Village Creek-Lake Arlington Watershed Protection

Aaron Hoff Trinity River Authority September 22, 2016

Trinity River Authority of Texas Enriching the Trinity basin as a resource for Texans

Recap from Last Meeting

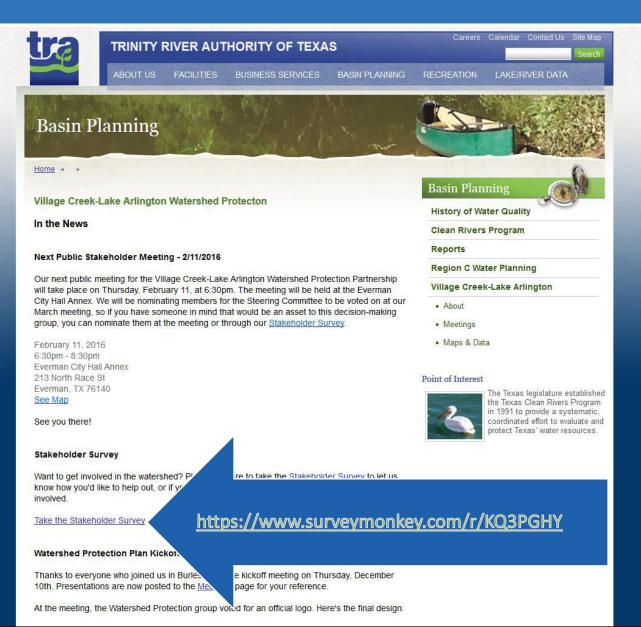
- Discussed Load Duration Curves and SELECT Analysis
 - Dr. Larry Hauck, Texas Institute for Applied Environmental Research (TIAER)
- Nominated and approved initial Steering Committee member list
 - Requested addition of a focus group for Education w/ 2 seats up for grabs
 - Faculty from TCC-D and UT-Arlington were nominated
 - Both were approved at 1st Committee meeting
- Discussed upcoming workshops
- Check the website for last meeting's presentations
 - http://www.trinityra.org/lakearlingtonvillagecreek

Accomplishments to Date

Formation of Steering Committee

- 17 members
- Variety of focus groups (i.e., industry, municipalities, education, private landowners)
- Finalized the Monitoring Plan
 - Added additional stations
 - Expanded parameter sampling to all sites
- Learned about tools we'll be using to make decisions in the WPP
 - FDCs/LDCs
 - SELECT
- Stakeholder education workshops
 - Texas Watershed Stewards
 - Texas Riparian & Stream Ecosystems
 - Texas Well Owner Network

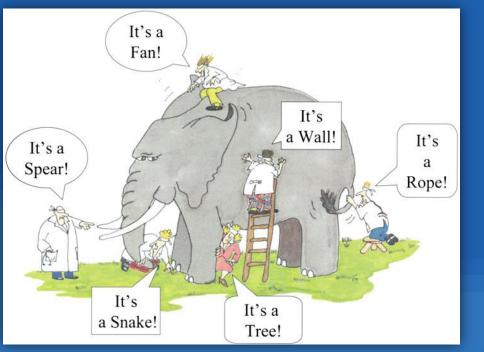
Meeting Overview


- Stormwater Green Infrastructure: Evaluation, Performance, and Modeling
 - Fouad Jaber, Texas AgriLife Extension Service -Associate Professor & Extension Specialist
- Rainwater Harvesting as Stormwater Mitigation
 - Dotty Woodson, Texas AgriLife Extension Service - Extension Program Specialist
- Water Quality Monitoring Update
 - Angela Kilpatrick, Trinity River Authority Senior Environmental Scientist
- Upcoming Events and Path Forward
 - Aaron Hoff, Trinity River Authority Watershed Coordinator
- Open Discussion and Closing Comments

http://www.trinityra.org/lakearlingtonvillagecreek

Funding Source

Funding provided by the Texas Commission on Environmental Quality through a Clean Water Act Section 319(h) grant from the U.S. Environmental Protection Agency, with match funding from the City of Arlington and in-kind contributions from TRA.



Ground Rules for Discussion Periods

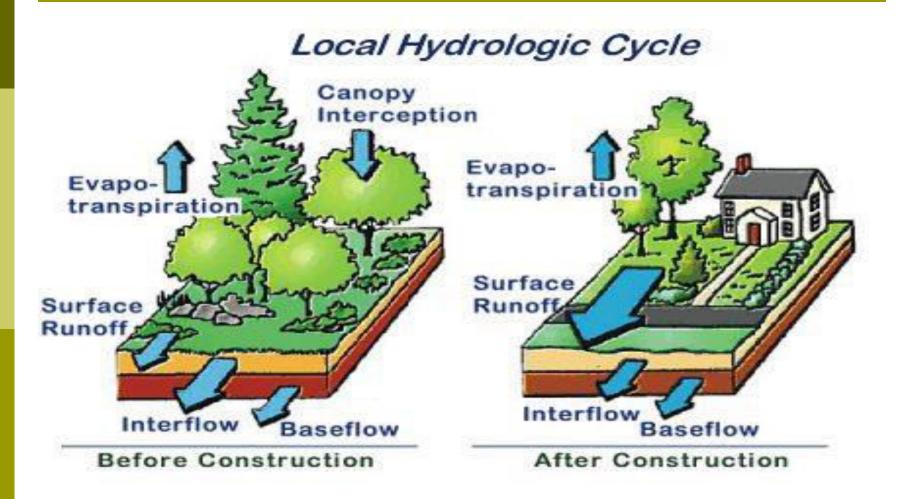
- Please save questions until after each presentation has been given
- Any additional questions may be answered during the open discussion period at the end
- Please be respectful of others' time and points of view

Let's get started!

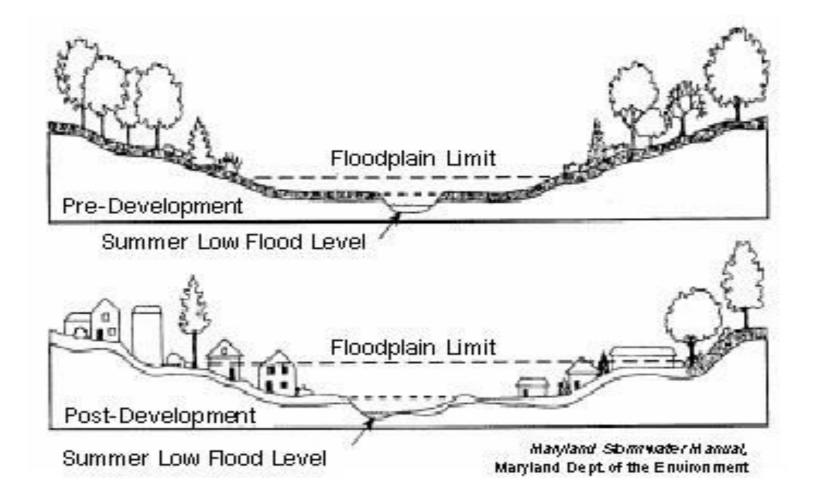
http://www.trinityra.org/lakearlingtonvillagecreek

Aaron Hoff Trinity River Authority hoffa@trinityra.org 817.493.5581

Stormwater Green Infrastructure: Evaluation, Performance and Modeling


Fouad H. Jaber, PhD, PE

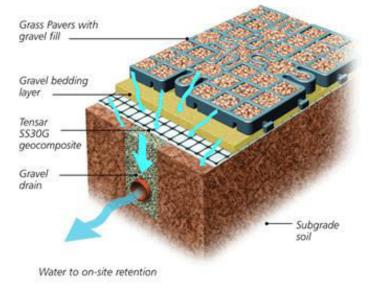
Associate Professor and Extension Specialist Biological and Agricultural Engineering Texas A&M AgriLife Extension Dallas Research and Extension Center



Urban vs. Natural

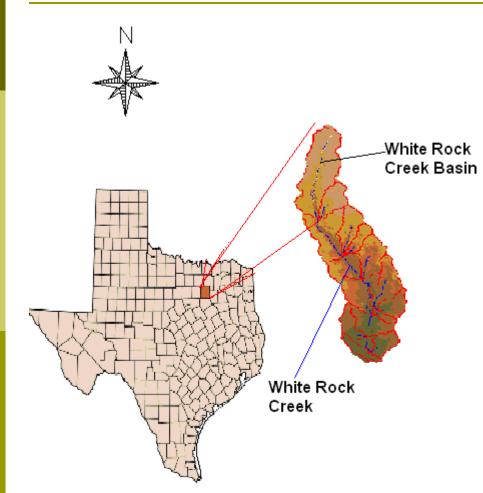
Eutrophication

- Impacts due to urbanization:
 - Impact to aquatic habitat: Degradation of habitat structure, loss of pool-riffle structure, reduction in base flow, increased stream temperature, and decline in abundance and biodiversity.


Fish kill at Lake Granbury.

