these segments were all fully supporting aquatic life uses.

Waterbody	AU	2014 TCEQ Report	5-year TRA In-house Review
Lake Arlington: Lowermost portion of lake along western half of dam	0828_01	Not Assessed (No Data)	Not Assessed (No Data)
Lake Arlington: Lowermost portion of lake along eastern half of dam	0828_02	Fully Supporting	Fully Supporting
Lake Arlington: Western half of lower portion of lake	0828_03	Not Assessed (No Data)	Not Assessed (No Data)
Lake Arlington: Eastern half of lower portion of lake	0828_04	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Western half of upper portion of lake	0828_05	Fully Supporting	Fully Supporting
Lake Arlington: Eastern half of upper portion of lake	0828_06	Fully Supporting	Fully Supporting
Lake Arlington: Uppermost portion of lake	0828_07	Fully Supporting	Fully Supporting
Lake Arlington: Remainder of lake	0828_08	Not Assessed (No Data)	Not Assessed (No Data)

Table 7. Aquatic life use assessment results for Lake Arlington.

5.3.2 Contact Recreation Use Assessments

Adequate recreational use data was available for assessment units 0828_02, 0828_05, 0828_06, and 0828_07. The water quality parameter associated with this assessment is *E. coli*. This segment was found to be fully supporting based on the TCEQ Draft 2014 Integrated Report (Table 8). However, the inhouse 5 year assessment found that 0828_07 was not supporting based on an elevated E. coli geometric mean and appears to be due to a single elevated *E. coli* sample which occurred during an extremely high flow event (Figure 7). Elevated *E. coli* levels typically occur during periods of high flow due to runoff in the watershed which carry in bacteria loads from the surrounding land. Current standards for *E. coli* are 399 most probable number (MPN)/100 mL for a single grab sample and 126 MPN/100 mL for the geometric mean of samples over time.

Waterbody	AU	2014 TCEQ Report	5-year TRA In-house Review
Lake Arlington: Lowermost portion of lake along western half of dam	0828_01	Not Assessed (No Data)	Not Assessed (No Data)
Lake Arlington: Lowermost portion of lake along eastern half of dam	0828_02	Fully Supporting	Fully Supporting
Lake Arlington: Western half of lower portion of lake	0828_03	Not Assessed (No Data)	Not Assessed (No Data)
Lake Arlington: Eastern half of lower portion of lake	0828_04	Not Assessed (No Data)	Not Assessed (No Data)
Lake Arlington: Western half of upper portion of lake	0828_05	Fully Supporting	Fully Supporting
Lake Arlington: Eastern half of upper portion of lake	0828_06	Fully Supporting	Fully Supporting
Lake Arlington: Uppermost portion of lake	0828_07	Fully Supporting	Not Supporting
Lake Arlington: Remainder of lake	0828_08	Not Assessed (No Data)	Not Assessed (No Data)

Table 8. Contact recreation use assessment results for Lake Arlington.

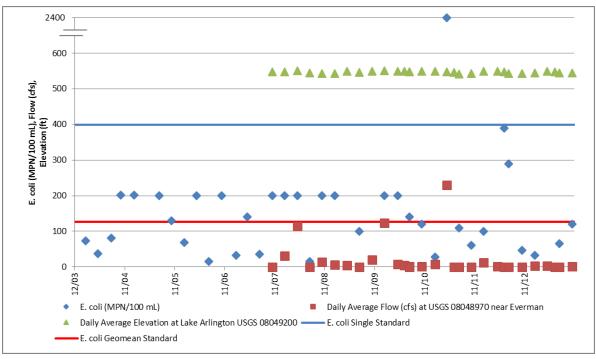


Figure 7. E. coli, Flow, & Lake Elevation in Lake Arlington Assessment Unit 0828_07.

5.3.3 General Use Assessments

Adequate general use data was available for assessment units 0828_01, 0828_02, 0828_05, 0828_06, and 0828_07. The water quality parameters associated with this assessment are temperature, pH, dissolved solids, and several nutrients. Assessment units 0828_02, 0828_05, and 0828_06 were found to have concerns for chlorophyll-a based on the TCEQ 2014 Integrated Report (Table 9). In addition, 0828_07 was found to have concerns for nitrate. The in-house 5 year assessment also found these concerns in the same assessment units.

Waterbody	AU	2014 TCEQ Report	5-year TRA In-house Review
Lake Arlington: Lowermost portion of lake along western half of dam	0828_01	Fully Supporting	Fully Supporting
Lake Arlington: Lowermost portion of lake along eastern half of dam	0828_02	Concern	Concern
Lake Arlington: Western half of lower portion of lake	0828_03	Not Assessed (No Data)	Not Assessed (No Data)
Lake Arlington: Eastern half of lower portion of lake	0828_04	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Western half of upper portion of lake	0828_05	Concern	Concern
Lake Arlington: Eastern half of upper portion of lake	0828_06	Concern	Concern
Lake Arlington: Uppermost portion of lake	0828_07	Concern	Concern
Lake Arlington: Remainder of lake	0828_08	Not Assessed (No Data)	Not Assessed (No Data)

Table 9. General use assessment results for Lake Arlington.

For chlorophyll-a, there does not appear to be any correlation between the measured values and either stream flow or lake elevation. Rather, there is an observed relationship between chlorophyll-a and total phosphorus (TP). This relationship is seen in all three assessment units (0828_02, 0828_06, and 0828_07) and is best seen in Figure 8, which shows that not only is there a relationship between the two parameters and the expected intra-year variation, there also appears to be a pattern in the fluctuation of the values across years. This pattern was also seen in the dataset used for the 2010 TRA Basin Summary Report. Based on that report and this dataset, the pattern appears to have a roughly four year cycle in which values peak and then drop again. This may be due to natural algal population growth and collapse as nutrients are consumed to a point that the algal population can no longer be sustained. However, the water supply and use data provided in Table 6 indicate that the Lake's entire volume is replaced with new water frequently, sometimes more than once within a year. Due to these complexities related to lake storage, which include imports from other reservoirs, more information is needed before conclusions can be drawn regarding the observed pattern.

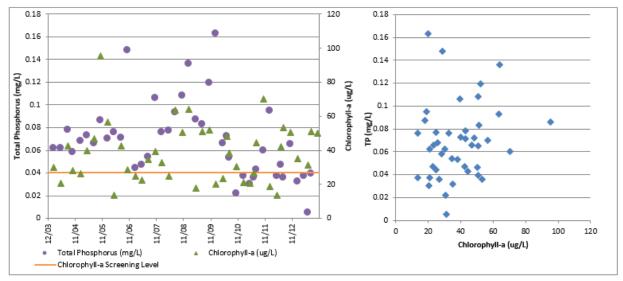


Figure 8. Chlorophyll-a and total phosphorus in Lake Arlington assessment unit 0828_06.

There is a similar pattern for nitrate and chlorophyll-a in 0828_07 as the one seen for chlorophyll-a and total phosphorus in 0828_06 (Figure 9). Again, this may be due to natural algal population growth and collapse. In order to determine a cyclical relationship between chlorophyll-a and nutrients in the lake, a special study would need to be undertaken with a sampling frequency adequate to see if there is a drop in nutrients just prior to the drop in chlorophyll-a.

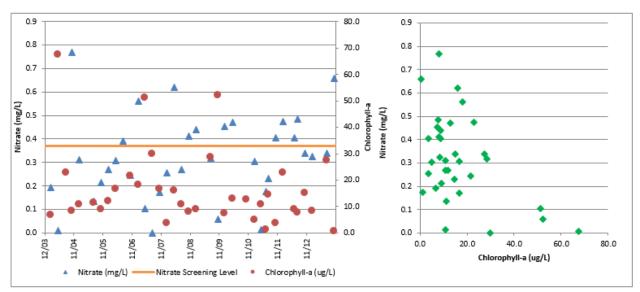


Figure 9. Nitrate and total phosphorus in Lake Arlington assessment unit 0828_07.

5.3.4 Fish Consumption Use Assessments

For the TCEQ Integrated Report, adequate fish consumption use data was unavailable for all assessment units within Lake Arlington (Table 10). As such, no support assessment for the fish consumption use can be made at this time. Fish Consumption uses are not evaluated for the in-house assessment.

Waterbody	AU	2014 TCEQ Report	5-year TRA In-house Review
Lake Arlington: Lowermost portion of lake along western half of dam	0828_01	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Lowermost portion of lake along eastern half of dam	0828_02	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Western half of lower portion of lake	0828_03	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Eastern half of lower portion of lake	0828_04	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Western half of upper portion of lake	0828_05	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Eastern half of upper portion of lake	0828_06	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Uppermost portion of lake	0828_07	Not Assessed (Inadequate Data)	Not Assessed (No Data)
Lake Arlington: Remainder of lake	0828_08	Not Assessed (Inadequate Data)	Not Assessed (No Data)

Table 10. Fish consumption use assessment results for Lake Arlington.

5.3.5 Public Water Supply Use Assessments

Adequate public water supply use data was available for all assessment units within Lake Arlington (Table 11). In this particular case of public water supply use, nitrate was the single water quality parameter used for the assessment. This segment was found to be fully supporting of public water supply use based on the TCEQ 2014 Integrated Report. Similarly, the available data used in the in-house 5 year assessment found that these segments presented no concern or were all fully supporting of public water supply uses within Lake Arlington.

Waterbody	AU	2014 TCEQ Report	5-year TRA In-house Review
Lake Arlington: Lowermost portion of lake along western half of dam	0828_01	Fully Supporting	No Concern
Lake Arlington: Lowermost portion of lake along eastern half of dam	0828_02	Fully Supporting	Fully Supporting
Lake Arlington: Western half of lower portion of lake	0828_03	Fully Supporting	No Concern
Lake Arlington: Eastern half of lower portion of lake	0828_04	Fully Supporting	No Concern
Lake Arlington: Western half of upper portion of lake	0828_05	Fully Supporting	Fully Supporting
Lake Arlington: Eastern half of upper portion of lake	0828_06	Fully Supporting	Fully Supporting
Lake Arlington: Uppermost portion of lake	0828_07	Fully Supporting	Fully Supporting
Lake Arlington: Remainder of lake	0828_08	Fully Supporting	No Concern

Table 11. Public water supply use assessment results for Lake Arlington.

6.0 Stream Characteristics

6.1 Flow

Flow data for Village Creek is tracked continuously by a U.S. Geological Survey (USGS) gaging station at the Village Creek bridge on Rendon Road (USGS Gage #08048970). However, this dataset only dates back to July 2007. Other flow data exist at other stations throughout the watershed within SWQMIS that will be used to supplement the USGS dataset.

6.2 Water Quality Monitoring Data

The Village Creek segment contains only one assessment unit that is analyzed for water quality under SWQM procedures. This assessment unit and its location description is listed in Table 13. Within this unit, there are two stations (TCEQ Station IDs 10780 and 10786) that were used in the use analysis. It is important to note that data taken at 10786 is sampled where the previously-mentioned USGS gage is located. It is also worth noting that while information from each station is listed separately in the SWQMIS database, the segment is evaluated as a whole, combining data from both stations for analysis. Data in SWQMIS is available from 1977 to present, although data for *E. coli* is only available from 2002 forward.

6.2.1 Aquatic Life Use Assessments

Adequate aquatic life use data was available for assessment unit 0828A (Table 12). As with Lake Arlington, DO was the water quality parameter used in the assessment. The available data showed that these segments were all fully supporting aquatic life uses.

Waterbody/			
AU	Use Assessment	2014 TCEQ Report	5-year TRA In-house Review
	Aquatic Life	Fully Supporting	Fully Supporting
From Lake Arlington to	Contact Recreation	Not Supporting	Not Supporting
the	General	Fully Supporting	Not Supporting
headwaters - 0828A_01	Fish Consumption	Fully Supporting	Not Assessed (No Data)
	Public Water Supply	Not Assessed (No Data)	Fully Supporting

Table 12. Use assessment results for Village Creek.

6.2.2 Contact Recreation Use Assessments

This segment was found to be not supporting based on both the TCEQ 2014 Integrated Report and the in-house 5 year assessment due to elevated *E. coli* geometric means. In addition, the in-house 5 year assessment found this segment to be not supporting based on the single grab sample standard. Current standards for *E. coli* are 399 MPN/100 mL for a single grab sample and 126 MPN/100 mL for the geometric mean of samples over time. As seen in Figure 10, there are several elevated *E. coli* values throughout the dataset. These values are associated with higher flow values in the stream. As discussed above, elevated *E. coli* and stream flow values typically occur in tandem due to nonpoint source inputs of incoming stormwater runoff from the surrounding watershed.

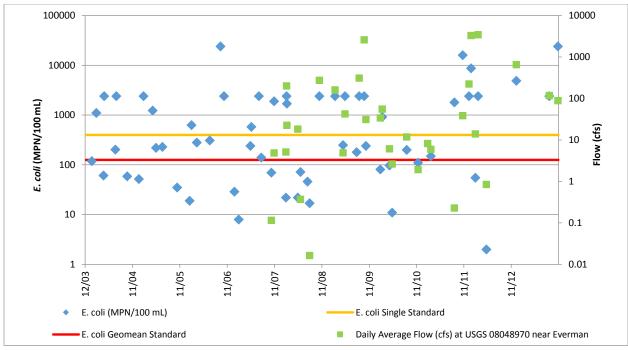


Figure 10. E. coli and flow in Village Creek, segment 0828A.

There are two sites used in the dataset for this unclassified segment; one is at the headwaters of the lake in an urbanized area (Station 10780) and the other is further upstream in a more rural area of the watershed (Station 10786). Although there are a few elevated *E. coli* values at the headwater site, a majority of the elevated values originate at the upstream rural site. This indicates that the source of the impairment in 0828A may be due to factors such as wildlife, livestock, or faulty septic tanks.

6.2.3 General Use Assessments

The in-house 5 year assessment found that this unclassified segment was not supporting due to total dissolved solids (TDS). This may be due to drought conditions in the area. As less rainfall occurs, more lawn and agricultural irrigation takes place. The runoff from irrigation is generally high in dissolved solids. In addition, as evaporation takes place in the streams and reservoirs, dissolved solids in the water become concentrated. This relationship is shown in Figure 11 for Village Creek and Lake Arlington. It is also worth noting that drought conditions may also be a factor where prolonged periods of reduced rainfall result in baseflow being dominated by effluent from wastewater treatment facilities (WWTFs), of which there are several known in the watershed. This effluent may also be a source of TDS. Inputs from other reservoirs can be eliminated as a source, since the water quality monitoring data for which these assessments are based on come from a sampling station that is situated upstream of the Arlington Outlet (Figure 4 and Figure 6).

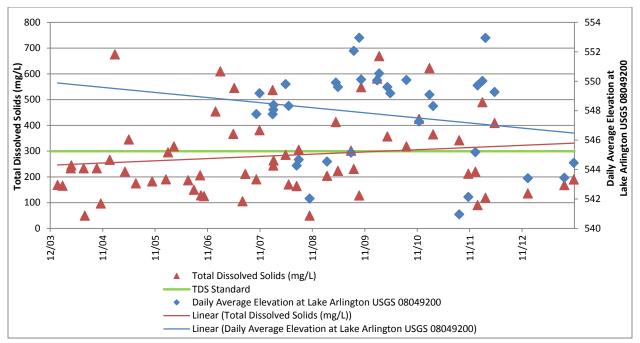


Figure 11. Relationship between TDS in Village Creek (0828A) and elevation in Lake Arlington (0828).

6.2.4 Fish Consumption Use Assessments

For the TCEQ Integrated Report, Adequate fish consumption data was available for the assessment unit 0828A, as reviewed under the TCEQ Integrated Report (Table 12). The available data showed that these segments were all fully supporting aquatic life uses. Fish Consumption uses are not evaluated for the inhouse assessment.

6.2.5 Public Water Supply Use Assessments

Typically, streams are not used for public water supplies. However, since this segment is a tributary to a water supply reservoir, the in-house assessment is conducted using parameters related to water supply uses to determine if there may be future drinking water supply concerns found by TCEQ's Integrated Report. The data reviewed in the in-house assessment indicated that this use was fully supported (Table 12).

7.0 Trend Analysis

There were 42 significant trends identified for this segment as summarized in Table 13. For additional detail on trend methods, please see the Data Review Methodology section in the 2015 Basin Summary Report (TRA 2015).

Assessr Uni			Flov ever			ieccl Dept			Vate Fem			DO			рН	-	Sp	o Cor	nd	Chlo	orop a	hyll		TSS			VSS	
Seg_AU	Site	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W
0828_02	13904						DN						DN												UP			
0828_05	13899																											
0828_06	11042																											
0828_07	13897																				DN							
0828A_01	10780	UP		UP										DN	DN	DN	UP		UP									
0828A_01	10786									DN																DN		

Table 13. Trend analysis results summary for Village Creek (0828A) and Lake Arlington (0828).

Assessr Uni			TDS			S O 4			NH3	5		NO3			TKN			OP			ТР		На	rdne	ess
Seg_AU	Site	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W	А	S	W
0828_02	13904	DN					DN								DN	DN				DN	DN			DN	
0828_05	13899													DN		DN									
0828_06	11042	DN						DN						DN	DN	DN		DN			DN				
0828_07	13897								UP							DN			DN			DN			
0828A_01	10780	UP		UP																					
0828A_01	10786							DN	DN	DN		DN		DN	DN	DN									

Trends Key

A-All Months

S-Summer/Growing Season (May-October)

W-Winter/Dormant Season (November-April)

UP Increasing Trends

DN Decreasing Trends

7.1 Trends in Lake Arlington

Table 14 provides a detailed analysis of the significant trends within Lake Arlington. Contrary to data analyzed in past BSRs, chlorophyll-a and total phosphorus trends are now decreasing. As discussed above in the General Use section, this may be due to natural algal population cycles in the lake. Overall, trends in this segment have R² values less than 0.33. There are 5 trends with R²'s greater than 0.4; however, these are all decreasing trends with very shallow slopes.

0828_07	0828_07	0828_07	0828_07	0828_07	0828_06	0828_06	0828_06	0828_06	0828_06	0828_06	0828_06	0828_05	0828_05	0828_02	0828_02	0828_02	0828_02	0828_02	0828_02	0828_02	0828_02	0828_02	0828_02	Segment
7 13897	7 13897	13897	13897	7 13897	5 11042	5 11042	5 11042	5 11042	5 11042	5 11042	5 11042	5 13899	5 13899	2 13904	2 13904	2 13904	2 13904	2 13904	2 13904	2 13904	2 13904	2 13904	2 13904	it Station
Chlorophyll-a Summer	ОР	ТР	TKN	NH3	TDS	ОР	TP	TKN	TKN	TKN	NH3	TKN	TKN	TDS	SO4	Hardness	TP	TP	TKN	TKN	TSS	DO	Secchi Depth	n Parameter
Summer	Winter	Winter	Winter	Summer	POR	Summer	Summer	Winter	Summer	POR	POR	Winter	POR	POR	Winter	Summer	Summer	POR	Winter	Summer	Winter	Winter	Winter	Season
0.23	0.24	0.22	0.17	0.24	0.11	0.25	0.44	0.16	0.47	0.33	0.16	0.33	0.33	0.11	0.15	0.27	0.41	0.16	0.19	0.47	0.17	0.16	0.48	R ²
-0.15	-0.22	-0.14	-0.04	0.01	-3.15	-0.18	0	-0.03	-0.07	-0.05	-0.18	-0.04	-0.04	-0.02	-0.58	-2.5	-0.01	-0.07	-0.03	-0.06	0.42	-0.22	-0.04	Slope
0.06	0.04	0.04	0.07	0.06	0.03	0.02	0	0.08	0	0	0.01	0.01	0.01	0.03	0.1	0.01	0	0.01	0.06	0	0.07	0.08	0	Ρ
0.07	0.1	0.06	0.02	0	1.39	0.07	0	0.02	0.02	0.01	0.07	0.01	0.01	0.01	0.33	0.87	0	0.02	0.01	0.01	0.22	0.12	0.01	Std Dev
-2.07	-2.2	-2.27	-1.93	2.02	-2.27	-2.57	-4.14	-1.87	-4.44	-4.57	-2.66	-2.96	-3.09	-2.27	-1.74	-2.88	-3.91	-2.81	-1.99	-4.32	1.89	-1.83	-4.04	-
-1.72	-1.8	0.22	0.41	1.01	0.75	0.64	-0.73	-1.06	-0.11	-0.59	1.26	-0.81	-0.99	0.62	0.57	-1.55	0.41	-0.97	-1.11	ц	-0.14	-0.56	0.32	Skewness /SES
2.5	1.36	-0.66	2.48	-0.54	2.93	-1.46	-0.28	-0.37	1.46	1.87	-2.01	-0.38	-0.29	1.16	-0.22	-0.85	-0.56	0.71	0.6	2.46	-0.91	-0.45	-0.57	Kurtosis/ SEK
16	17	20	20	15	44	22	24	20	24	44	39	20	21	44	19	24	24	43	19	23	20	20	20	z
21.12	0.04	0.14	0.8	0.07	182.52	0	0.06	0.91	0.88	0.89	0.02	0.92	0.92	180.84	30.53	26.66	0.06	0.07	0.96	0.89	11.55	9.99	0.7	Mean
67.4	0.21	0.5	1.5	0.16	258	0.02	0.09	1.22	1.64	1.64	0.1	1.26	1.26	258	39.3	43.65	0.11	0.19	1.27	1.53	17.1	12.5	ц	Max
27.95	0.05	0.18	0.89	0.1	196.71	0.01	0.07	1.1	1.06	1.06	0.04	1.08	1.05	192.69	33.5	36.68	0.07	0.08	1.12	1.06	13.9	11.25	0.79	Q75
15.25	0.02	0.09	0.73	0.05	182	0	0.06	0.95	0.93	0.94	0	0.95	0.98	181	29.7	30.38	0.06	0.06	0.98	0.85	11.9	10.02	0.7	Median
10.75	0.02	0.05	0.68	0.03	161.5	0	0.04	0.74	0.66	0.72	0	0.8	0.82	165	27.3	13.96	0.04	0.05	0.86	0.78	8.57	9	0.61	Q25
1.3	0	0.02	0.1	0	86	0	0.01	0.42	0.1	0.1	0	0.51	0.51	129	21.9	3.79	0.02	0.02	0.51	0.1	6.8	6.7	0.46	Min
17.2	0.04	0.13	0.22	0.07	35.21	0.01		0.36	0.4	0.35	0.04	0.28	0.23	27.69	6.2	22.72		0.03	0.26	0.28	5.33	2.25	0.18	QR
	2/18/2004	2/18/2004	2/18/2004	5/17/2004	2/18/2004	5/17/2004	5/17/2004				2/18/2004	2/18/2004		2/18/2004		5/17/2004	5/17/2004	2/18/2004	2/18/2004	5/17/2004	2/18/2004			Min Date
5/17/2004 8/14/2013	2/18/2004 11/13/2013	0.13 2/18/2004 11/13/2013	2/18/2004 11/13/2013	5/17/2004 8/14/2013	35.21 2/18/2004 11/13/2013	0.01 5/17/2004 8/14/2013	0.04 5/17/2004 8/14/2013	2/18/2004 11/13/2013	5/17/2004 8/14/2013	2/18/2004 11/13/2013	0.04 2/18/2004 11/13/2013	0.28 2/18/2004 11/13/2013	2/18/2004 11/13/2013	27.69 2/18/2004 11/13/2013	2/18/2004 11/13/2013	22.72 5/17/2004 8/14/2013	0.04 5/17/2004 8/14/2013	2/18/2004 11/13/2013	2/18/2004 11/13/2013	0.28 5/17/2004 8/14/2013	2/18/2004 11/13/2013	2/18/2004 11/13/2013	2/18/2004 11/13/2013	Max Date

Table 14. Detailed trend analysis results for Lake Arlington (0828).

0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	0828A_01	Segment
10786	10786	10786	10786	10786	10786	10786	10786	10786	10780	10780	10780	10780	10780	10780	10780	10780	10780	Station
TKN	TKN	TKN	NO3	NH3	NH3	NH3	SSA	Water Temp	TDS	TDS	Flow Severity	Flow Severity	рН	рН	рН	Sp Cond	Sp Cond	Parameter
Winter	Summer	POR	Summer	Winter	Summer	POR	POR	Winter	Winter	POR	Winter	POR	Winter	Summer	POR	Winter	POR	Season
0.24	0.46	0.3	0.28	0.33	0.56	0.49	0.15	0.21	0.48	0.32	0.26	0.15	0.3	0.41	0.34	0.48	0.32	R ²
-0.12	-0.2	-0.14	-0.08	-0.01	-0.44	-0.4	-0.37	-0.61	43.47	0.1	0.1	0.03	-0.08	-0.11	-0.09	66.88	0.1	Slope
0.02	0.01	0	0.04	0.01	0	0	0.05	0.04	0.01	0	0.07	0.05	0.05	0.02	0	0.01	0	P
0.05	0.06	0.04	0.03	0	0.11	0.07	0.18	0.28	13.7	0.03	0.05	0.02	0.04	0.04	0.03	21.1	0.03	Std Dev
-2.47	-3.36	-3.81	-2.27	-2.95	-4.08	-5.58	-2.04	-2.22	3.16	3.46	1.97	2.04	-2.18	-2.74	-3.53	3.16	3.46	Ч
0.88	1.02	l 1.28	1.53	1.33	-0.56	-0.4	-0.69	-0.1	1.48	1.28	-0.39	-0.16	-1.66	-0.3	-1.25	1.48	1.28	Skewness /SES
-0.7	-0.71	-1.03	0.02	-0.33	-1.23	-2.17	-1.58	-0.75	0.18	-0.78	1.89	1.64	2.01	2.32	2.12	0.18	-0.78	Kurtosis/ SEK
21	15	36	15	20	15	35 5	25	21	13	27	13	26	13	13	26	13	27	z
1.24	1.11	1.19	0.37	0.06	0.04	0.05	15.38	12.56	329.3	298.71	2.92	2.92	7.88	7.85	7.86	506.62	459.56	Mean
2.85	2.38	2.85	1.1	0.19	0.14	0.19	57.7	20.6	669.5	669.5	4	ы	8.4	8.6	8.6	1030	1030	Max
1.6	1.95	1.75	0.59	0.1	0.06	0.09	26.7	15.9	425.75	365.3	ω	ω	8.1	7.9	∞	655	562	Q75
1.27	0.81	0.94	0.26	0.05	0.03	0.03	9.8	12.5	266.5	234	ω	ω	7.9	7.8	7.8	410	360	Median
0.67	0.53	0.58	0.04	0	0	0	0.5	9.8	191.1	191.1	ω	ω	7.8	7.8	7.8	294	294	Q25
0.1	0.1	0.1	0.01	0	0	0	0.5	5.3	169	165	2	2	7	7	7	260	254	Min
0.93	1.42	1.17	0.55	0.1	0.06	0.09	26.2	6.1	234.7	174.2	0	0	0.3	0.1	0.2	361	268	IQR
2/25/2004	7/29/2004	2/25/2004	7/29/2004	2/25/2004	7/29/2004	2/25/2004	2/25/2004	2/25/2004	1/21/2004	1/21/2004		1/21/2004	1/21/2004	7/21/2004	1/21/2004	1/21/2004	1/21/2004	Min Date
0.93 2/25/2004 11/25/2013	1.42 7/29/2004 9/20/2013	1.17 2/25/2004 11/25/2013	0.55 7/29/2004 9/20/2013	2/25/2004 11/25/2013	0.06 7/29/2004 9/20/2013	0.09 2/25/2004 11/25/2013	26.2 2/25/2004 5/26/2010	2/25/2004 11/25/2013	234.7 1/21/2004 3/21/2011	174.2 1/21/2004 9/19/2011	1/21/2004 3/21/2011	1/21/2004 9/19/2011	1/21/2004 3/21/2011	7/21/2004 9/16/2010	1/21/2004 3/21/2011	361 1/21/2004 3/21/2011	1/21/2004 9/19/2011	Median Q25 Min IQR Min Date Max Date

Table 15. Detailed trend analysis results for Village Creek (0828A).