Urban BMPs

- Rain gardenbioretention areas
- Porous pavements
- Green roofs
- Rainwater harvesting

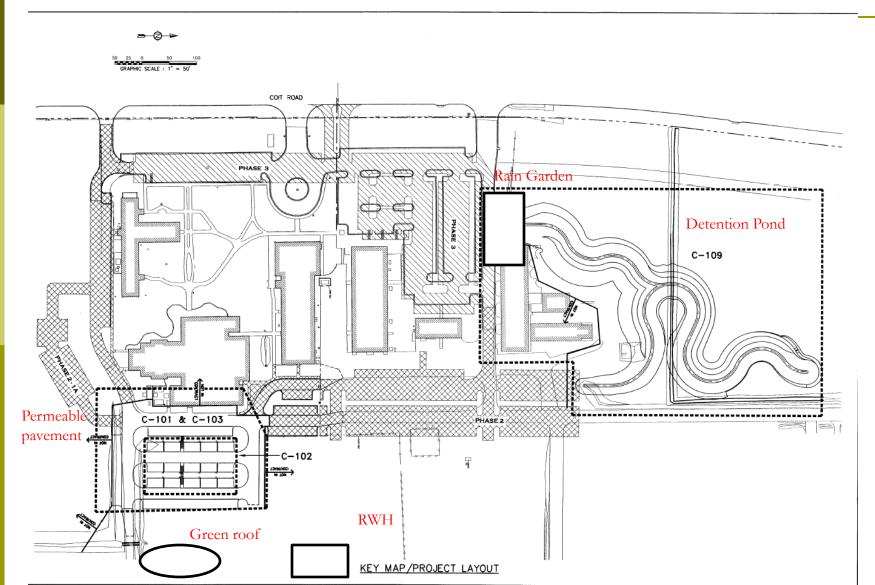


Evaluation Project in Dallas

- Five LID BMPs were built on the campus of Texas AgriLife Research and Extension, Dallas. The grant is funded by the Clean Water Act Section 319 urban nonpoint source pollution prevention program (TCEQ; EPA)
- BMPs
 - Permeable pavement
 - Bioretention area
 - Rainwater harvesting
 - Green roof
 - Detention Pond
- Monitoring for hydrology, N, P, TSS, bacteria, legacy pollutant Chlordane

Project Location

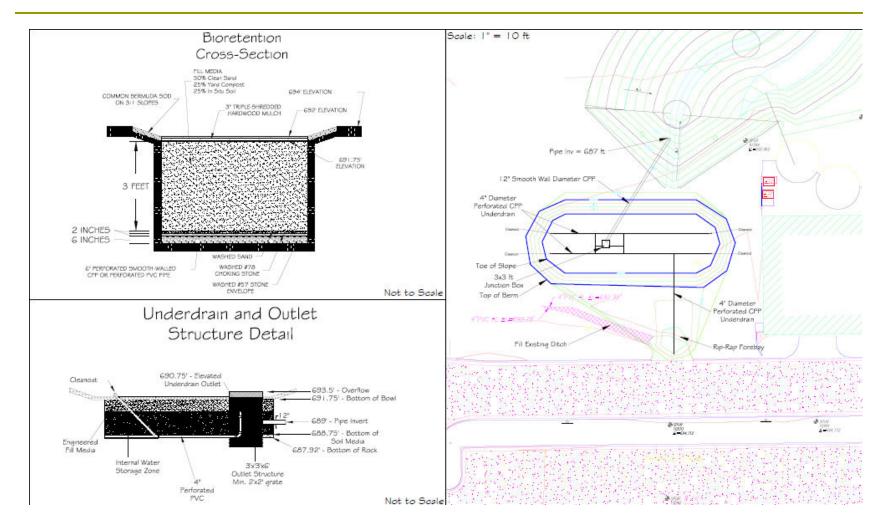
Upper Trinity-White Rock Creek Watershed

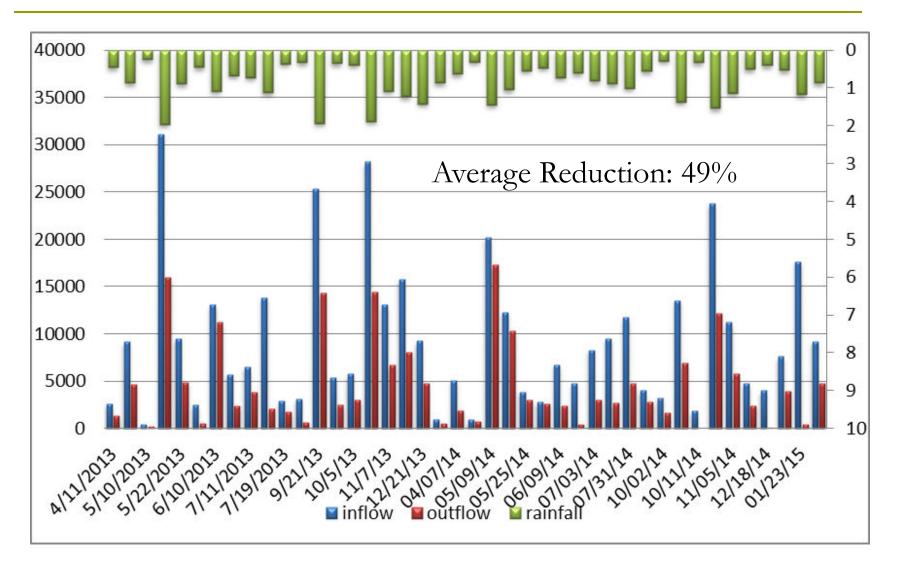

Clayey soil with underlying calcareous layer (Blackland Prairie Ecosystem)

Representative of typical urban watershed

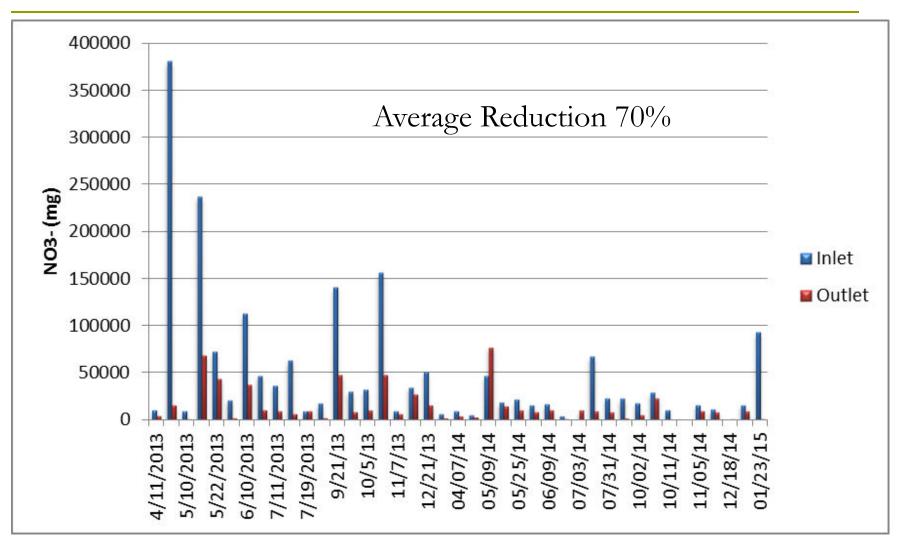
Rationale and Goals

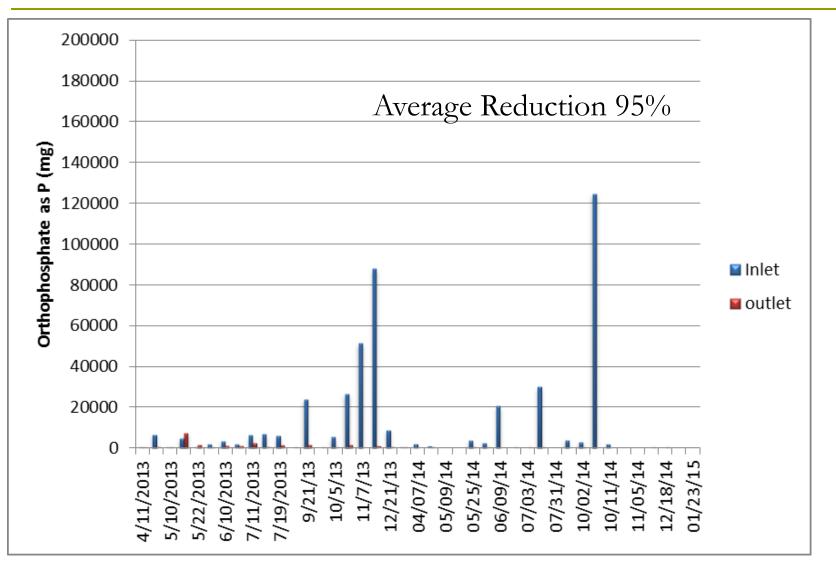
- Need for evaluation of LID practices in the field, especially Southern US and/or Blackland soils.
- Need for data on adoption of LID practices on watershed scale
- Goals
 - Reduction of runoff volume, pollutant load in a typical urban development
 - Design, construction, evaluation of 5 LID BMPs
 - Teaching tool for integration of LID practices (de novo or retrofit)