Analysis of Historical Data for The Village Creek-Lake Arlington WPP

7.2 Trends in Village Creek

Table 15 provides a detailed analysis of the significant trends within Village Creek. There are increasing trends for both TDS and specific conductivity in the winter. As discussed in the General Use section above, this may be due to ongoing drought conditions in the area. The trends for the period of record have an R² of 0.32 with shallow slopes. The average of all the TDS data in this assessment unit is 283 mg/L which is close to the standard of 300 mg/L. For this reason, it is advisable to continue monitoring TDS in the stream and determine if the high TDS levels are natural or anthropogenic. Of the remaining trends with R² values greater than 0.4, three are decreasing trends for nutrients (ammonia and TKN) and one is a decreasing trend for pH. The decreasing nutrient trends are of no concern as they are desirable. The decreasing pH trend has a shallow slope so it is not of immediate concern as shown in Figure 12.

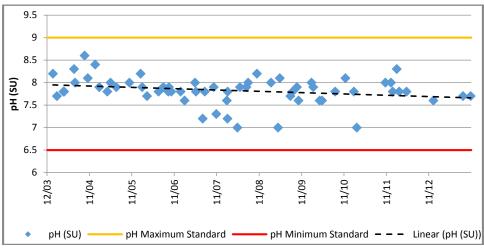


Figure 12. pH trend in Village Creek (0828A).

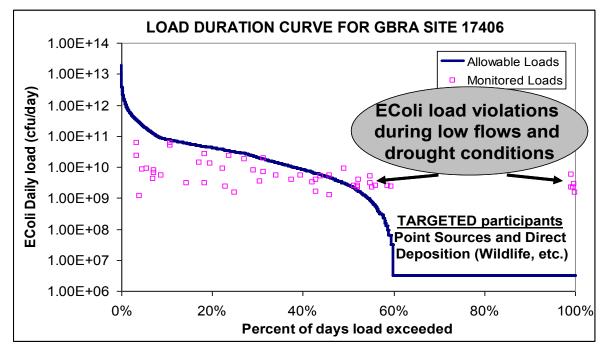
8.0 Source Identification Analysis

Segment 0828A is currently listed on the 2014 Texas 303(d) list for a recreation use impairment due to bacteria, i.e., elevated concentrations of *E. coli*. The objective of this section is to describe the planned modeling approach for identifying the sources of pollution that contribute to this impairment, and developing pollutant load reduction targets required to gain attainment for the recreation use. The following subsections will describe the suite of source identification strategies that will be used in the watershed.

8.1 Baseline Watershed Monitoring

Source identification will involve 11 sampling locations spatially representative of the Village Creek-Lake Arlington watershed. Sites will be positioned to identify contributions from major tributaries and suspected areas of pollutant loading. Sampling will include 12 total events at all eleven stations including six bi-monthly routine events and six flow-biased events. One flow-biased event is expected to occur in the two-month period between each routine event. Once complete, this monitoring effort is expected to provide spatial specificity to potential areas of high influence, providing a "bracketing" effect with which we can discern whether one particular type of land use, tributary, or geographic area is contributing a greater pollutant load than others.

8.2 Flow and Load Duration Curves


Once completed, the flow and *E. coli* datasets can then be used to build flow duration curves and load duration curves to further evaluate the contaminant sources. First, all flow values are aggregated and ranked from lowest to highest. This data is then graphically depicted to show the general flow regime, complete with the percentage of time that the water body is expected to be dry, as well as its response to storm flows (Figure 13).

Source: Flow Duration Curve (FDC) for streamflow conditions at GBRA monitoring station 17406 on Plum Creek, near Uhland, TX.

Figure 13. Flow duration curve example from Plum Creek watershed (log scale Y-axis).

The flow duration curve can then be used to develop a load duration curve (LDC) for a specific pollutant of interest, given that there is pollutant concentration data that complements the flow data. Figure 14 depicts an example LDC based on the FDC shown in Figure 13. The first step in the process is to apply the pollutant's allowable limit concentration to all available flow values to produce the allowable load limit curve. In the case of bacteria, this value is 126 MPN/100 mL (blue line in Figure 14). Then, the baseline monitoring data values for *E. coli* (also in MPN/100 mL) are also multiplied by their associated flow values to get loads for each data point (pink squares in Figure 14). This can be developed further by performing regression analysis on the monitored data points, as depicted in Figure 15. Here, the allowable load limit is depicted in red, while the regression line for the data points is depicted in blue. For each of the different flow regimes (High Flows, Moist Conditions, Mid-range Flows, etc.), a load reduction estimate can be calculated. Achieving these reductions will become the primary targets for success once the WPP moves into the implementation stage.

Source: Load Duration Curve for E. coli at GBRA monitoring station 17406 on Plum Creek, near Uhland, TX.

Figure 14. Load duration curve example from Plum Creek watershed (log scale Y-axis).

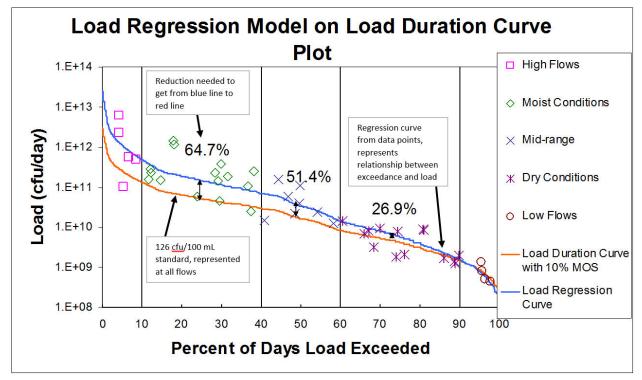
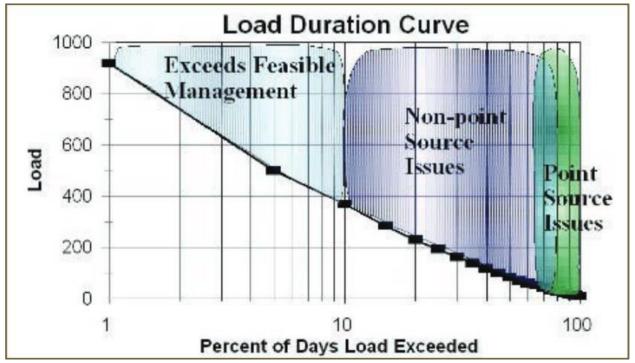
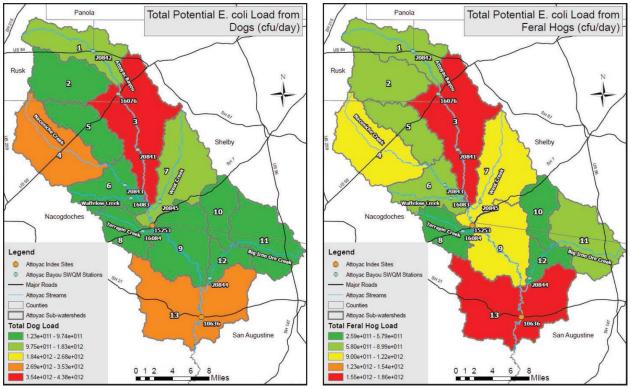


Figure 15. Load duration curve example for E. coli, with flow condition breakdowns and load reduction estimates (log scale Yaxis).

However, it is worth noting that some of these reductions, specifically those within the "High Flows" range, may not be achievable due to feasibility of applying management measures to storm flows that fall within the extreme range. It is therefore customary to focus efforts on the load reductions identified at the lower flow conditions, where it becomes easier to separate potential point source contributors from nonpoint source contributors. In most cases, if a water body exhibits high pollutant loads on the extreme right of the graph where low flows are represented (Figure 16), it is highly likely that this may be attributable to a point source, such as a malfunctioning WWTF or leaking/failing wastewater infrastructure somewhere in the watershed. These types of contributions can typically be easily addressed, and are worth investigating early on in the process. Conversely, if pollutant loads tend towards the middle of the graph, it is likely that they are attributed to stormwater runoff during periods of normal or moderate rainfall. While typically not as easily addressed as point sources, load reductions in these areas may also be targeted for watershed pollutant load reductions through BMP recommendations.




Figure 16. Regions of likely pollutant sources along load duration curve (normal scale Y-axis, log scale X-axis).

8.3 SELECT Analysis

Through baseline monitoring and the associated LDC analysis, it is possible to begin forming an understanding of where areas contributing high pollutant loads may be situated in the watershed, as well as whether those contributions may be from point or nonpoint sources. However, this only provides a basic spatial location of the potential sources and a general understanding of their origin. To further identify the extent of a certain source type's likely contribution to the bacteria load in a specific subwatershed, the SELECT analysis can be conducted for any number of potential bacteria source types, including urban/municipal runoff, agricultural runoff, failing septic systems, wildlife, and even invasive species.

SELECT first uses spatial data for land use and/or land cover data to determine where representatives from a particular contributing source might be located, and then uses watershed boundaries, soils data, topography, and stream network information to further determine suitability and range. In the example provided in Figure 17, it was expected that the majority of dogs would be found in close proximity to human populations, while it was expected that feral hogs would stay within suitable habitat found within riparian bands near rivers, on cropland, or within the vicinity of other water sources, so the spatial analysis incorporated these limitations.

Then, an estimated population density is applied to these suitable areas. Population density data can come in the form of census estimates for humans, literature values from published resource agency materials, or in some cases, anecdotal evidence from watershed stakeholders. In the example provided in Figure 17, statewide estimates for feral hog population were first applied to the watershed, then anecdotal evidence from watershed stakeholders was used to verify and adjust the statewide estimates. For dogs, an average value of dogs per household was applied to local human population estimates, and that estimated population was then concentrated around areas with higher human population densities to simulate the expected loading conditions.

Source: Attoyac Bayou Watershed Protection Plan.

Figure 17. Visual output examples from SELECT analysis for separate estimated populations of dogs (left) and feral hogs (right).

Finally, literature values for *E. coli* production from these sources are applied to the estimated population so that a potential *E. coli* load can be calculated for each subwatershed in the analysis. This yields visual output that can be color-coded to show the severity of the load's potential contribution to the watershed, which can be used to pinpoint areas where management measures would provide the most cost-to-benefit ratio. In the case of the feral hog analysis in Figure 17, funding used for hog control

BMPs would be best utilized in subwatersheds 3 and 13, where contributions are expected to be significant. Conversely, potential *E. coli* contributions from feral hogs are low in 8, 10, and 12 so it would be best to focus control efforts elsewhere.

Although SELECT can provide users with valuable information for pollutant source location and quantification, there are some caveats which must be publicized to stakeholders about its use. The load calculations that are output from the model, even if based on the best available science and information, are still predicted *E. coli* loadings that are effectively "worst-case scenarios." This is because SELECT is not currently capable of taking into account the natural processes that occur in the watershed, such as natural bacterial decay, breakdown by sunlight, permeation to groundwater, etc. that influence bacteria die-off as the load makes its way to a water body. As such, the total load predicted from a subwatershed by SELECT is not expected to reach the creek, and thus, represents a potential loading. SELECT is currently incapable of making adjustments needed to provide a real-world, delivered loading to the creek. Despite this shortcoming, both stakeholders and technical advisory staff agree that this analysis method, coupled with the LDC analysis covered in Section 8.2, is the most cost-effective means of source identification and analysis available for the watershed.

9.0 Conclusions

In addition to the impairments and nutrient concerns listed for Segments 0828 and 0828A in the 2014 *Texas Integrated Report of Surface Water Quality for the Clean Water Act Sections 305(b) and 303(d)* (TCEQ 2015d), the WPP effort will also endeavor to address other stakeholder concerns with respect to water quality as identified during public meetings and other outreach campaigns. As these concerns are identified and investigated through continued contact with stakeholders and studied in the watershed, additional historical data analysis may be needed, which will continue past the submission of this report. Application of and adherence to this adaptive approach will result in a more thorough and applicable set of solutions for managing water quality issues and concerns within the Village Creek-Lake Arlington watershed.

9.1 Lake Arlington (Segment 0828)

While there are no immediate needs for addressing water quality impairments in Lake Arlington, there are two persistent water quality concerns related to nutrients that stakeholders would like to see addressed in the WPP. These concerns are related to nitrate inputs and algal growth and decay (as indicated by chlorophyll-a). Overall trends for both parameters are currently decreasing in the lake, and the management measures recommended in the WPP will hopefully continue to add to these decreases, or at the very least, stall any future increases. These management measures may be targeted to areas with direct drainage to the lake, or by extension within larger tributaries such as Village Creek, which may be contributing a significant portion of the nutrient load itself.

While certainly important, lake protection strategies for the listed water quality concerns are two of many outcomes identified thus far in the stakeholder process. The LAMP (Malcolm Pirnie 2011) also identified several aesthetic and community wellness-based outcomes that are expected to be incorporated into the Village Creek-Lake Arlington WPP. These include trash and litter control efforts, lakefront property renovations, and other efforts that are expected to also provide some level of bacteria and/or nutrient load reductions as well. As stakeholder outcomes develop around the lake, further historical data analysis will be conducted to adapt to and address stakeholder needs.

9.2 Village Creek (Segment 0828A)

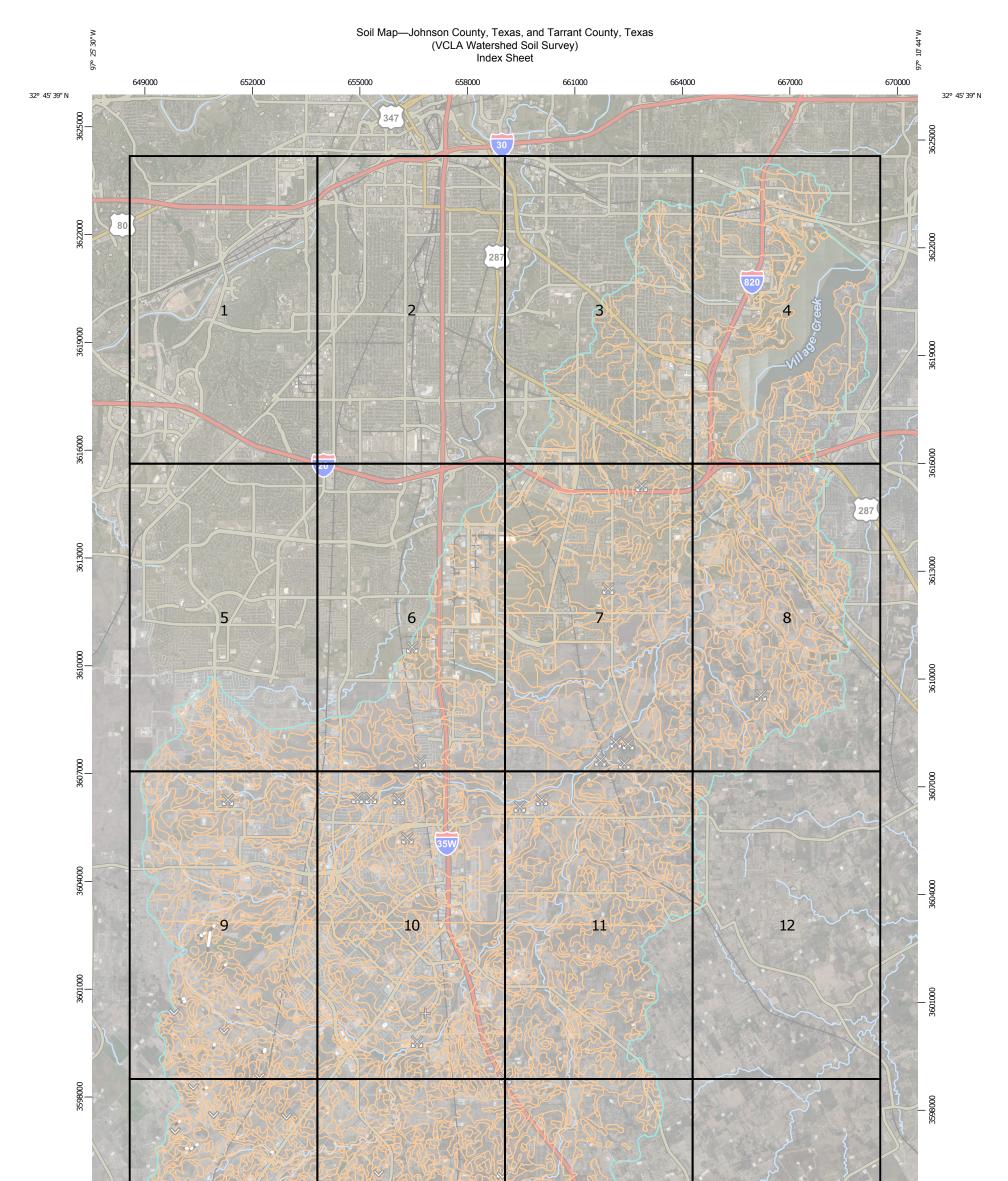
The primary focus within Village Creek, and for the Village Creek-Lake Arlington WPP effort as a whole, is the bacteria impairment, where the dataset indicates that *E. coli* trends are on the rise. Along with the data collected through this effort, stakeholder input and expert technical advice will be used to provide the base on which management efforts to address the impairment will be built. The end goal will be improving water quality in Village Creek, and by extension, protecting the water quality downstream in Lake Arlington.

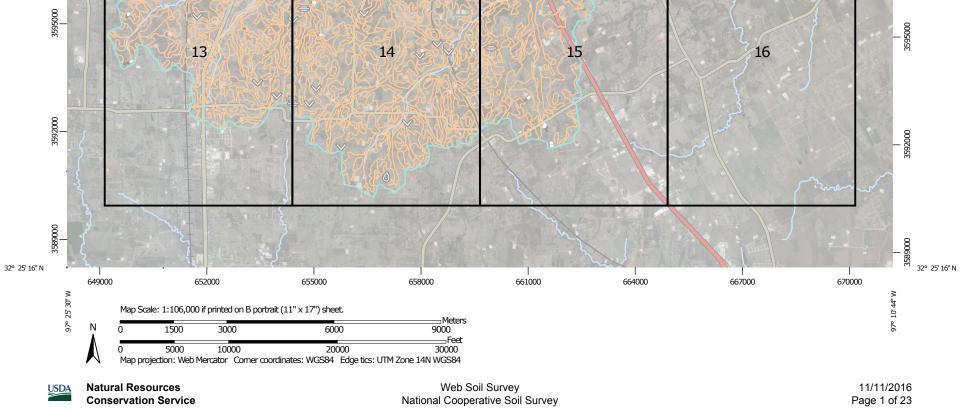
As with Lake Arlington, there are several additional stakeholder concerns that are expected to be addressed in the WPP. These include similar concerns for floatable and deposited trash and debris, along with erosion control measures and nutrient controls. As with Lake Arlington, the BMPs identified to address these additional concerns are expected to provide some level of bacteria and/or nutrient load reductions in addition to their primary purposes.