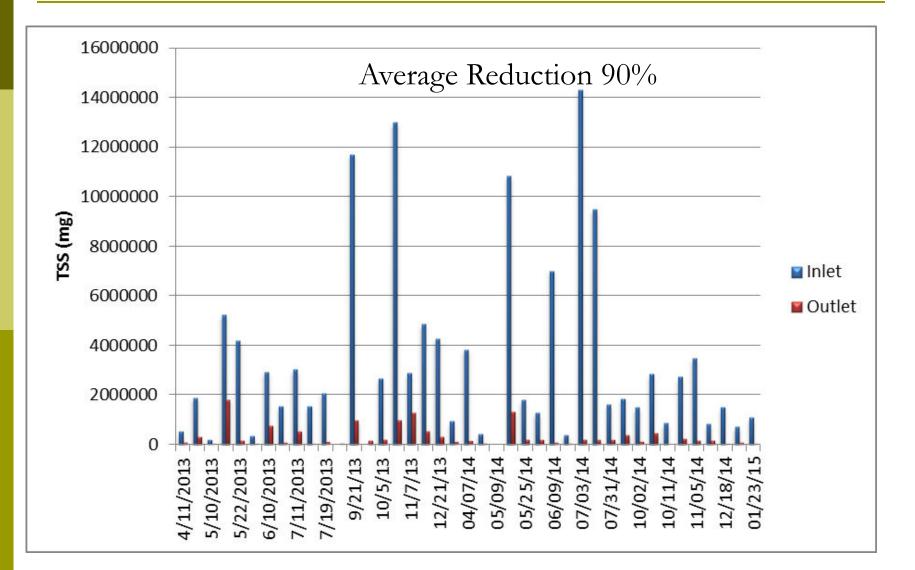

BMP Locations

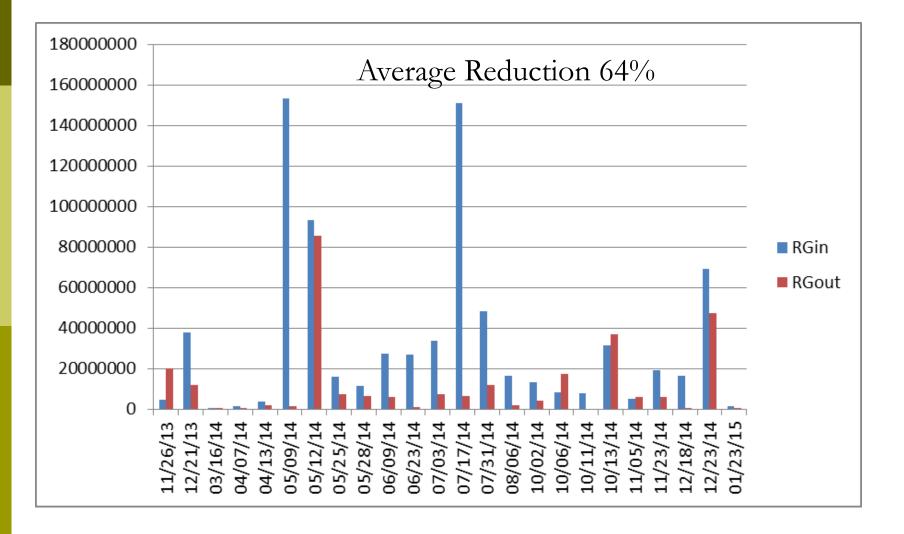

Bioretention Design

- Collected from 37,000 square foot parking lot CN=94
- Include Internal Water Storage (IWS)
- Total Media Depth was 4 feet with 1.75 feet ponding depth
- Media: 25% yard waste compost, 50% sand, 25% native soil
- Planted with native plants
- 4 inch perforated pipe at bottom

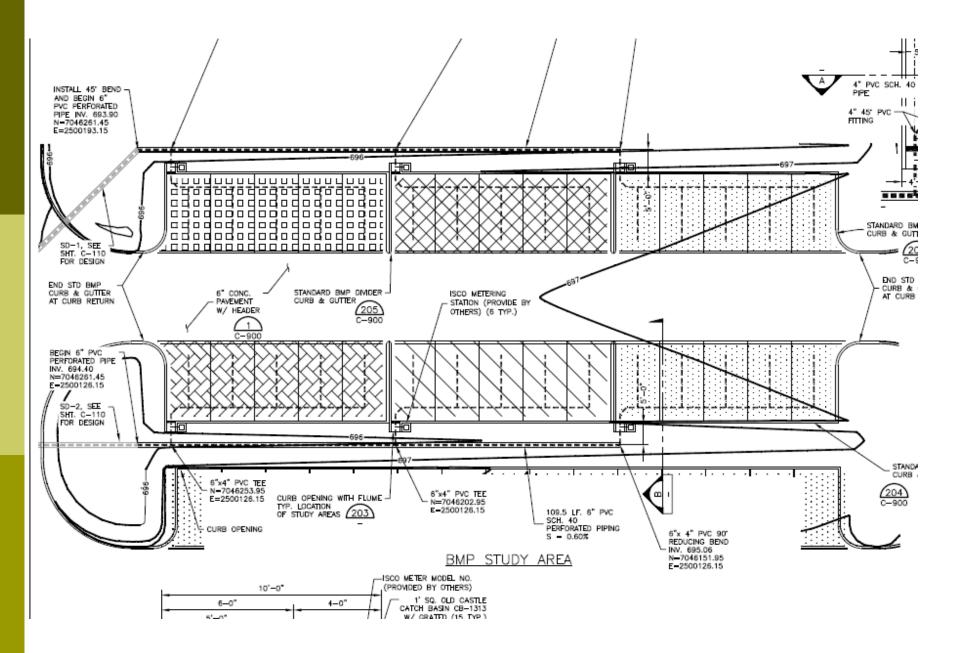

Bioretention Area

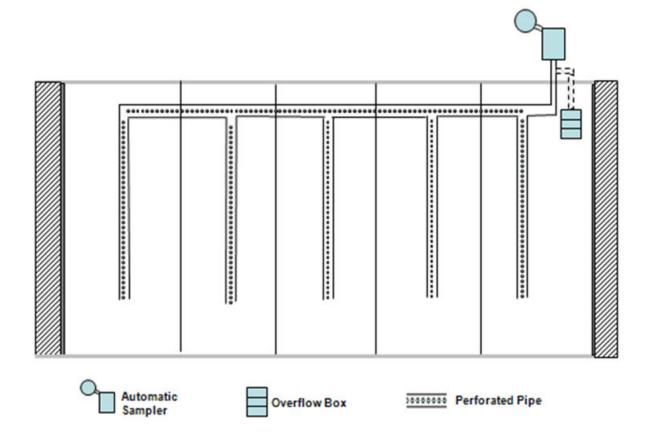

Volume Reduction


Load Reduction: Nitrate

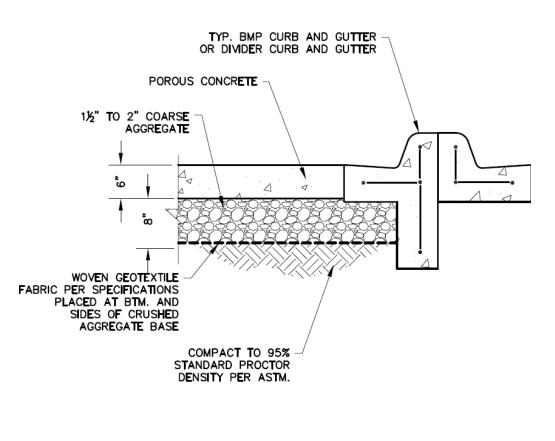

Load Reduction: Orthophosphate

Load Reduction: Sediments


Load Reduction: E. coli

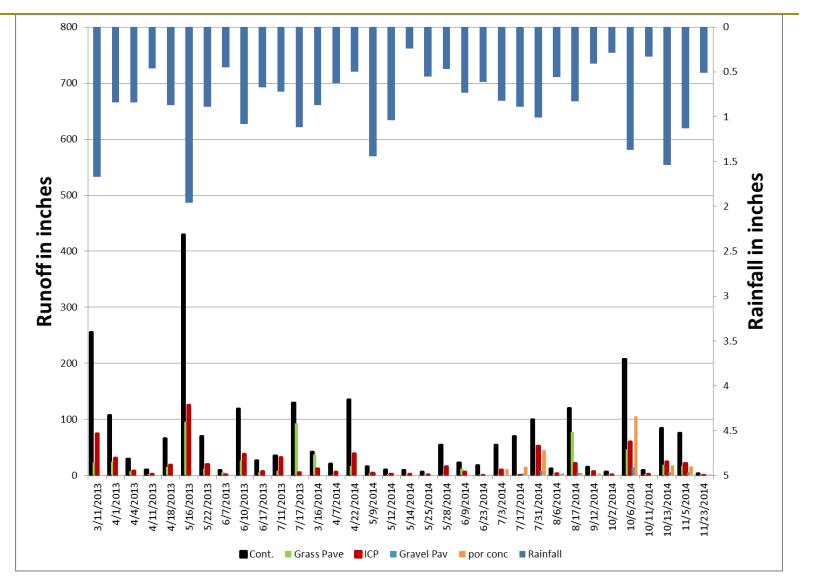

Permeable Pavement

- Newly constructed parking lot
- Comparison of 5 types pavement
- 25 experimental stalls among 52 total functional stalls
- Perforated underdrain pipes
- Total thickness = 16 inches
- Gravel layer
- Hydrologically separated with concrete curbs



Design and Monitoring

- Stalls: 18'x10'
- ISCO samplers with bubbler flow meters
- Runoff quantity and quality is measured



Pervious Concrete Cross Section

Results: Volume

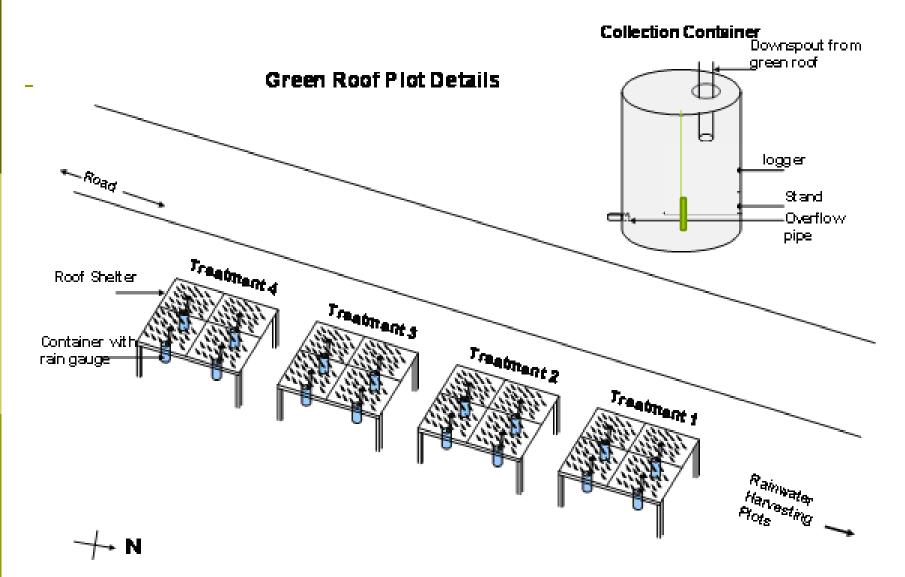
Volume Reduction Rates

	PICP	Pervious Concrete	Grass Pavers	Gravel Pavers
Reduction Rate	71%	74%	78%	93%

Results: Water Quality

	Control (mg)	Grass Pave (mg)	Grass Pave % reduction	ICP (mg)	% reduction
NO3	221.98	857.55	-286%	654.27	-195%
NH4	272.07	173.43	36%	60.64	78%
TKN	2327.54	1760.51	24%	1023.3	56%
Orthophosphate	2.46	12.08	-391%	20.84	-747%
Total Phosphorus	53.66	85.37	-59%	107.87	-101%
TSS	59833.46	9648.71	84%	32306	48%