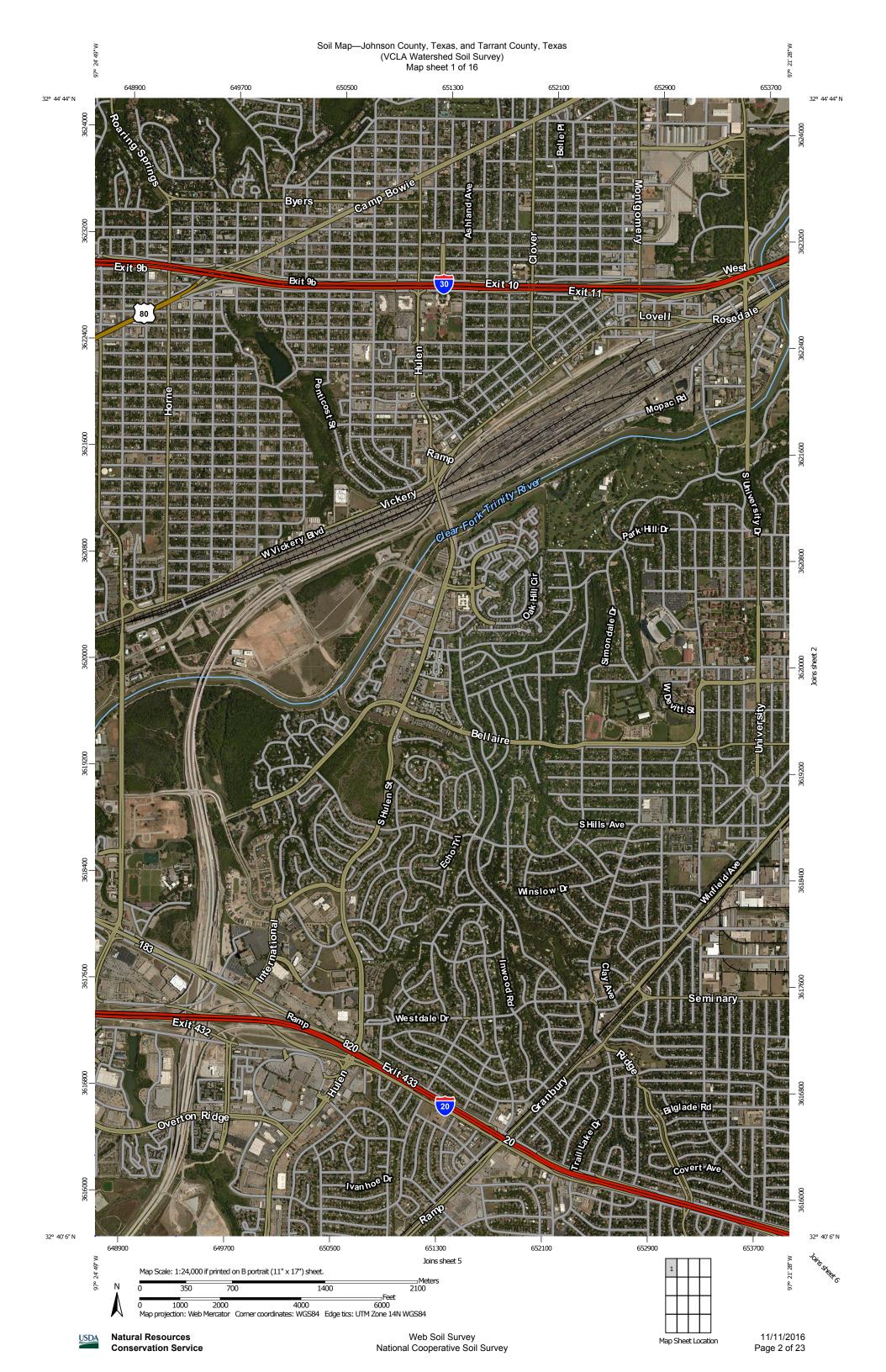
10.0 References

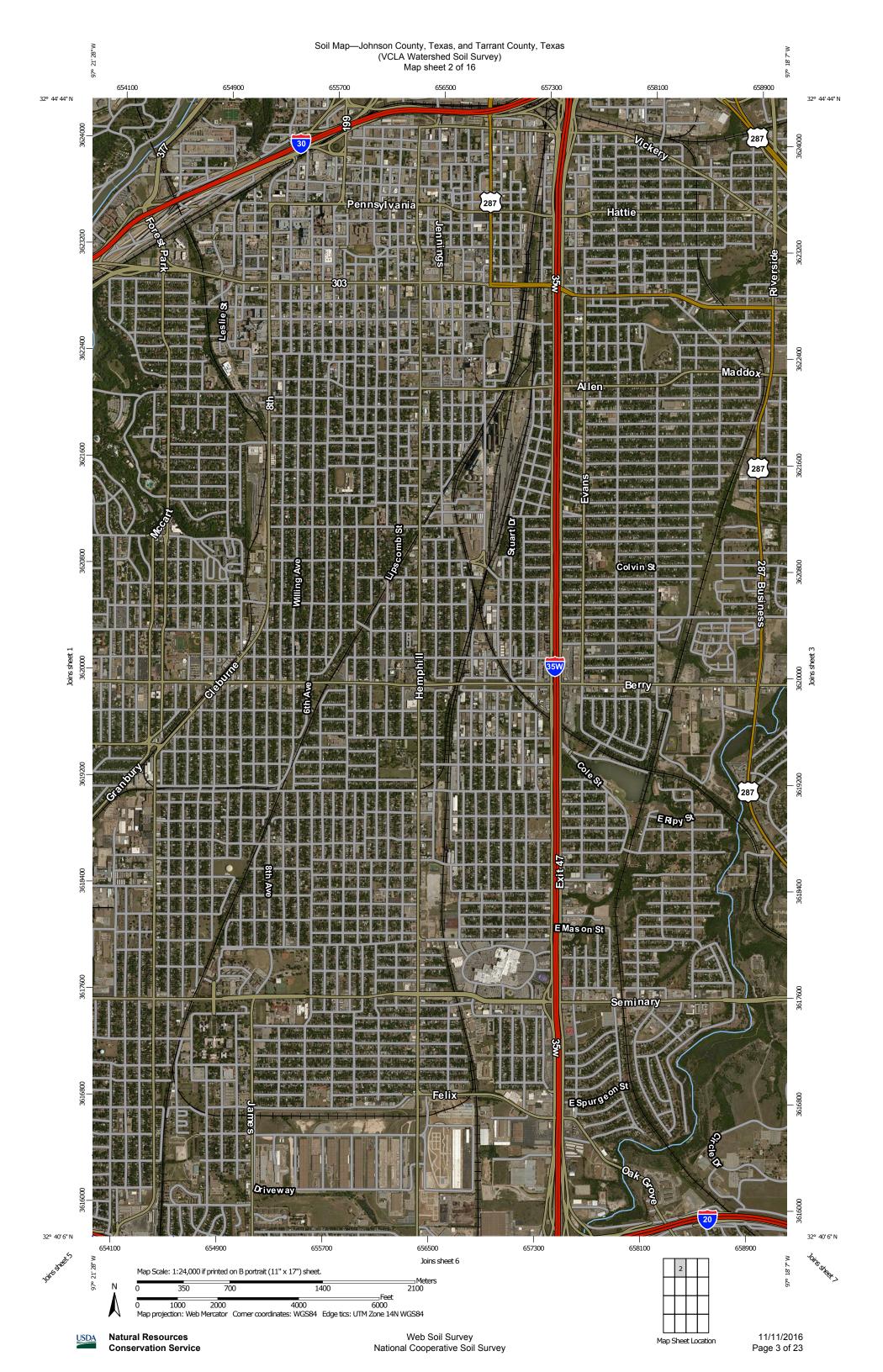
- Griffith, G., S. Bryce, J. Omernik, A. Rogers. 2007. Ecoregions of Texas. Washington, DC: U.S. Environmental Protection Agency. 134 pp. Available at: <<u>ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/tx/TXeco_Jan08_v8_Cmprsd.pdf</u>>. Accessed 29 June 2016.
- Halff Associates, Inc. (Halff). 2012. Village Creek Flood Study within the City of Kennedale, Texas. Fort Worth, TX: Halff Associates, Inc. 183 pp.
- Malcolm Pirnie/Arcadis U.S., Inc. (Malcom Pirnie). 2011. City of Arlington: Lake Arlington Master Plan. Malcom Pirnie Report No. 3498-011. Dallas, TX: Malcolm Pirnie/Arcadis U.S., Inc. 245 pp.
- Mesner, N. and J. Geiger. 2010. Understanding Your Watershed: Nitrogen. Understanding Your Watershed Fact Sheet Series. Logan, UT: Utah State Water Quality Extension. Available at: <<u>http://extension.usu.edu/htm/publications/publication=12770&custom=1</u>>. Accessed 18 July 2016.
- Texas Commission on Environmental Quality (TCEQ). 2014. Texas Surface Water Quality Standards. Texas Administrative Code (TAC), Title 30, Chapter 307. Date of last revision: 6 March 2014.
- TCEQ. 2012. Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods. TCEQ RG-415. Austin, TX: Texas Commission on Environmental Quality. 202 pp.
- TCEQ. 2015a. 2014 Guidance for Assessing and Reporting Surface Water Quality in Texas. Austin, TX: Texas Commission on Environmental Quality. 142 pp. Available at: <<u>https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/14txir/2014_guidance.p</u> <u>df</u>>. Accessed 24 June 2016.
- TCEQ. 2015b. 2014 Texas Integrated Report Texas 303(d) List (Category 5). Austin, TX: Texas Commission on Environmental Quality. 106 pp. Available at: <<u>https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/14txir/2014_303d.pdf</u>>. Accessed 14 June 2016.
- TCEQ. 2015c. 2014 Texas Integrated Report Water Bodies with Concerns for Use Attainment and Screening Levels. Austin, TX: Texas Commission on Environmental Quality. 199 pp. Available at: <<u>https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/14txir/2014_concerns.p</u> df>. Accessed 14 June 2016.
- TCEQ. 2015d. 2014 Texas Integrated Report of Surface Water Quality for the Clean Water Act Sections 305(b) and 303(d). Available at: <<u>https://www.tceq.texas.gov/waterquality/assessment/14twqi/14txir</u>>. Accessed 14 June 2016.

Trinity River Authority (TRA). 2015. TRA Clean Rivers Program 2015 Basin Summary Report. Arlington, TX: Trinity River Authority. 460 pp. Available at:< <u>http://serv.trinityra.org/reports/BasinSummaryReports/Final2015TRABSR.pdf</u>>. Accessed 4 August 2016.

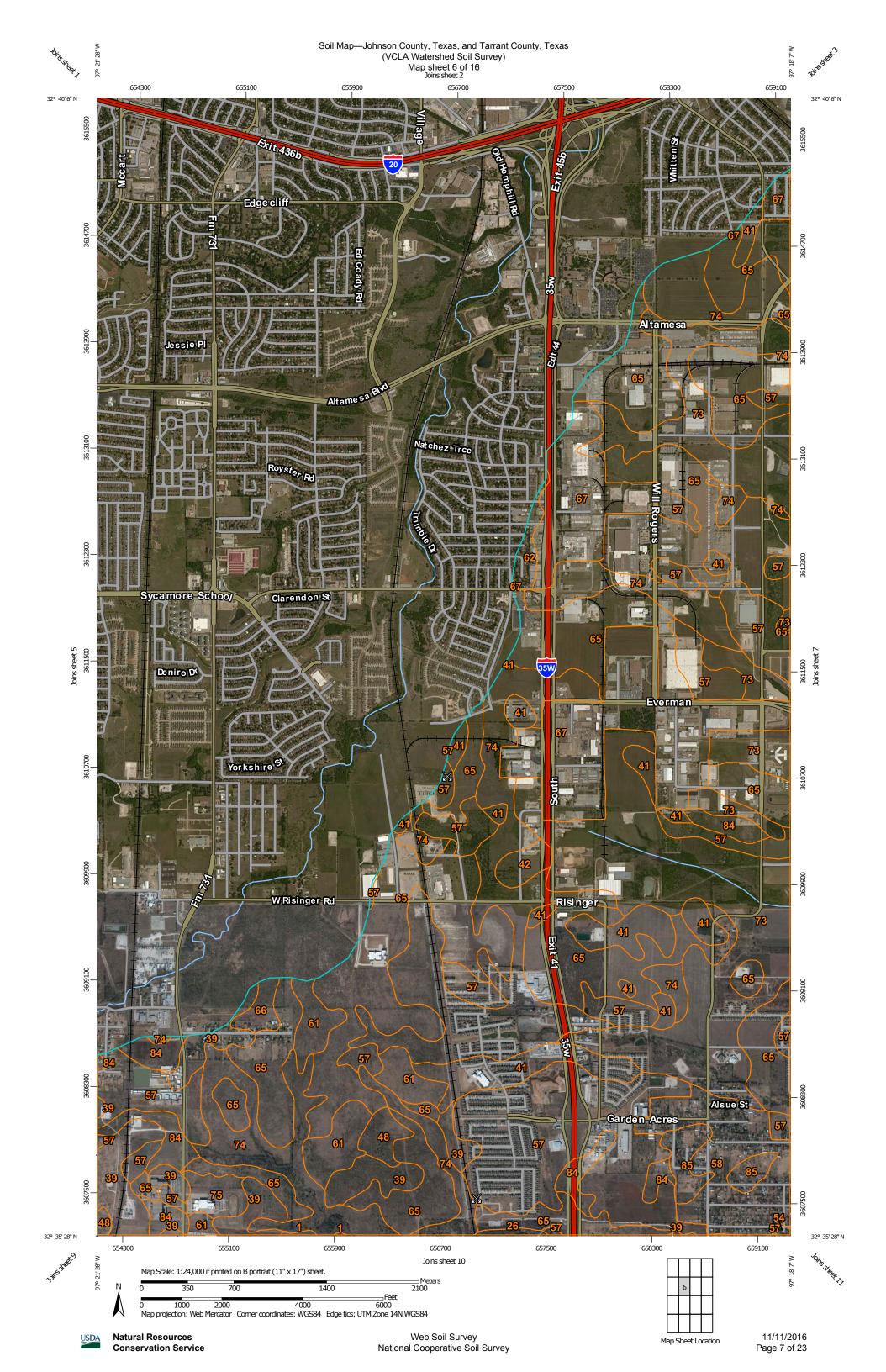

- Trust for Public Land. 2011. NCTCOG Water Quality Protection Greenprint: Lake Arlington Watershed and Lewisville Lake East Watershed. Arlington, TX: North Central Texas Council of Governments. 72 pp.
- United States Environmental Protection Agency (USEPA). 2000a. Ambient Water Quality Recommendations: Information Supporting the Development of State and Tribal Nutrient Criteria. Lakes and Reservoirs in Nutrient Ecoregion IX. EPA 822-B-00-011. Washington, DC: U.S. Environmental Protection Agency. 99 pp. Available at: <<u>https://www.epa.gov/sites/production/files/documents/lakes9.pdf</u>>. Accessed 24 June 2016.
- USEPA. 2000b. Ambient Water Quality Recommendations: Information Supporting the Development of State and Tribal Nutrient Criteria. Rivers and Streams in Nutrient Ecoregion IX. EPA 822-B-00-019. Washington, DC: U.S. Environmental Protection Agency. 108 pp. Available at: <<u>https://www.epa.gov/sites/production/files/documents/rivers9.pdf</u>>. Accessed 24 June 2016.