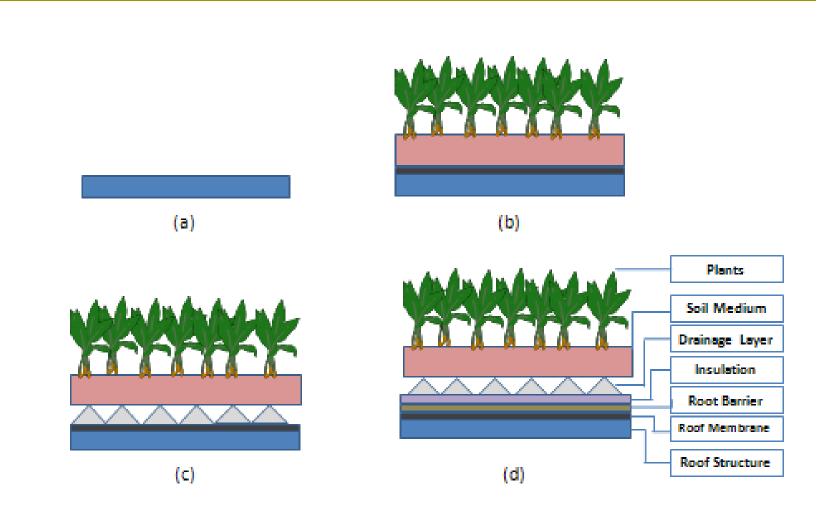
TSS Reduction in Per Conc:57%in Gravel pavers:48%



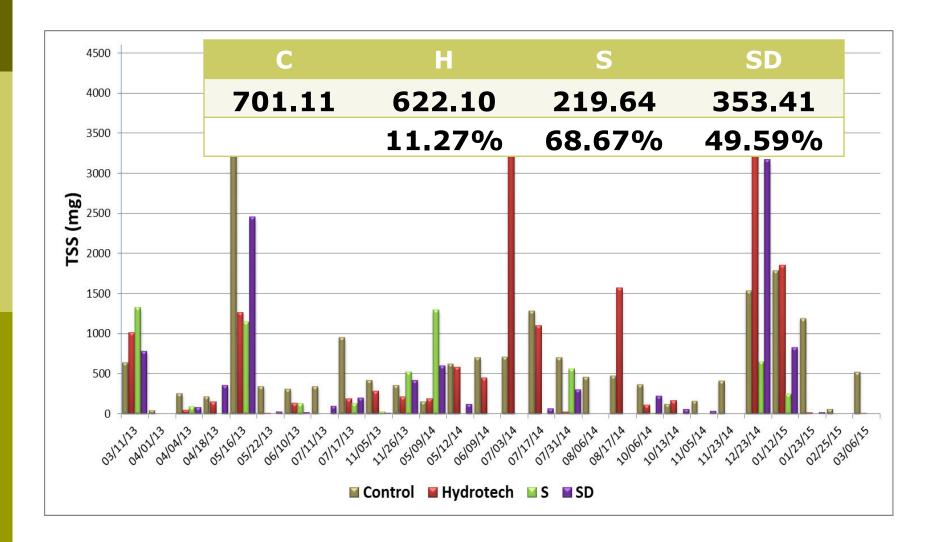
Green Roofs in North Texas

Experimental Component

- 4 roof shelters, represent residential roofs
- Each divided into 4 parts, with 4 types of growing media
- Different layers of soil, drainage, insulation, roofing membrane
- Runoff volume, water quality



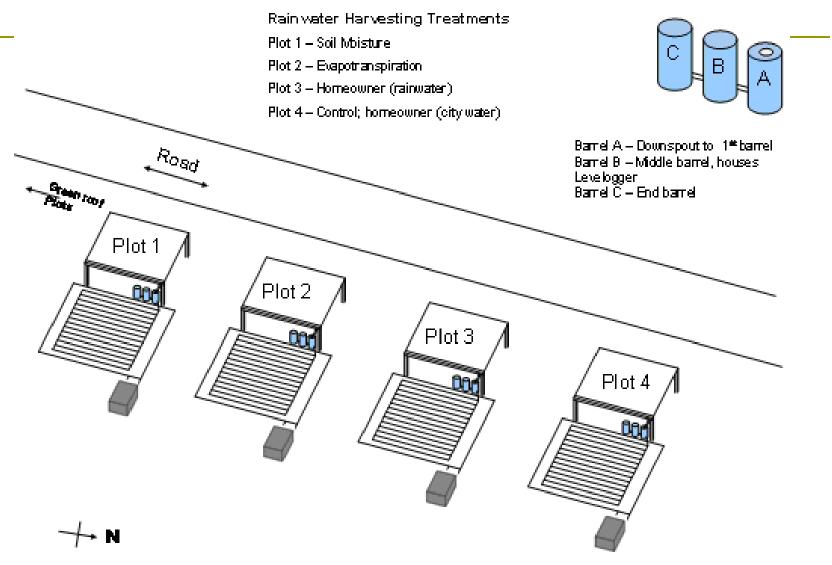
Growth Medium

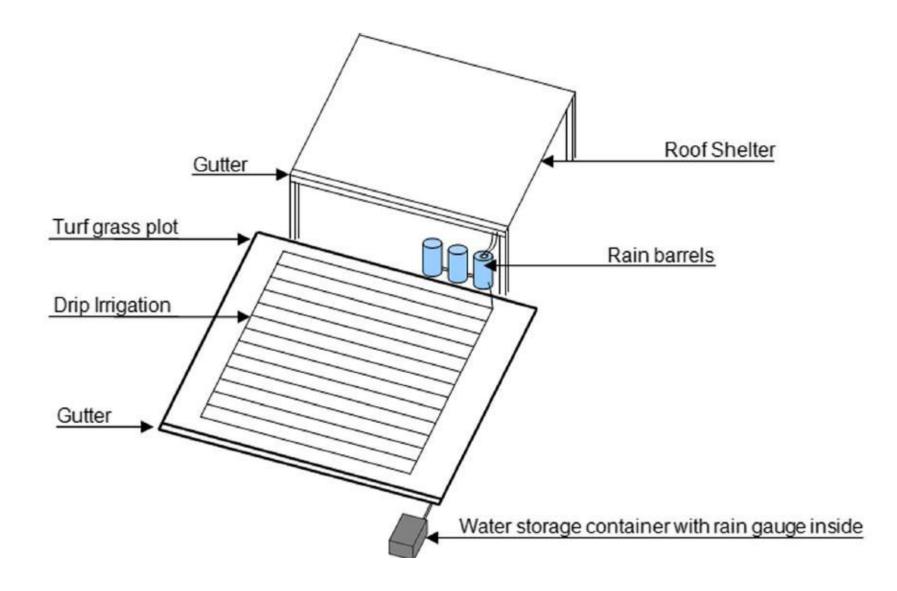


Volume Reduction

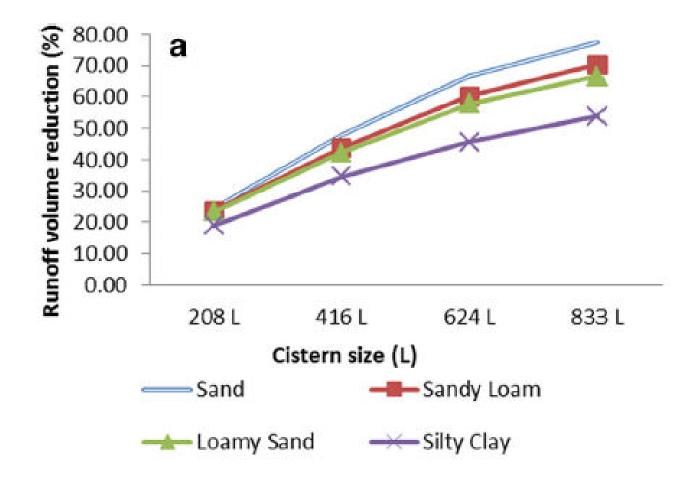
	Rainfal			H reductio		S reductio		SD Reductio
Event		С	Н	n	S	n	SD	n
Date	inches	gals	gals	%	gals	%	gals	%
05/09/14	Total Volume			65.39%		76.05%		75.33
05/12/14	Reduction from C							%
06/09/14								
07/03/14	0.82	5	3.4	0.32	0.17	0.97	0.17	0.97
07/17/14	0.89	6.7	1.47	0.78	0.1	0.99	2	0.70
07/31/14	1.01	7.7	6.1	0.21	0.24	0.97	1.18	0.85
08/06/14	0.56	2.7	0	1.00	0	1.00	0.29	0.89
08/17/14	0.83	4.7	1.18	0.75	0	1.00	0.29	0.94
10/06/14	1.37	15.8	5.54	0.65	2.47	0.84	4.1	0.74
10/13/14	1.54	22	11.9	0.46	8.7	0.60	9.3	0.58
10/13/14	1.54	22	11.9	0.46	8.7	0.60	9.3	0.58
11/05/14	1.13	9.02	0.17	0.98	0.35	0.96	0.29	0.97
11/23/14	0.51	2.5	0	1.00	0	1.00	0	1.00
12/23/14	0.53	3.89	0.59	0.85	0.35	0.91	0	1.00
01/12/15	0.63	4.5	0.66	0.85	2.4	0.47	0.94	0.79
01/23/15	1.17	7.58	3.56	0.53	3.63	0.52	3.28	0.57
02/02/15	0.72	35.7	25	0.30	1.12	0.97	0	1.00
02/25/15	2.22	15.58	8.63	0.45	1.36	0.91	5.66	0.64
03/06/15	1.1	2.36	0	1.00	1.35	0.43	0.17	0.93

TSS Loads

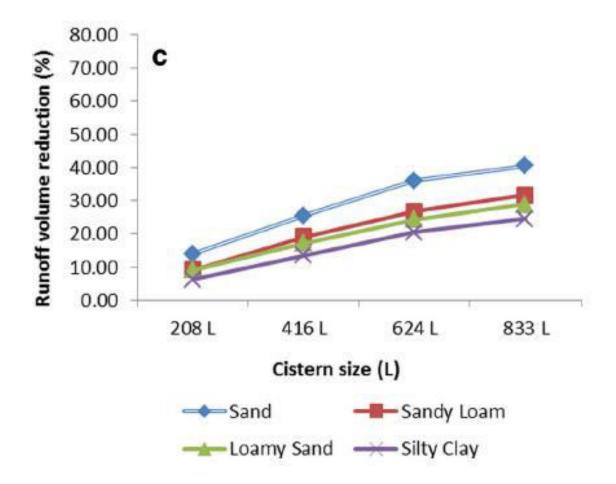


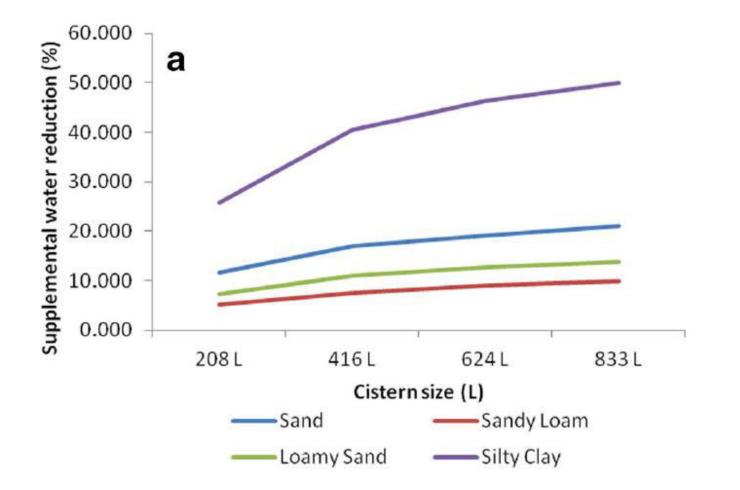

Rainwater Harvesting

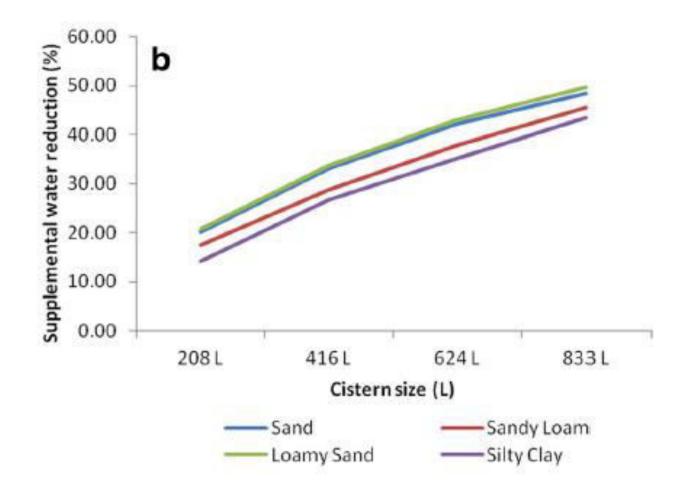
Demonstration Component


- Four cisterns (300, 500, 1500, and 2500 gallon) that serve AgriLife Buildings
- Storage and outflow measured
- Serves a drip irrigation system
- Experimental Component
 - 4 roof shelters, represent residential roofs, 55 gallon tanks(3/plot)
 - Turf lawn associated with each, drip irrigation
 - 4 Treatments- Soil moisture, Evapotranspiration, Home owner (rain water), Control: Home owner (city water)
 - Inflow, outflow, water quality

Experimental plot layout



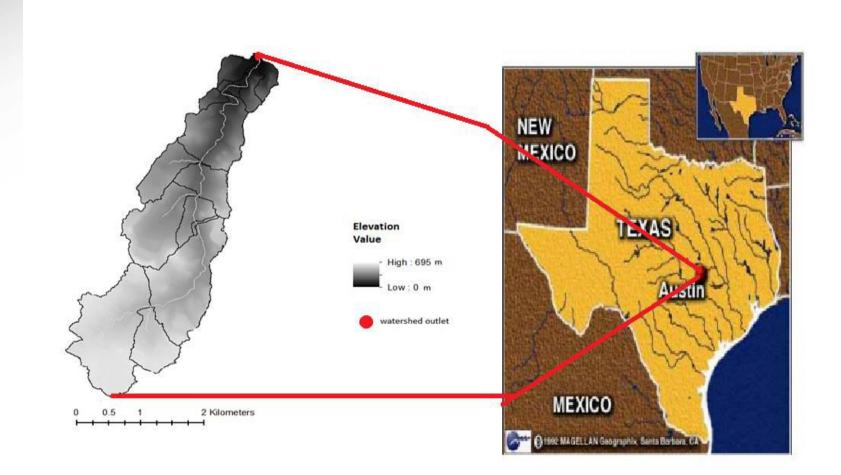

Runoff from time based


Runoff from ET-based

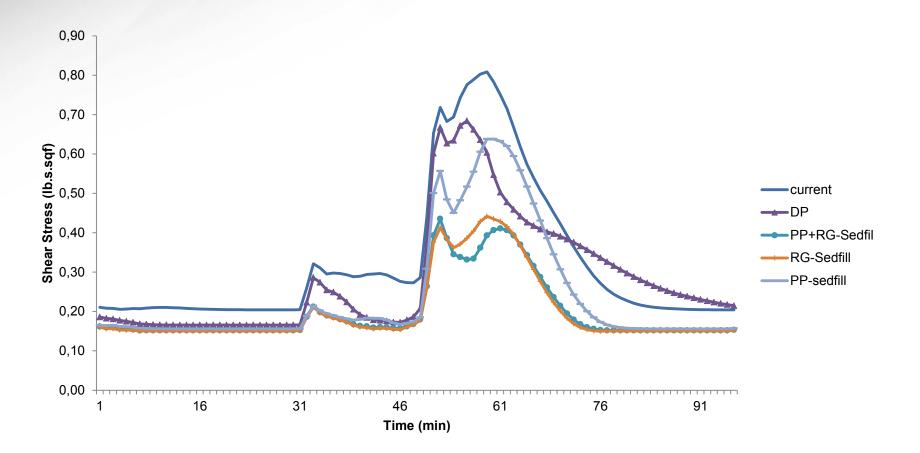
Water Savings from RWH

Water Savings Soil Moisture

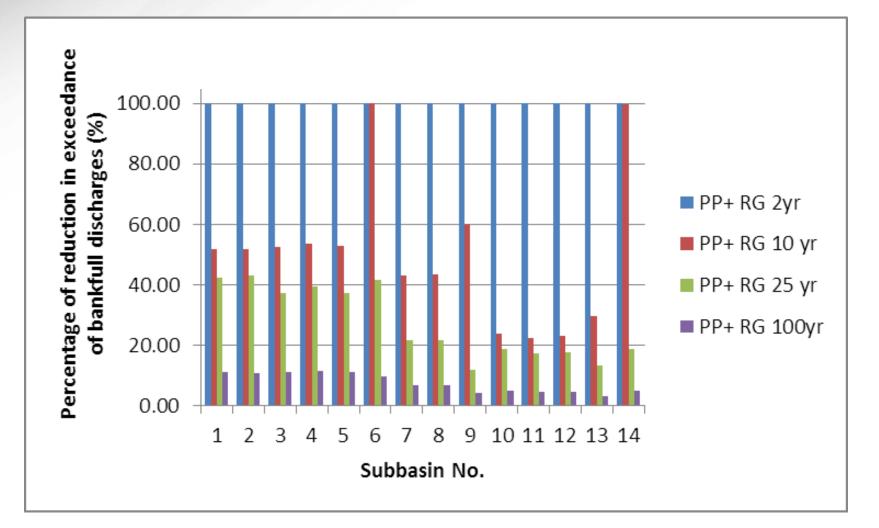
BIOLOGICAL & AGRICULTURAL ENGINEERING TEXAS A&M UNIVERSITY


Modeling LID Effect Practices on Stream Health

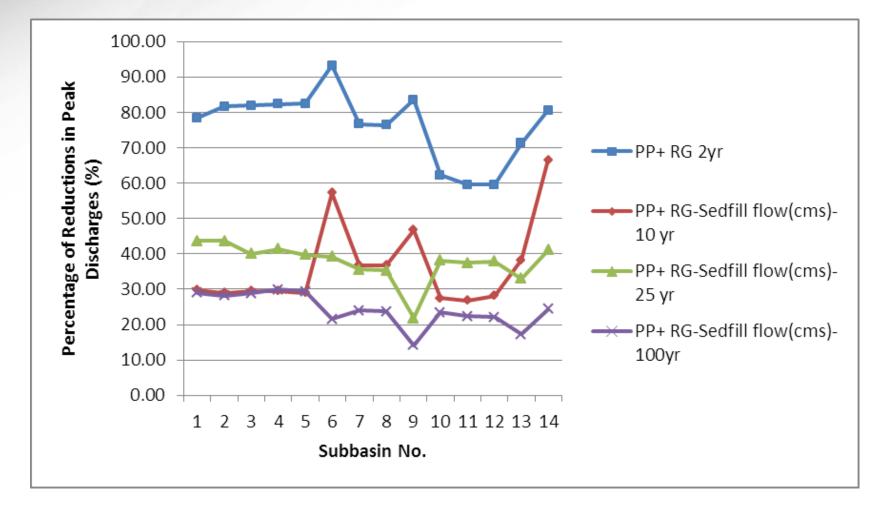
Fouad H. Jaber, PhD Associate Professor and Extension Specialist Sa'd Shannak, PhD Former Graduate Student Currently at KAPSARC