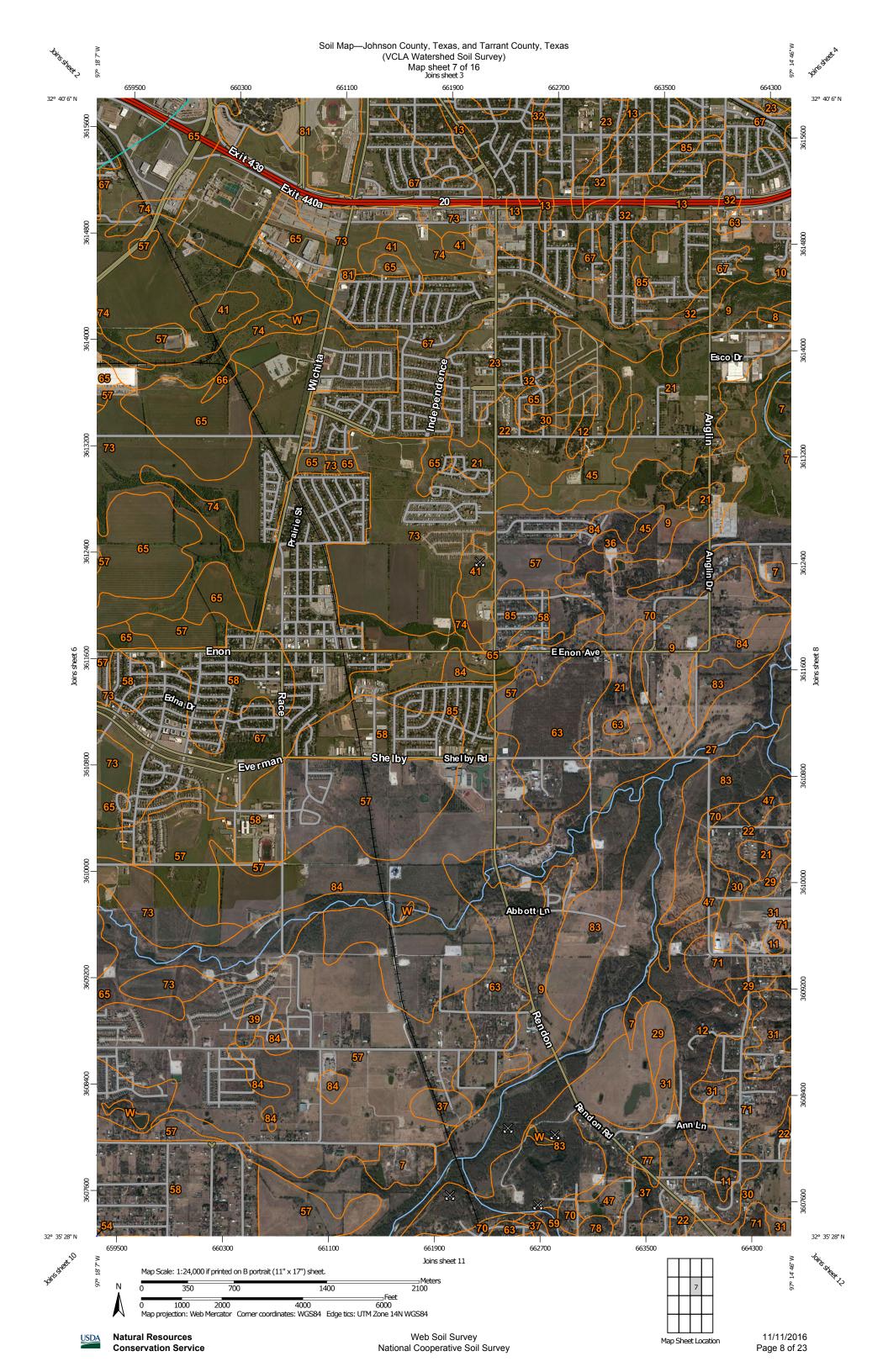

Appendix A

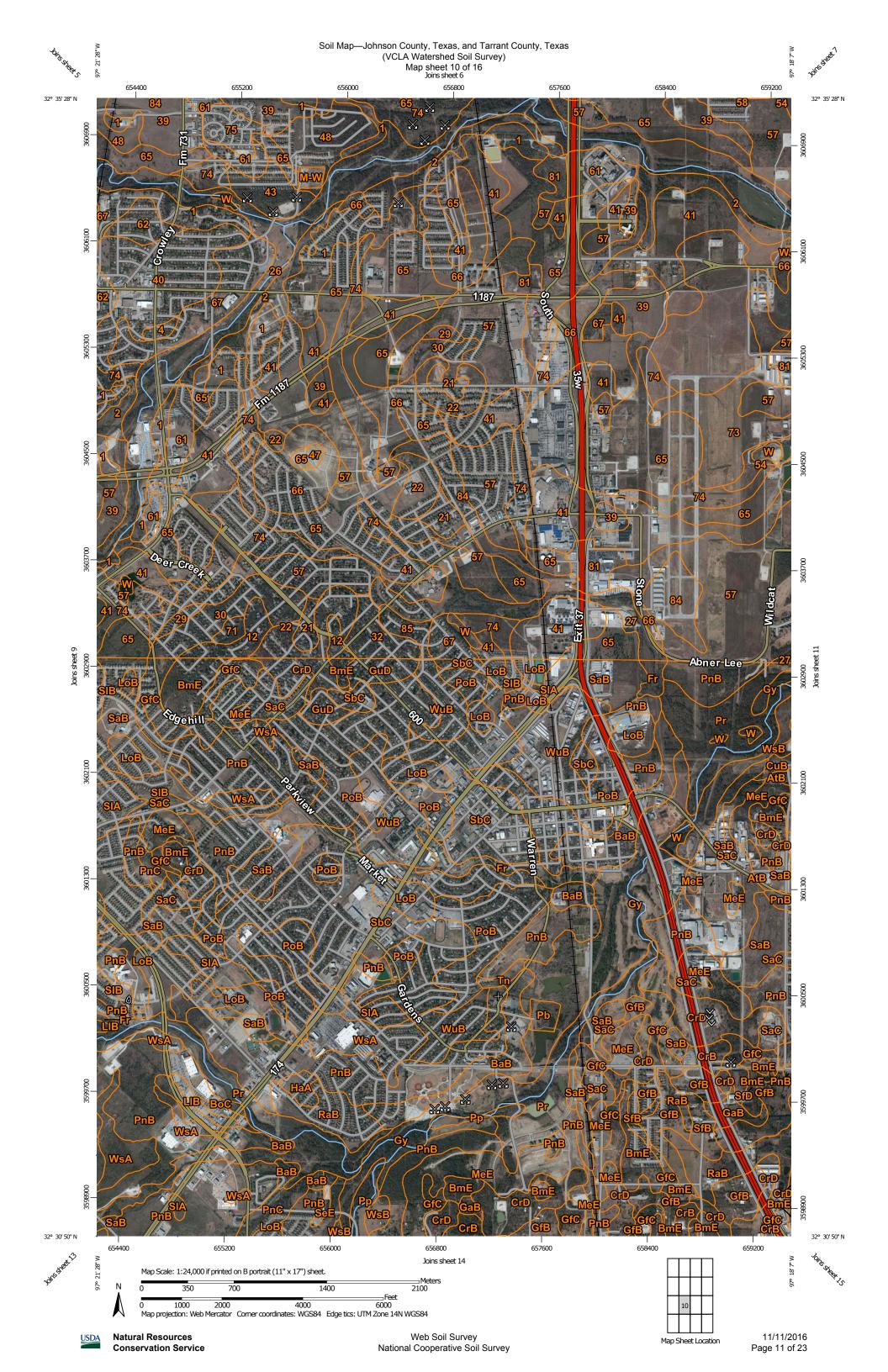

NRCS Soils Survey for Tarrant and Johnson Counties

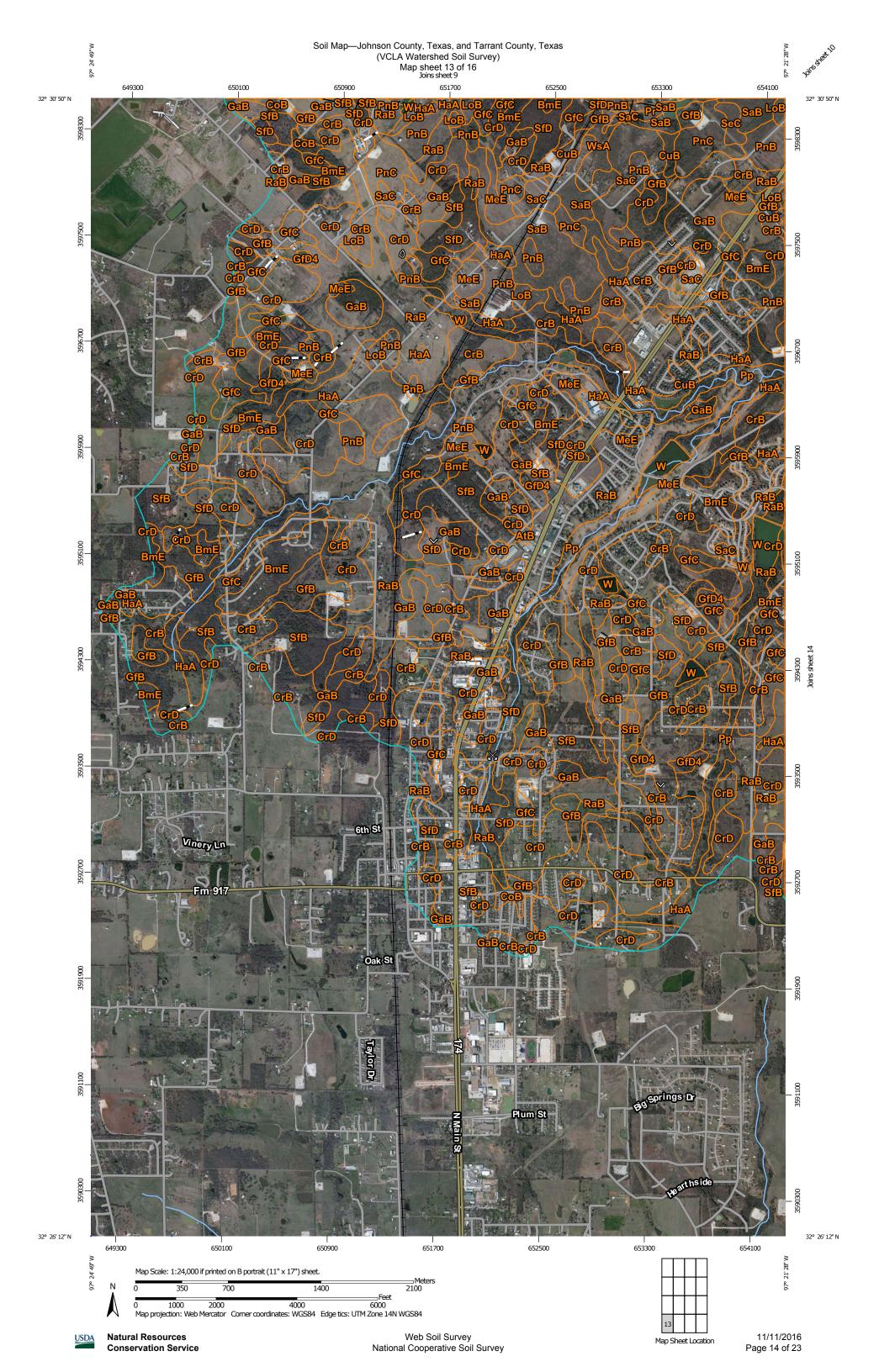

Appendix A

NRCS Soils Survey for Tarrant and Johnson Counties









IVI <i>/</i>)	MAP INFORMATION
Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,
Area of Interest (A0	DI) 🖉	Stony Spot	Please rely on the bar scale on each map sheet for map
Soils	0	Very Stony Spot	measurements.
Soil Map Unit Poly	Ŷ	Wet Spot	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
Soil Map Unit Lines	Δ.	Other	Coordinate System: Web Mercator (EPSG:3857)
Soil Map Unit Point	s	Special Line Features	Maps from the Web Soil Survey are based on the Web Mercat
Special Point Features Blowout	Water Fea	atures	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
Borrow Pit	\sim	Streams and Canals	Albers equal-area conic projection, should be used if more accu
Clay Spot	Transpor		calculations of distance or area are required.
 Closed Depression 	+++	Rails	This product is generated from the USDA-NRCS certified data a the version date(s) listed below.
Gravel Pit	~	Interstate Highways	Soil Survey Area: Johnson County, Texas
Gravelly Spot	~	US Routes	Survey Area Data: Version 11, Sep 23, 2015
Landfill	\sim	Major Roads	Soil Survey Area: Tarrant County, Texas
Lava Flow	~	Local Roads	Survey Area Data: Version 12, Sep 28, 2015
Marsh or swamp	Backgrou	Aerial Photography	Your area of interest (AOI) includes more than one soil survey a These survey areas may have been mapped at different scales.
Mine or Quarry		Konari notograpny	a different land use in mind, at different times, or at different le
Mine of Quarry	ər		of detail. This may result in map unit symbols, soil properties, a interpretations that do not completely agree across soil survey
 Perennial Water 	51		boundaries.
Rock Outcrop			Soil map units are labeled (as space allows) for map scales 1:50
+ Saline Spot			or larger.
Sandy Spot			Date(s) aerial images were photographed: Dec 13, 2010—Ju 2014
 Severely Eroded S 	oot		The orthophoto or other base map on which the soil lines were
Sinkhole			compiled and digitized probably differs from the background
Slide or Slip			imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident.
Sodic Spot			

Map Unit Legend

Johnson County, Texas (TX251)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AtB	Altoga silty clay, 2 to 5 percent slopes	96.2	0.1%
ВаВ	Bastrop fine sandy loam, 0 to 3 percent slopes	164.8	0.2%
BmE	Birome-Rayex complex, 5 to 20 percent slopes	1,275.9	1.4%
BoC	Bolar clay loam, 3 to 8 percent slopes	11.0	0.0%
BuB	Burleson clay, 1 to 3 percent slopes	7.3	0.0%
СоВ	Coving loamy fine sand, 0 to 3 percent slopes	234.8	0.3%
CrB	Crosstell fine sandy loam, 1 to 3 percent slopes	3,286.9	3.6%
CrD	Crosstell fine sandy loam, 3 to 8 percent slopes	8,163.1	8.9%
CuB	Culp clay loam, 0 to 3 percent slopes	90.1	0.1%
FhC	Ferris-Heiden complex, 2 to 5 percent slopes	64.5	0.1%
Fr	Frio silty clay, 0 to 1 percent slopes, occasionally flooded	69.7	0.1%
GaB	Gasil loamy fine sand, 0 to 5 percent slopes	1,464.1	1.6%
GfB	Gasil fine sandy loam, 1 to 3 percent slopes	1,387.0	1.5%
GfC	Gasil fine sandy loam, 3 to 5 percent slopes	1,237.6	1.4%
GfD4	Gasil fine sandy loam, 1 to 8 percent slopes, gullied	32.4	0.0%
GuD	Gasil-Urban land complex, 1 to 8 percent slopes	37.2	0.0%
Gw	Gowen clay loam, occasionally flooded	114.2	0.1%
Gy	Gowen clay loam, frequently flooded	483.3	0.5%
HaA	Hassee fine sandy loam, 0 to 1 percent slopes	959.9	1.1%
HeB	Heiden clay, 1 to 3 percent slopes	36.7	0.0%
LIB	Lindale clay loam, 1 to 3 percent slopes	34.8	0.0%
LoB	Lott silty clay, 1 to 3 percent slopes	570.2	0.6%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
MeE	•	503.1	0.6%
Mee	Medlin clay, 5 to 15 percent slopes	503.1	0.6%
NaC	Navo clay loam, 2 to 5 percent slopes	7.6	0.0%
Pb	Pits	11.6	0.0%
PnB	Ponder clay loam, 1 to 3 percent slopes	2,723.5	3.0%
PnC	Ponder clay loam, 3 to 5 percent slopes	271.8	0.39
РоВ	Ponder-Urban land complex, 1 to 3 percent slopes	480.9	0.5%
Рр	Pulexas fine sandy loam, frequently flooded	1,457.7	1.69
Pr	Pursley clay loam, frequently flooded	507.4	0.69
RaB	Rader fine sandy loam, 0 to 3 percent slopes	3,760.1	4.19
SaB	Sanger clay, 1 to 3 percent slopes	1,399.2	1.5%
SaC	Sanger clay, 3 to 5 percent slopes	510.3	0.69
SbC	Sanger-Urban land complex, 1 to 5 percent slopes	527.4	0.69
SeC	Seawillow clay loam, 1 to 5 percent slopes	10.1	0.0%
SeE	Seawillow clay loam, 5 to 12 percent slopes	6.8	0.0%
SfB	Silstid loamy fine sand, 1 to 3 percent slopes	1,361.7	1.59
SfD	Silstid loamy fine sand, 3 to 8 percent slopes	756.7	0.8%
SIA	Slidell clay, 0 to 1 percent slopes	278.6	0.39
SIB	Slidell clay, 1 to 3 percent slopes	224.4	0.20
Tn	Tinn clay, 0 to 1 percent slopes, frequently flooded	7.6	0.0%
W	Water	109.0	0.1%
WsA	Wilson silty clay loam, 0 to 1 percent slopes	528.7	0.6%
WsB	Wilson silty clay loam, 1 to 3 percent slopes	90.8	0.19
WuB	Wilson-Urban land complex, 0 to 2 percent slopes	266.9	0.3%
Subtotals for Soil Survey A	rea	35,623.8	39.0%
Totals for Area of Interest		91,419.8	100.0%