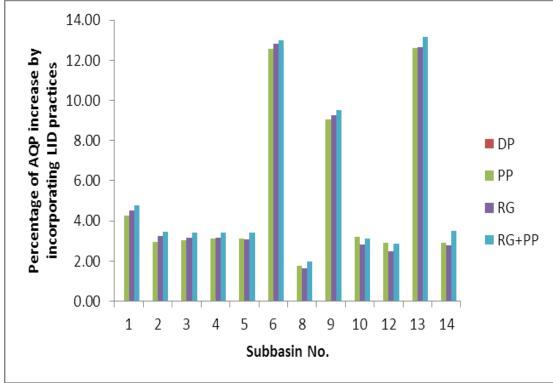
BLUNN CREEK WATERSHED- AN OVERVIEW

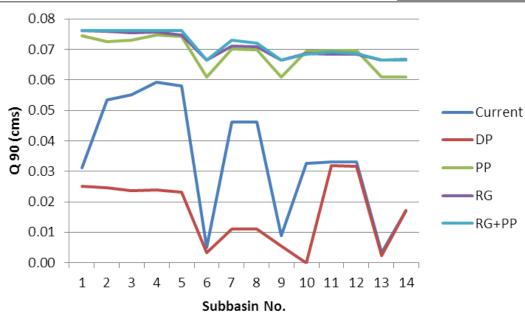


Results of LID on Shear Stress



Reduction in flooding due to LID





Reduction of Peak Flow

Combining bioretention area with permeable pavement resulted with the greatest percentage of AQP value increase, followed by RG only, PP and DP

Greatest increase in baseflow resulted when combining bioretention area with permeable, followed by RG only, PP and lastly DP

Acknowledgements

- This research was made possible by a CWA 319 (h) NPS grant provided by USEPA and TCEQ
- Texas AgriLife Research for providing funds and the location for the constructed BMPs.
- Modeling studies funded by Texas Sea Grant, USEPA, TCEQ and the City of League City, TX

TEXAS A&M GRILIFE RESEARCH | EXTENSION

Fouad H. Jaber, PhD, PE Associate Professor and Extension Specialist

Biological and Agricultural Engineering Texas A&M AgriLife Extension Dallas Research and Extension Center f-jaber@tamu.edu 972-952-9672

www.facebook.com/agrilifeecoeng/

Rainwater Harvesting as Stormwater Mitigation

Dotty Woodson, Ed. D.

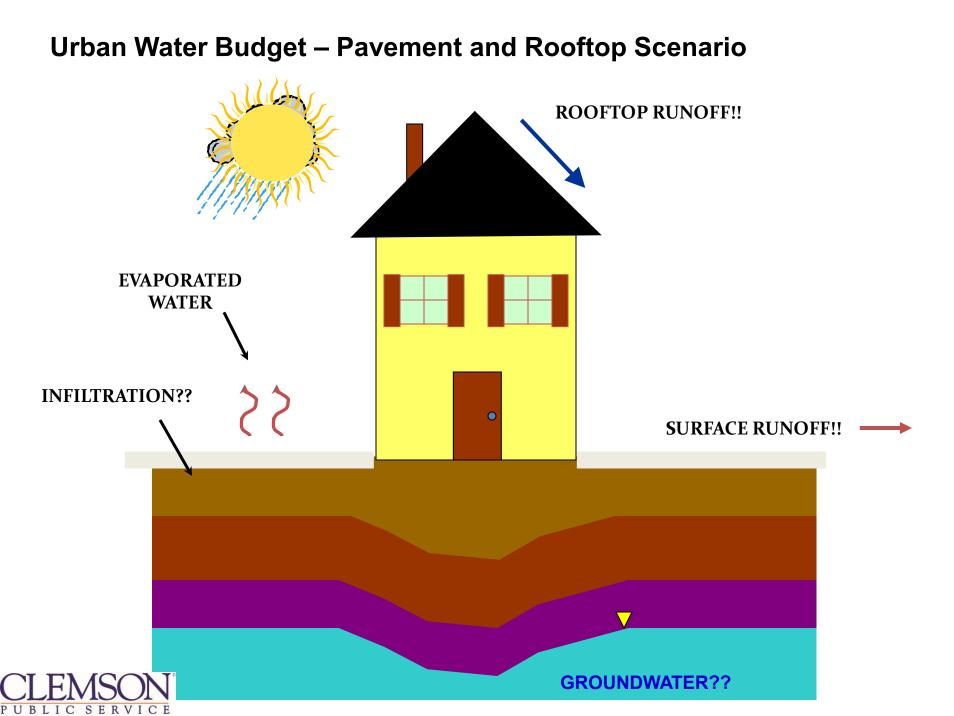
Associate Professor and Extension Specialist- Water Resources Biological and Agricultural Engineering Texas A&M AgriLife Extension

What is Rainwater Harvesting?

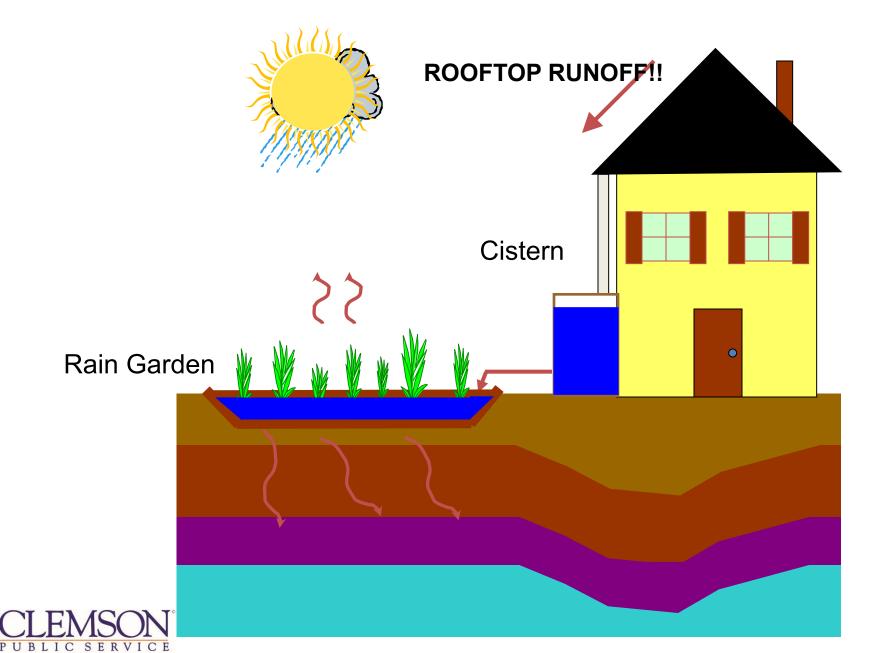
- Rainwater Harvesting is the capture, diversion, storage and distribution of rainwater for later use or as stormwater mitigation
- Why Rainwater Harvesting
 - Reduces flooding, erosion, and contamination of surface water
 - Slowly release stormwater back into stream or use for irrigation

Incentives

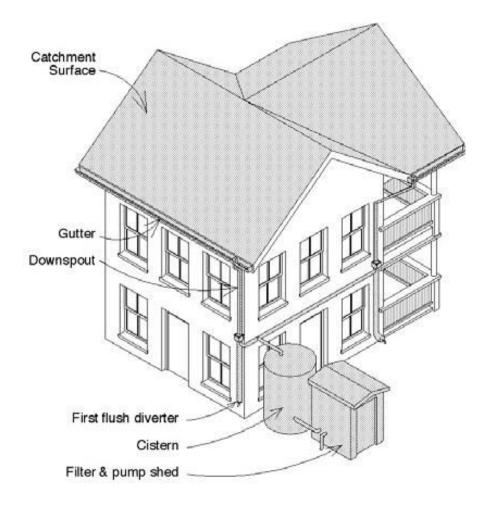
- Environmental Stewardship
- Sustainability
- Many municipalities with stormwater utility fees offer a monetary credit for the correct installation and maintenance of a rain garden and/or rainwater harvesting system



Uses For Collected Rainwater


- Mitigating Stormwater
- Irrigation
 - Landscape
 - Garden
- Vehicle Washing
- Livestock
- Wildlife
- Firefighting

Urban Water Budget – Rainwater Harvesting Scenario


How Much Rainwater Can I Collect?

.6 gallons for every square foot roof per 1" rainfall
20,000 sq. foot roof X 1" rain = 12,000 gal. water
12,000 gal. X 32" rainfall per year= 384,000 gal/yr

Rainwater Harvesting Requirements

- Consist of:
 - Catchment
 - Foot print of roof
 - Conveyance
 - Gutters and Downspouts
 - Storage
 - Tank
 - Treatment
 - Filtration
 - Distribution
 - Drip Irrigation

Calculate Irrigation Requirements for Irrigation

Requirements (gal) = ET (in) x Plant Coefficient x 0.623 x Irrigated Area (sq ft)

Rainwater Harvesting System

Storage

- Containers may be made of polyethylene, fiberglass, wood, concrete, or metal
- underground or aboveground

Underground Storage

Components

Leaf filter

Calming Inlet

 Keep Sediment Layer From Being Disturbed

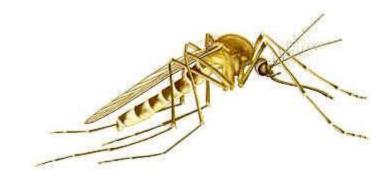
– Overflow Siphon

- Creates Vacuum
- Skims Floating Debris

Floating Intake/Extractor

- Acts As Intake/Suction For Pump
- Only Takes The Cleanest Water From The Tank

Rainwater Harvesting System Filter First Flush Diverter



Irrigation Filter between Cistern and Pump

Mosquitoes

Wildlife Guzzler

Size Cistern to Site

Rainwater Harvesting System

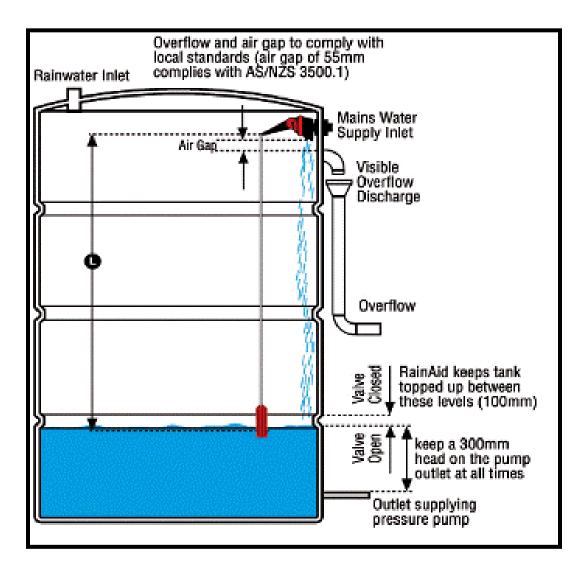
Distribution System

- Distributes water to plants from storage containers
- Use garden hoses, soaker hose, or drip system
- Use pump either electric or solar powered
- If the system is integrated with municipal supply, install a backflow preventer double check valve with an "air gap" or other approved backflow device

Types of Drip Irrigation

Pump and Pressure Tank

- Shallow well pump
- Pressure tank
- On-Demand Pump


Overflow Pipe

The overflow allows water to run out of the tank when it is full rather than backing up into the gutter

Backup Water

Water Level Indicator

Calculate Stormwater

Calculate Stormwater

Sormwater (gal) = Rainfall (in) x 0.623 x Catchment Area (sq ft)

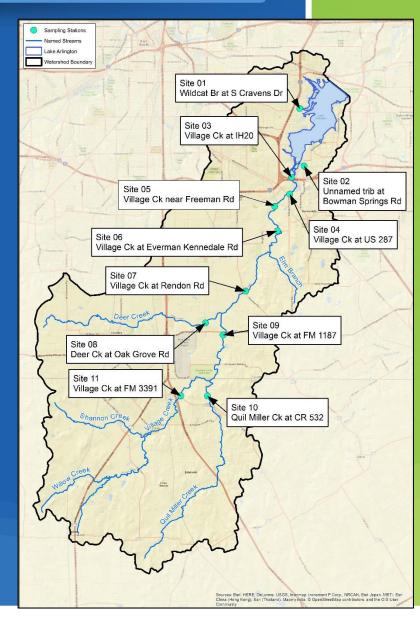
.6 gallons for every square foot roof per 1" rainfall 20,000 sq. foot roof X 1" rain = 12,000 gal. water 12,000 gal. X 32" rainfall per year= 384,000 gal/yr

TEXAS A&M GRILIFE RESEARCH | EXTENSION

For More Information Dotty Woodson, Ed. D. Extension Specialist- Water Resources Texas A&M AgriLife Extension 17360 Coit Road Dallas, Texas 75252 972-952-9688 d-woodson@tamu.edu

Water Quality Monitoring Results

Angela Kilpatrick Trinity River Authority September 22, 2016

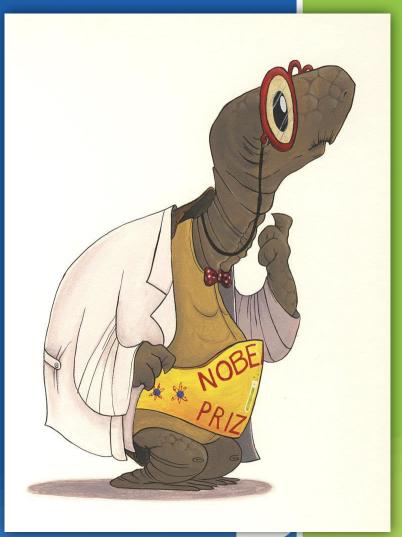


Trinity River Authority of Texas Enriching the Trinity basin as a resource for Texans

Monitoring Plan Review

- All parameters at all 11
 stations
- Near the Lake:
 - Wildcat Branch to the west
 - Unnamed trib to the east
 - Top of Lake near IH-20
- On Village Creek
 - 5 sites, bracketing specific land uses and water inputs
- Major tributaries
 - Deer Creek urban upstream
 - Quil Miller Creek rural/agriculture

TRA-CRWS Laboratory


- The CRWS Lab is accredited by the National Environmental Laboratory Accreditation Program (NELAP) through TCEQ
- Samples collected by PES staff are dropped off at CRWS lab for analysis of:
 - E. coli
 - Nitrate, Nitrite, Total Kjeldahl Nitrogen
 - Total Phosphorus, Orthophosphate
 - Chlorophyll a
 - TDS, TSS, VSS

Preliminary Analysis Results

- Not yet submitted to TCEQ's Water Quality Monitoring Information System (SWQMIS) database
- Still undergoing quality control analyses
- Not yet enough data to apply statistical analysis (i.e., trend analysis)
- Data will be used to develop the Village Creek-Lake Arlington WPP

Evaluation Criteria

Analytical results were compared to TCEQ's water quality standards and screening levels to determine if values exceeded criteria

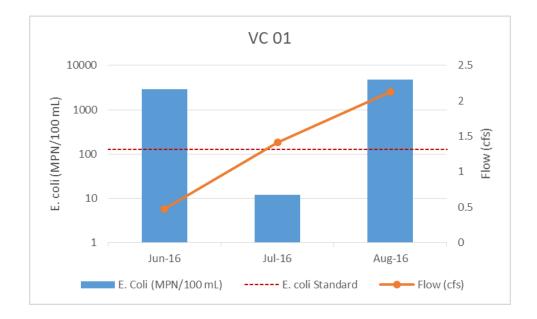
Site-specific Water Quality Criteria for the Village								
Creek-Lake Arlington Watershee	l (TCEQ)							
	Segm	ent ID						
Parameter	0828	0828A						
Cl-1 (mg/L)	100	100						
SO4-2 (mg/L)	100	-						
TDS (mg/L)	300	300						
DO (mg/L) grab minimum	3.0	2.0						
DO (mg/L) 24 hour average	5.0	3.0						
DO (mg/L) 24 hour minimum	3.0	2.0						
pH range	6.5-9.0	6.5-9.0						
E. coli #/100ml	126	126						
Temperature (°F; °C)	95; 35	95; 35						

alf a Materia Oscalita - Osta alta fa a tha Alfilla

Texas Nutri	ent Scre	ening Levels and	l EPA Nutrient R	Reference	e Criteria			
		TCEQ Scree	ning Levels	EPA	A Refere	nce Crite	eria	
Parame	eter	Lake/Reservoir	Stream	Lake/Re	eservoir	Stre	eam	Other Sources
ΤΚΝ	(mg/L)	-	-	0.38 ^a	0.41 ^b	0.3 ^a	0.4 ^b	
NO ₂	(mg/L)	-	-	-	-	-	-	0.02 ^c
NO ₃	(mg/L)	0.37	1.95	-	-	-	-	
NO ₂ +NO ₃	(mg/L)	-	-	0.017 ^a	0.01 ^b	0.125 ^ª	0.078 ^b	
TP	(mg/L)	0.20	0.69	0.02 ^a	0.019 ^b	0.037 ^a	0.038 ^b	
OP	(mg/L)	0.05	0.37	-	-	-	-	
Chl-a ^d	(µg/L)	26.7	14.1	5.18 ^ª	2.875 ^b	0.93 ^a	1.238 ^b	

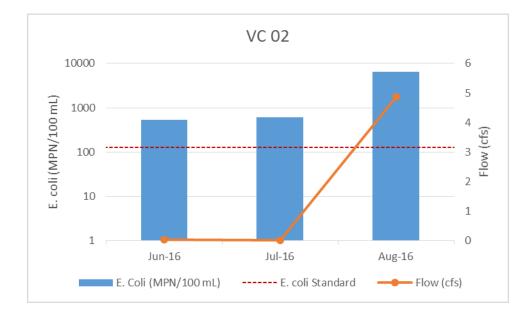
^a Reference conditions for aggregate Ecoregion IX waterbodies, upper 25th percentile of data from all seasons, 1990-1999.

^b Reference conditions for level III Ecoregion 29 waterbodies, upper 25th percentile of data from all seasons.

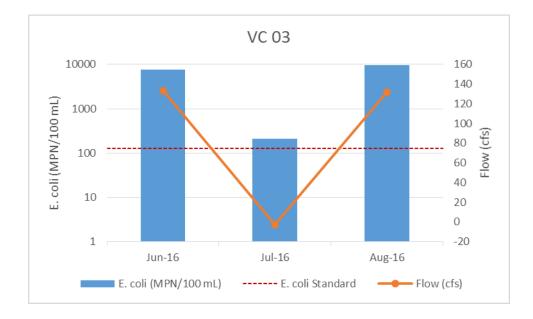

^c For nitrite, concentrations above 0.02 mg/L (ppm) usually indicate polluted waters (Mesner, N., J. Geiger. 2010. Understanding Your Watershed: Nitrogen. Utah State University, Water Quality Extension.

^d Chlorophyll a, as measured by Spectrophotometric method with acid correction.