USDA

Tarrant County, Texas (TX439)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Aledo gravelly clay loam, 1 to 8 percent slopes	522.6	0.69
2	Bolar-Aledo complex, 3 to 20 percent slopes	182.7	0.29
4	Aledo-Urban land complex, 1 to 8 percent slopes	30.9	0.09
5	Altoga silty clay loam, 5 to 12 percent slopes	56.2	0.19
7	Arents, frequently flooded	248.3	0.39
8	Arents, loamy	110.8	0.19
9	Bastsil fine sandy loam, 0 to 3 percent slopes	706.4	0.89
10	Bastsil-Urban land complex, 0 to 5 percent slopes	210.2	0.24
11	Birome fine sandy loam, 1 to 5 percent slopes	319.5	0.3
12	Birome-Aubrey-Rayex complex, 5 to 15 percent slopes	588.7	0.64
13	Birome-Aubrey-Urban land complex, 5 to 15 percent slopes	874.0	1.0
14	Bolar clay loam, 1 to 3 percent slopes	27.0	0.0
16	Bolar-Urban land complex, 1 to 5 percent slopes	33.1	0.04
20	Chatt silty clay, 1 to 3 percent slopes	8.7	0.04
21	Crosstell fine sandy loam, 1 to 3 percent slopes	1,011.3	1.1
22	Crosstell fine sandy loam, 3 to 6 percent slopes	2,522.6	2.8
23	Crosstell-Urban land complex, 1 to 6 percent slopes	4,427.7	4.8
26	Frio silty clay, 0 to 1 percent slopes, occasionally flooded	678.9	0.7
27	Frio silty clay, frequently flooded	1,922.0	2.1
29	Gasil fine sandy loam, 1 to 3 percent slopes	1,147.6	1.3
30	Gasil fine sandy loam, 3 to 8 percent slopes	1,713.0	1.9
31	Gasil sandy clay loam, graded, 1 to 5 percent slopes	443.4	0.5
32	Gasil-Urban land complex, 1 to 8 percent slopes	1,880.7	2.1
36	Justin loam, 1 to 3 percent slopes	8.5	0.0

Tarrant County, Texas (TX439)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
37	Konsil fine sandy loam, 1 to 5 percent slopes	215.5	0.2%
38	Leson clay, 1 to 3 percent slopes	41.4	0.0%
39	Lindale clay loam, 1 to 3 percent slopes	1,649.0	1.8%
40	Lindale-Urban land complex, 1 to 3 percent slopes	302.0	0.3%
41	Lott silty clay, 1 to 3 percent slopes	1,404.1	1.5%
42	Lott-Urban land complex, 1 to 5 percent slopes	23.8	0.0%
43	Luckenbach clay loam, 1 to 3 percent slopes	39.8	0.0%
45	Mabank fine sandy loam, 0 to 1 percent slopes	71.2	0.1%
47	Medlin clay, 5 to 15 percent slopes	164.6	0.2%
48	Mingo clay loam, 1 to 3 percent slopes	321.9	0.4%
49	Mingo-Urban land complex, 1 to 3 percent slopes	112.3	0.1%
51	Navo-Urban land complex, 1 to 3 percent slopes	79.9	0.1%
54	Ovan clay, frequently flooded	62.2	0.1%
56	Pits, quarries	13.0	0.0%
57	Ponder clay loam, 1 to 3 percent slopes	4,583.6	5.0%
58	Ponder-Urban land complex, 0 to 3 percent slopes	3,599.2	3.9%
59	Pulexas fine sandy loam, frequently flooded	454.5	0.5%
60	Pulexas-Urban land complex, occasionally flooded	14.5	0.0%
61	Purves clay, 1 to 3 percent slopes	693.8	0.8%
62	Purves-Urban land complex, 0 to 5 percent slopes	116.2	0.1%
63	Rader fine sandy loam, 0 to 3 percent slopes	1,226.6	1.3%
64	Rader-Urban land complex, 0 to 3 percent slopes	514.4	0.6%
65	Sanger clay, 1 to 3 percent slopes	5,449.6	6.0%
66	Sanger clay, 3 to 5 percent slopes	586.1	0.6%

Tarrant County, Texas (TX439)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
67	Sanger-Urban land complex, 1 to 5 percent slopes	2,631.7	2.9%
68	San Saba clay, 0 to 2 percent slopes	14.6	0.0%
70	Silawa fine sandy loam, 3 to 8 percent slopes	836.9	0.9%
71	Silstid loamy fine sand, 1 to 5 percent slopes	1,074.3	1.2%
72	Silstid-Urban land complex, 1 to 5 percent slopes	295.8	0.3%
73	Slidell clay, 0 to 1 percent slopes	1,980.9	2.2%
74	Slidell clay, 1 to 3 percent slopes	2,282.5	2.5%
75	Speck clay loam, 0 to 3 percent slopes	117.1	0.1%
77	Sunev clay loam, cool, 1 to 3 percent slopes	34.3	0.0%
78	Sunev clay loam, 3 to 8 percent slopes	13.4	0.0%
79	Sunev-Urban land complex, 2 to 8 percent slopes	18.0	0.0%
81	Urban land	649.9	0.7%
82	Weatherford-Duffau complex, 3 to 8 percent slopes	36.7	0.0%
83	Whitesboro loam, frequently flooded	793.9	0.9%
84	Wilson clay loam, 0 to 2 percent slopes	1,204.3	1.3%
85	Wilson-Urban land complex, 0 to 2 percent slopes	454.2	0.5%
DAM	Dams	7.4	0.0%
M-W	Miscellaneous water	7.2	0.0%
W	Water	1,928.6	2.1%
Subtotals for Soil Survey A	Area	55,795.9	61.0%
Totals for Area of Interest		91,419.8	100.0%

Appendix B

USFWS IPaC Report for the Village Creek-Lake Arlington Watershed

U.S. Fish & Wildlife Service

Village Creek-Lake Arlington

IPaC Trust Resource Report

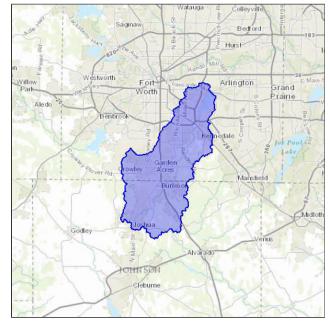
Generated January 14, 2016 11:55 AM MST, IPaC v2.3.2

This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish & Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.

IPaC - Information for Planning and Conservation (<u>http://ecos.fws.gov/ipac/</u>): A project planning tool to help streamline the U.S. Fish & Wildlife Service environmental review process.

US Fish & Wildlife Service IPaC Trust Resource Report

NAME


Village Creek-Lake Arlington

LOCATION

Johnson and Tarrant counties, Texas

IPAC LINK

http://ecos.fws.gov/ipac/project/ DRYCU-Y4D5V-H2BHE-7B42J-ZOIALQ

U.S. Fish & Wildlife Contact Information

Trust resources in this location are managed by:

Arlington Ecological Services Field Office

2005 Ne Green Oaks Blvd Suite 140 Arlington, TX 76006-6247 (817) 277-1100

Endangered Species

Proposed, candidate, threatened, and endangered species are managed by the <u>Endangered Species Program</u> of the U.S. Fish & Wildlife Service.

This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require FWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

<u>Section 7</u> of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list from the Regulatory Documents section in IPaC.

The list of species below are those that may occur or could potentially be affected by activities in this location:

IPaC Trust Resource Report

Birds Black-capped Vireo Vireo atricapilla	Endangered
CRITICAL HABITAT No critical habitat has been designated for this species.	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B07T	
Golden-cheeked Warbler (=wood) Dendroica chrysoparia	Endangered
CRITICAL HABITAT No critical habitat has been designated for this species.	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B07W	
Least Tern Sterna antillarum CRITICAL HABITAT No critical habitat has been designated for this species.	Endangered
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B07N	
Piping Plover Charadrius melodus THIS SPECIES ONLY NEEDS TO BE CONSIDERED IF THE FOLLOWING CONDITION APPLIES Wind Energy Projects CRITICAL HABITAT There is final critical habitat designated for this species.	Threatened
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B079	
Red Knot Calidris canutus rufa	Threatened
THIS SPECIES ONLY NEEDS TO BE CONSIDERED IF THE FOLLOWING CONDITION APPLIES Wind Energy Projects CRITICAL HABITAT No critical habitat has been designated for this species.	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0DM	
Whooping Crane Grus americana CRITICAL HABITAT There is final critical habitat designated for this species.	Endangered
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B003	
Clams	
Texas Fawnsfoot Truncilla macrodon	Candidate
CRITICAL HABITAT No critical habitat has been designated for this species. https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=F04E	

Critical Habitats

There are no critical habitats in this location

01/14/2016 11:55 AM

Migratory Birds

Birds are protected by the <u>Migratory Bird Treaty Act</u> and the <u>Bald and Golden Eagle</u> <u>Protection Act</u>.

Any activity which results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service (1). There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> birds-of-conservation-concern.php
- Conservation measures for birds
 <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u>
 <u>conservation-measures.php</u>
- Year-round bird occurrence data <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>akn-histogram-tools.php</u>

The following species of migratory birds could potentially be affected by activities in this location:

Bald Eagle Haliaeetus leucocephalus	Bird of conservation concern
Season: Wintering	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B008	
Bell's Vireo Vireo bellii	Bird of conservation concern
Season: Breeding	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JX	
Burrowing Owl Athene cunicularia	Bird of conservation concern
Seasons: Breeding, Wintering	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0NC	
Chestnut-collared Longspur Calcarius ornatus	Bird of conservation concern
Season: Wintering	
Dickcissel Spiza americana	Bird of conservation concern
Season: Breeding	
Fox Sparrow Passerella iliaca	Bird of conservation concern
Season: Wintering	
Harris's Sparrow Zonotrichia querula	Bird of conservation concern
Season: Wintering	
Hudsonian Godwit Limosa haemastica	Bird of conservation concern
Season: Migrating	

Lark Bunting Calamospiza melanocorys	Bird of conservation concern
Season: Wintering	
Le Conte's Sparrow Ammodramus leconteii	Bird of conservation concern
Season: Wintering	
Least Bittern Ixobrychus exilis	Bird of conservation concern
Season: Breeding	
Little Blue Heron Egretta caerulea	Bird of conservation concern
Season: Breeding	
Loggerhead Shrike Lanius Iudovicianus	Bird of conservation concern
Year-round	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FY	
Mccown's Longspur Calcarius mccownii	Bird of conservation concern
Season: Wintering	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HB	
Mississippi Kite Ictinia mississippiensis	Bird of conservation concern
Season: Breeding	Dird of conservation concern
Orchard Oriole Icterus spurius	Bird of conservation concern
Season: Breeding	Dird of conservation concern
Painted Bunting Passerina ciris	Bird of conservation concern
Season: Breeding	Bird of conservation concern
Prothonotary Warbler Protonotaria citrea	Bird of conservation concern
Season: Breeding	
Red-headed Woodpecker Melanerpes erythrocephalus	Bird of conservation concern
Year-round	
Rufous-crowned Sparrow Aimophila ruficeps	Bird of conservation concern
Year-round	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0MX	
Rusty Blackbird Euphagus carolinus	Bird of conservation concern
Season: Wintering	
Scissor-tailed Flycatcher Tyrannus forficatus	Bird of conservation concern
Season: Breeding	
Short-eared Owl Asio flammeus	Bird of conservation concern
Season: Wintering	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD	
Sprague's Pipit Anthus spragueii	Bird of conservation concern
Season: Wintering	
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0GD	

Refuges

Any activity proposed on <u>National Wildlife Refuge</u> lands must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuges in this location

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army</u> <u>Corps of Engineers District</u>.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Wetland data is unavailable at this time.