Site 1 – Wildcat Branch at Cravens

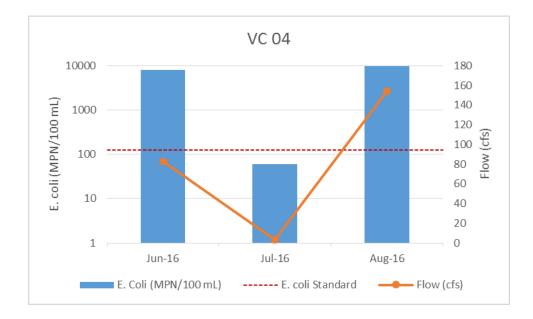

Site ID 10793	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/29/2016	17	2909	0.25	<0.05	1.08	0.04	0.14	164	10	<3
7/19/2016	17	12	<0.05	<0.05	0.65	<0.02	0.04	244	7	3
8/15/2016	4	>4839	0.33	<0.05	0.82	0.03	0.09	187	12	<8

Site 2 – Unnamed trib at Bowman Springs Rd

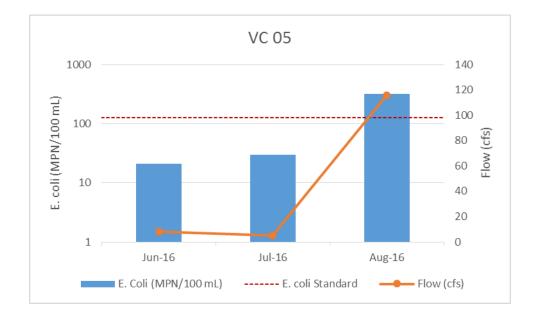

Site ID 10798	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/28/2016	11	534	0.2	<0.05	0.38	<0.02	0.02	1304	<2	<2
7/20/2016	<3	612	<0.05	<0.05	0.36	< 0.02	0.02	1573	4	<2
8/17/2016	3	6510	0.4	<0.05	0.68	<0.02	0.06	240	19	<15

Ø

Site 3 – Village Creek at IH-20

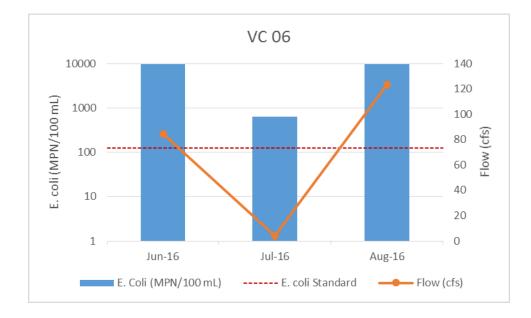

Site ID 10780	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)		Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/29/2016	9	7701	0.62	<0.05	0.96	0.11	0.35	233	116	<14
7/20/2016	12	212	0.14	<0.05	0.59	<0.02	0.05	238	20	3
8/15/2016	6	>9678	0.23	<0.05	0.9	0.02	0.28	192	128	12

Site 4 – Village Creek at US-287 BUS

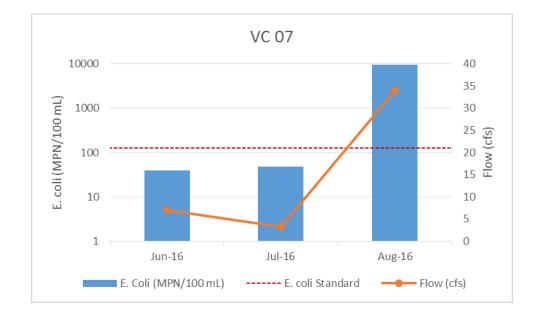

100 A A A	
(CA	
	1

Site ID 10781	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/28/2016	11	7945	0.37	<0.05	0.61	< 0.02	0.12	304	54	<6
7/20/2016	5	59	0.2	<0.05	0.42	<0.02	0.04	167	9	<2
8/15/2016	8	>9678	0.28	<0.05	0.88	0.04	0.33	179	152	<16

Site 5 – Village Creek near Freeman Dr

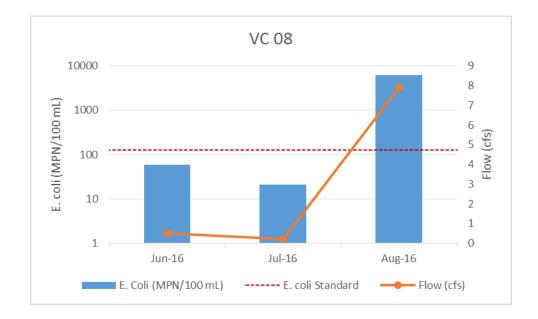

Site ID 21762	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
7/12/2016	6	21	0.17	<0.05	0.47	0.02	0.04	152	8	<2
7/20/2016	<3	30	0.23	<0.05	0.42	<0.02	0.03	191	5	<2
8/17/2016	9	323	0.33	<0.05	0.45	<0.02	0.05	146	21	<9

Site 6 – Village Creek at Everman-Kennedale Rd

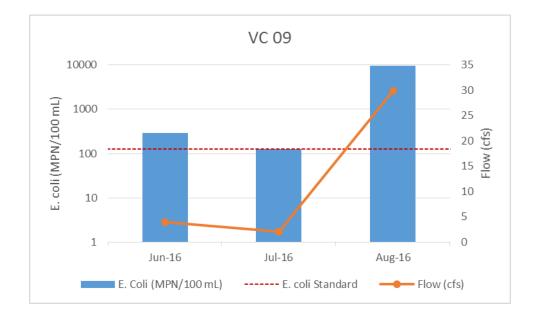

Site ID 13761	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)		Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/28/2016	7	>9678	0.44	<0.05	0.72	< 0.02	0.17	276	87	<11
7/20/2016	3	643	<0.05	<0.05	0.21	<0.02	<0.02	481	5	<2
8/15/2016	8	>9678	0.35	<0.05	0.88	0.06	0.4	190	196	<20

A.

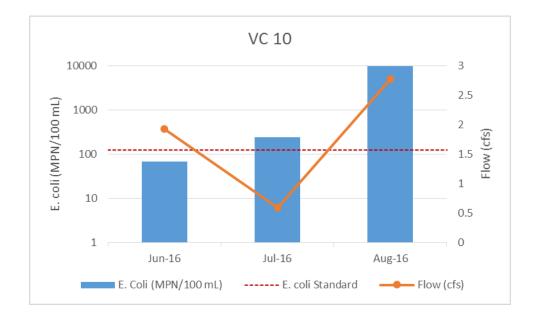
Site 7 – Village Creek at Rendon Rd


Site ID 10786	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/27/2016	<3	39	0.14	<0.05	0.45	<0.02	0.02	509	5	<2
7/20/2016	4	48	<0.05	<0.05	0.37	<0.02	< 0.02	461	4	<2
8/15/2016	4	>9678	0.33	<0.05	0.81	0.07	0.25	202	58	<19

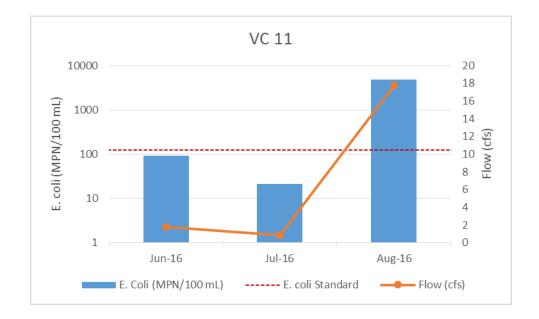
Site 8 – Deer Creek at Oak Grove Rd



Site ID 10805	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/27/2016	4	58	0.54	<0.05	0.49	< 0.02	< 0.02	350	4	<2
7/19/2016	4	21	0.15	<0.05	0.45	<0.02	< 0.02	309	5	<2
8/15/2016	8	6212	0.39	<0.05	0.71	0.04	0.26	212	137	<14



Site ID 10785	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/27/2016	5	289	0.31	<0.05	0.42	<0.02	0.03	558	8	<2
7/19/2016	<3	127	0.4	<0.05	0.5	<0.02	0.02	501	4	<2
8/15/2016	8	>9678	0.37	<0.05	0.83	0.08	0.28	204	54	<17


Site 10 – Quil Miller Creek at CR 532

Site ID 21759	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/27/2016	<3	68	0.29	<0.05	0.39	0.07	0.05	676	3	<2
7/19/2016	<3	245	0.12	<0.05	0.26	0.04	0.05	613	4	<2
8/15/2016	<3	>9678	0.43	<0.05	0.99	0.17	0.38	234	54	<14

Site ID 21763	Chl-a (ug/L)	E. Coli (MPN/100 mL)	Nitrate- Nitrogen (mg/L)	Nitrite- Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Ortho- Phosphate (mg/L)	Total Phosphorous (mg/L)	TDS (mg/L)	TSS (mg/L)	VSS (mg/L)
6/27/2016	<3	92	2.45	0.07	0.67	0.1	0.14	553	8	<2
7/19/2016	<3	21	<0.05	<0.05	0.41	0.18	0.2	515	8	<2
8/15/2016	6	>4839	0.34	<0.05	0.72	0.13	0.22	158	40	<8

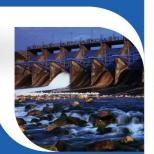
Moving Forward

- Continue to analyze water quality samples at TRA-CRWS through May 2017
- TRA will run statistical and load duration curve analysis using CRWS data

Questions?

http://www.trinityra.org/lakearlingtonvillagecreek

Aaron Hoff Trinity River Authority hoffa@trinityra.org 817.493.5581



Upcoming Events and Path Forward

Aaron Hoff Trinity River Authority September 22, 2016

Trinity River Authority of Texas Enriching the Trinity basin as a resource for Texans

Future Events and Meetings

- Texas AgriLife Extension
 - Pond Management Workshop
- Lone Star Healthy Streams
 - Winter 2017
- Septic System Maintenance Workshop
 - Spring 2017
- 2nd Steering Committee Meeting
 - Municipal BMPs "Think Tank"
- Next Group Meeting
 - Tentative for January 19, 2017
 - Tentative Topics
 - Sampling update
 - Agricultural BMPs
 - Lawn care/soil management
 - Review a sample WPP

Open Comment Period

If you have additional concerns or comments, please send them to:

Aaron Hoff Trinity River Authority hoffa@trinityra.org 817.493.5581

http://www.trinityra.org/lakearlingtonvillagecreek