Appendix C

TPWD Threatened & Endangered Resources Reports for Tarrant and Johnson Counties

	JOHNSON COUNTY		
	BIRDS	Federal Status	State Status
American Peregrine Falcon	Falco peregrinus anatum	DL	Т
more northern breeding areas in of habitats during migration, incl	eeder in west Texas, nests in tall cliff eyrie US and Canada, winters along coast and fa uding urban, concentrations along coast an dscape edges such as lake shores, coastline	arther south; occup nd barrier islands;	oies wide range low-altitude
Arctic Peregrine Falcon	Falco peregrinus tundrius	DL	
south; occupies wide range of ha	ubspecies' far northern breeding range, wir bitats during migration, including urban, c rant, stopovers at leading landscape edges	oncentrations alor	ng coast and
Bald Eagle	Haliaeetus leucocephalus	DL	Т
	large lakes; nests in tall trees or on cliffs nervey, scavenges, and pirates food from othe		nally roosts,
Black-capped Vireo	Vireo atricapilla	LE	E
spaces; requires foliage reaching year after year; deciduous and br	inctive patchy, two-layered aspect; shrub a to ground level for nesting cover; return to oad-leaved shrubs and trees provide insect presence of adequate broad-leaved shrubs, n March-late summer	o same territory, or s for feeding; spec	r one nearby, cies
Golden-cheeked Warbler	Setophaga chrysoparia	LE	E
available from mature trees, used juniper; only a few mature junipe	ent on Ashe juniper (also known as cedar) l in nest construction; nests are placed in v ers or nearby cedar brakes can provide the and shrubs; nesting late March-early summ	arious trees other necessary nest ma	than Ashe
Henslow's Sparrow	Ammodramus henslowii		
e ,	s) found in weedy fields or cut-over areas key component is bare ground for running		h grasses occur
Interior Least Tern	Sterna antillarum athalassos	LE	E
subspecies is listed only when ir	aland (more than 50 miles from a coastline): nests along sand	l and gravel

subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish and crustaceans, when breeding forages within a few hundred feet of colony

Falco peregrinus

Peregrine Falcon

DL T

both subspecies migrate across the state from more northern breeding areas in US and Canada to winter along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two subspecies' listing statuses differ, F.p. tundrius is no longer listed in Texas; but because the subspecies are not easily distinguishable at a distance, reference is generally made only to the species level; see subspecies for habitat.

JOHNSON COUNTY

BIRDS

Federal Status

State Status

Т

Red Knot

Calidris canutus rufa

Red knots migrate long distances in flocks northward through the contiguous United States mainly April-June, southward July-October. A small plump-bodied, short-necked shorebird that in breeding plumage, typically held from May through August, is a distinctive and unique pottery orange color. Its bill is dark, straight and, relative to other shorebirds, short-to-medium in length. After molting in late summer, this species is in a drab gray-and-white non-breeding plumage, typically held from September through April. In the non-breeding plumage, the knot might be confused with the omnipresent Sanderling. During this plumage, look for the knot's prominent pale eyebrow and whitish flanks with dark barring. The Red Knot prefers the shoreline of coast and bays and also uses mudflats during rare inland encounters. Primary prey items include coquina clam (Donax spp.) on beaches and dwarf surf clam (Mulinia lateralis) in bays, at least in the Laguna Madre. Wintering Range includes- Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kennedy, Kleberg, Matagorda, Nueces, San Patricio, and Willacy. Habitat: Primarily seacoasts on tidal flats and beaches, herbaceous wetland, and Tidal flat/shore.

Sprague's Pipit Anthus spragueii

only in Texas during migration and winter, mid September to early April; short to medium distance, diurnal migrant; strongly tied to native upland prairie, can be locally common in coastal grasslands, uncommon to rare further west; sensitive to patch size and avoids edges.

Western Burrowing Owl

open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows

Athene cunicularia hypugaea

White-faced Ibis

Plegadis chihi

prefers freshwater marshes, sloughs, and irrigated rice fields, but will attend brackish and saltwater habitats; nests in marshes, in low trees, on the ground in bulrushes or reeds, or on floating mats

Whooping CraneGrus americanaLEE

potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties

	FISHES	Federal Status	State Status
Sharpnose shiner	Notropis oxyrhynchus	LE	
	drainage; also, apparently introduced into a combination of sand, gravel, and clay-m	5	drainage; large
Smalleye shiner	Notropis buccula	LE	

endemic to upper Brazos River system and its tributaries (Clear Fork and Bosque); apparently introduced into adjacent Colorado River drainage; medium to large prairie streams with sandy substrate and turbid to clear warm water; presumably eats small aquatic invertebrates

Hall's prairie clover

JOHNSON COUNTY

	MAMMALS	Federal Status	State Status
Gray wolf	Canis lupus	LE	E
extirpated; formerly known th grasslands	roughout the western two-thirds of the state	e in forests, brushla	nds, or
Plains spotted skunk	Spilogale putorius interrupta		
catholic; open fields, prairies, wooded, brushy areas and tallg	croplands, fence rows, farmyards, forest ec grass prairie	lges, and woodland	s; prefers
Red wolf	Canis rufus	LE	Ε
extirpated; formerly known th prairies	roughout eastern half of Texas in brushy an	nd forested areas, as	well as coastal
	MOLLUSKS	Federal Status	State Status
Texas fawnsfoot	Truncilla macrodon	С	Т
	nd larger streams, and intolerant of impoun and perhaps sandy-mud bottoms in moderat		
	REPTILES	Federal Status	State Status
Brazos water snake	Nerodia harteri		Т
upper Brazos River drainage; banks	riffle specialist, in shallow water with rock	y bottom and on roo	cky portions of
Texas garter snake	Thamnophis sirtalis annectens		
	e conducive to the species occurrence, but i or under surface cover; breeds March-Augu	•	stricted to them;
Texas horned lizard	Phrynosoma cornutum		Т
	ns with sparse vegetation, including grass, from sandy to rocky; burrows into soil, ento rch-September		
Timber rattlesnake	Crotalus horridus		Т
	bine and deciduous woodlands, riparian zon ; prefers dense ground cover, i.e. grapevine		land; limestone
	PLANTS	Federal Status	State Status

GLOBAL RANK: G3; In grasslands on eroded limestone or chalk and in oak scrub on rocky hillsides; Perennial; Flowering May-Sept; Fruiting June-Sept

Dalea hallii

JOHNSON COUNTY

PLANTS

Federal Status Sta

State Status

Reverchon's curfpea

Pediomelum reverchonii

GLOBAL RANK: G3; Mostly in prairies on shallow rocky calcareous substrates and limestone outcrops; Perennial; Flowering Jun-Sept; Fruiting June-July

Texas milk vetchAstragalus reflexus

GLOBAL RANK: G3; Grasslands, prairies, and roadsides on calcareous and clay substrates; Annual; Flowering Feb-June; Fruiting April-June

Tree dodderCuscuta exaltata

GLOBAL RANK: G3; Parasitic on various Quercus, Juglans, Rhus, Vitis, Ulmus, and Diospyros species as well as Acacia berlandieri and other woody plants; Annual; Flowering May-Oct; Fruiting July-Oct

Page 4 of 4

E

TARRANT COUNTY

BIRDS Federal Status State Status DL. Т **American Peregrine Falcon** Falco peregrinus anatum year-round resident and local breeder in west Texas, nests in tall cliff eyries; also, migrant across state from more northern breeding areas in US and Canada, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands. **Arctic Peregrine Falcon** Falco peregrinus tundrius DL migrant throughout state from subspecies' far northern breeding range, winters along coast and farther south; occupies wide range of habitats during migration, including urban, concentrations along coast and barrier islands; low-altitude migrant, stopovers at leading landscape edges such as lake shores, coastlines, and barrier islands. Т **Bald Eagle** Haliaeetus leucocephalus DL found primarily near rivers and large lakes; nests in tall trees or on cliffs near water; communally roosts, especially in winter; hunts live prey, scavenges, and pirates food from other birds

Henslow's Sparrow

Ammodramus henslowii

wintering individuals (not flocks) found in weedy fields or cut-over areas where lots of bunch grasses occur along with vines and brambles; a key component is bare ground for running/walking

Interior Least Tern

Sterna antillarum athalassos LE

subspecies is listed only when inland (more than 50 miles from a coastline); nests along sand and gravel bars within braided streams, rivers; also know to nest on man-made structures (inland beaches, wastewater treatment plants, gravel mines, etc); eats small fish and crustaceans, when breeding forages within a few hundred feet of colony

Peregrine FalconFalco peregrinusDLTboth subspecies migrate across the state from more northern breeding areas in US and Canada to winter
along coast and farther south; subspecies (F. p. anatum) is also a resident breeder in west Texas; the two
subspecies' listing statuses differ, F.p. tundrius is no longer listed in Texas; but because the subspecies are
not easily distinguishable at a distance, reference is generally made only to the species level; see subspeciesT

for habitat.

TARRANT COUNTY

BIRDS

Federal Status

State Status

Red Knot

Calidris canutus rufa

Red knots migrate long distances in flocks northward through the contiguous United States mainly April-June, southward July-October. A small plump-bodied, short-necked shorebird that in breeding plumage, typically held from May through August, is a distinctive and unique pottery orange color. Its bill is dark, straight and, relative to other shorebirds, short-to-medium in length. After molting in late summer, this species is in a drab gray-and-white non-breeding plumage, typically held from September through April. In the non-breeding plumage, the knot might be confused with the omnipresent Sanderling. During this plumage, look for the knot's prominent pale eyebrow and whitish flanks with dark barring. The Red Knot prefers the shoreline of coast and bays and also uses mudflats during rare inland encounters. Primary prey items include coquina clam (Donax spp.) on beaches and dwarf surf clam (Mulinia lateralis) in bays, at least in the Laguna Madre. Wintering Range includes- Aransas, Brazoria, Calhoun, Cameron, Chambers, Galveston, Jefferson, Kennedy, Kleberg, Matagorda, Nueces, San Patricio, and Willacy. Habitat: Primarily seacoasts on tidal flats and beaches, herbaceous wetland, and Tidal flat/shore.

Sprague's Pipit Anthus spragueii

only in Texas during migration and winter, mid September to early April; short to medium distance, diurnal migrant; strongly tied to native upland prairie, can be locally common in coastal grasslands, uncommon to rare further west; sensitive to patch size and avoids edges.

Western Burrowing Owl

open grasslands, especially prairie, plains, and savanna, sometimes in open areas such as vacant lots near human habitation or airports; nests and roosts in abandoned burrows

Whooping CraneGrus americanaLEE

Athene cunicularia hypugaea

potential migrant via plains throughout most of state to coast; winters in coastal marshes of Aransas, Calhoun, and Refugio counties

	FISHES	Federal Status	State Status
Shovelnose sturgeon	Scaphirhynchus platorynchus		Т
open flowing channels wit	h hottoms of sand or gravel: snawns over g	ravel or rocks in an ar	ea with a fast

open, flowing channels with bottoms of sand or gravel; spawns over gravel or rocks in an area with a fast current; Red River below reservoir and rare occurrence in Rio Grande

	MAMMALS	Federal Status	State Status		
Gray wolf	Canis lupus	LE	E		
extirpated; formerly known throughout the western two-thirds of the state in forests, brushlands, or grasslands					

Plains spotted skunk

catholic; open fields, prairies, croplands, fence rows, farmyards, forest edges, and woodlands; prefers wooded, brushy areas and tallgrass prairie

Spilogale putorius interrupta

TARRANT COUNTY

MAMMALS

Red wolfCanis rufusLEEextirpated; formerly known throughout eastern half of Texas in brushy and forested areas, as well as coastal
prairies

prairies			
	MOLLUSKS	Federal Status	State Status
Louisiana pigtoe	Pleurobema riddellii		Т
	vers, usually flowing water on substrates idments; Sabine, Neches, and Trinity (hi		vel; not
Sandbank pocketbook	Lampsilis satura		Т
	derate flows and swift current on gravel, an Jacinto River basins; Neches River	gravel-sand, and sand	bottoms; east
Texas heelsplitter	Potamilus amphichaenus		Т
quiet waters in mud or sand a	nd also in reservoirs. Sabine, Neches, ar	nd Trinity River basins	
	REPTILES	Federal Status	State Status
Texas garter snake	Thamnophis sirtalis annectens		
	e conducive to the species occurrence, b or under surface cover; breeds March-Au	•	stricted to them;
Texas horned lizard	Phrynosoma cornutum		Т
	ons with sparse vegetation, including gra from sandy to rocky; burrows into soil, arch-September		
Timber rattlesnake	Crotalus horridus		Т
	pine and deciduous woodlands, riparian y; prefers dense ground cover, i.e. grape		nland; limestone
	PLANTS	Federal Status	State Status
Auriculate false foxglove	Agalinis auriculata		
	e nineteenth century specimen record lab , fallow fields, and borders of upland ste ugust - October		
Glen Rose yucca	Yucca necopina		
Texas endemic; grasslands or	n sandy soils and limestone outcrops; flo	wering April-June	
Hall's prairie clover	Dalea hallii		
CLODAL DANK, C2. In such	alanda an anadad limaatana an ahalla an	1	1.11. Jac.

GLOBAL RANK: G3; In grasslands on eroded limestone or chalk and in oak scrub on rocky hillsides; Perennial; Flowering May-Sept; Fruiting June-Sept

State Status

Federal Status

TARRANT COUNTY

PLANTS

Federal Status S

State Status

Osage Plains false foxglove Agalinis densiflora

GLOBAL RANK: G3; Most records are from grasslands on shallow, gravelly, well drained, calcareous soils; Prairies, dry limestone soils; Annual; Flowering Aug-Oct

Reverchon's curfpea

Pediomelum reverchonii

GLOBAL RANK: G3; Mostly in prairies on shallow rocky calcareous substrates and limestone outcrops; Perennial; Flowering Jun-Sept; Fruiting June-July

Texas milk vetchAstragalus reflexus

GLOBAL RANK: G3; Grasslands, prairies, and roadsides on calcareous and clay substrates; Annual; Flowering Feb-June; Fruiting April-June

Topeka purple-coneflower *Echinacea atrorubens*

GLOBAL RANK: G3; Occurring mostly in tallgrass prairie of the southern Great Plains, in blackland prairies but also in a variety of other sites like limestone hillsides; Perennial; Flowering Jan-June; Fruiting Jan-May