AGENDA CITY OF STURGEON BAY AESTHETIC DESIGN & SITE PLAN REVIEW BOARD

Monday, October 25, 2021 6:00 p.m. Council Chambers, City Hall 421 Michigan St, Sturgeon Bay, WI

- 1. Roll call
- 2. Approval of agenda
- 3. Approval of minutes from October 11, 2021
- 4. Consideration of: Construction of a 98 x 40 Theater Building located at 917 N 14th Avenue
- 5. Consideration of: Pavilion / Office for Bay Marine located at 267 Nautical Drive
- 6. Consideration of: Ace Hardware Development located at 1227 Egg Harbor Rd
- 7. Consideration of: Lexington Homes 14-unit Multiple Family Development located on east side of Grant Avenue
- 8. Adjourn

NOTE: DEVIATION FROM THE AGENDA ORDER SHOWN MAY OCCUR.

Board Members: Rick Wiesner Jon Burk Cheryl Frank Kelsey Fox Pam Jorns Mark Struck Dave Augustson

AESTHETIC DESIGN AND SITE PLAN REVIEW BOARD Monday, October 11, 2021

The Aesthetic Design and Site Plan Review Board meeting was called to order at 6:01 p.m. by Chairperson Rick Wiesner in the Council Chambers, City Hall, 421 Michigan Street.

Roll Call: Members Rick Wiesner, Jon Burk, Kelsey Fox, Dave Augustson, and Pam Jorns were present. Excused was Cheryl Frank and Mark Struck. Also present were Planner/Zoning Administrator Christopher Sullivan-Robinson and Police Assistant Candy Jeanquart.

Adoption of Agenda: Moved by Mr. Augustson, Seconded by Mr. Fox to adopt the following agenda.

- 1. Roll call.
- 2. Adoption of agenda.
- 3. Approval of minutes from September 13, 2021
- 4. Consideration of: Brewed Awakening Canopy Signage.
- 5. Adjourn.

All ayes. Carried.

Approval of minutes from September 13, 2021: Moved by Ms. Jorns, Seconded by Mr. Burk to approve all the minutes. **All in favor. Carried**.

Consideration of: Brewed Awakening – Canopy Signage: Mr. Sullivan-Robinson stated the 4x10 vinyl sign over the canopy is already being displayed, along with two others signs on site with one off the entrance of 4th Avenue and the other in the parking lot. The two other signs are considered direction signs, so don't need approval. The sign over the canopy needs approval due to being over 4 square feet. The sign is made out of banner material and fastened to the roof.

Ms. Jorns asked how many other business owners can display banners on the building. Mr. Sullivan-Robinson stated if this sign is approved, no other owners can display a banner due to one banner per site. Mr. Wiesner asked what the maximum square footage the signs can be for this building. Mr. Sullivan-Robinson stated 1 square foot per linear foot per building width based on the facia it is on and a multi-tenant building is based on the space you occupy. If more street frontage then more signage. Ms. Fox asked if the building owner plans on doing a more uniform tenant signage and Mr. Sullivan-Robinson stated no update on that. Mr. Burk asked if the sign was meant to be permanent and Mr. Sullivan-Robinson stated that is what he was told. Mr. Wiesner expressed should be no permanent signs made of vinyl. Mr. Sullivan-Robinson stated if the sign was under 4 square feet wouldn't need approval. If the sign is denied, the owner can apply for a permit for a banner sign for 1 year due to commercial use. Only a 30 limit for anything that isn't zoned commercial or industrial. Ms. Fox asked what the regulations are for a multi-tenant building for signage. Mr. Sullivan-Robinson stated commercial zones are broken out in two categories and both are dictated by the amount of space occupied in the building determines the amount of signage you get. Ms. Fox expressed having one orderly fashion signage in front of the building listing all the tenants.

Ms. Jorns made a motion to deny as presented. Seconded by Mr. Burk. All in favor. Carried.

Adjourn: Moved by Ms. Jorns, seconded by Mr. Burk to adjourn. All ayes. Carried. The meeting adjourned at 6:20 p.m.

Respectfully submitted,

Candy Jeanquart Police Assistant Christopher Sullivan-Robinson Planner/Zoning Administrator 421 Michigan Street Sturgeon Bay, WI 54235

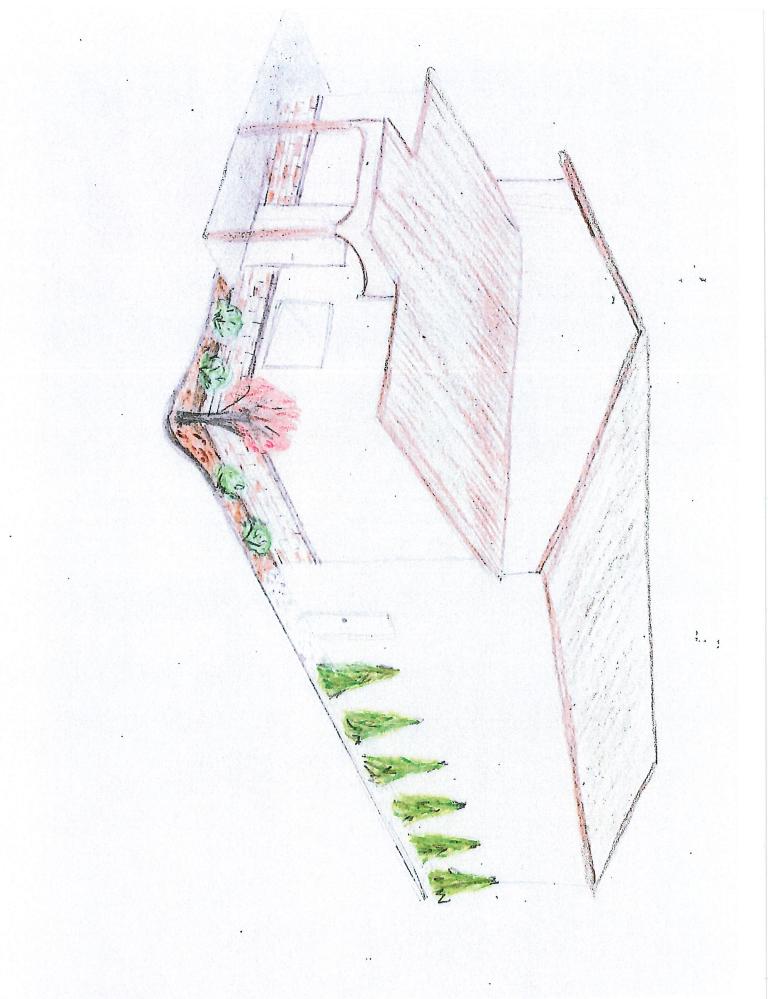
Phone: 920-746-2907 Fax: 920-746-2905 E-mail: csullivan-robinson@sturgeonbaywi.org Website: www.sturgeonbaywi.org

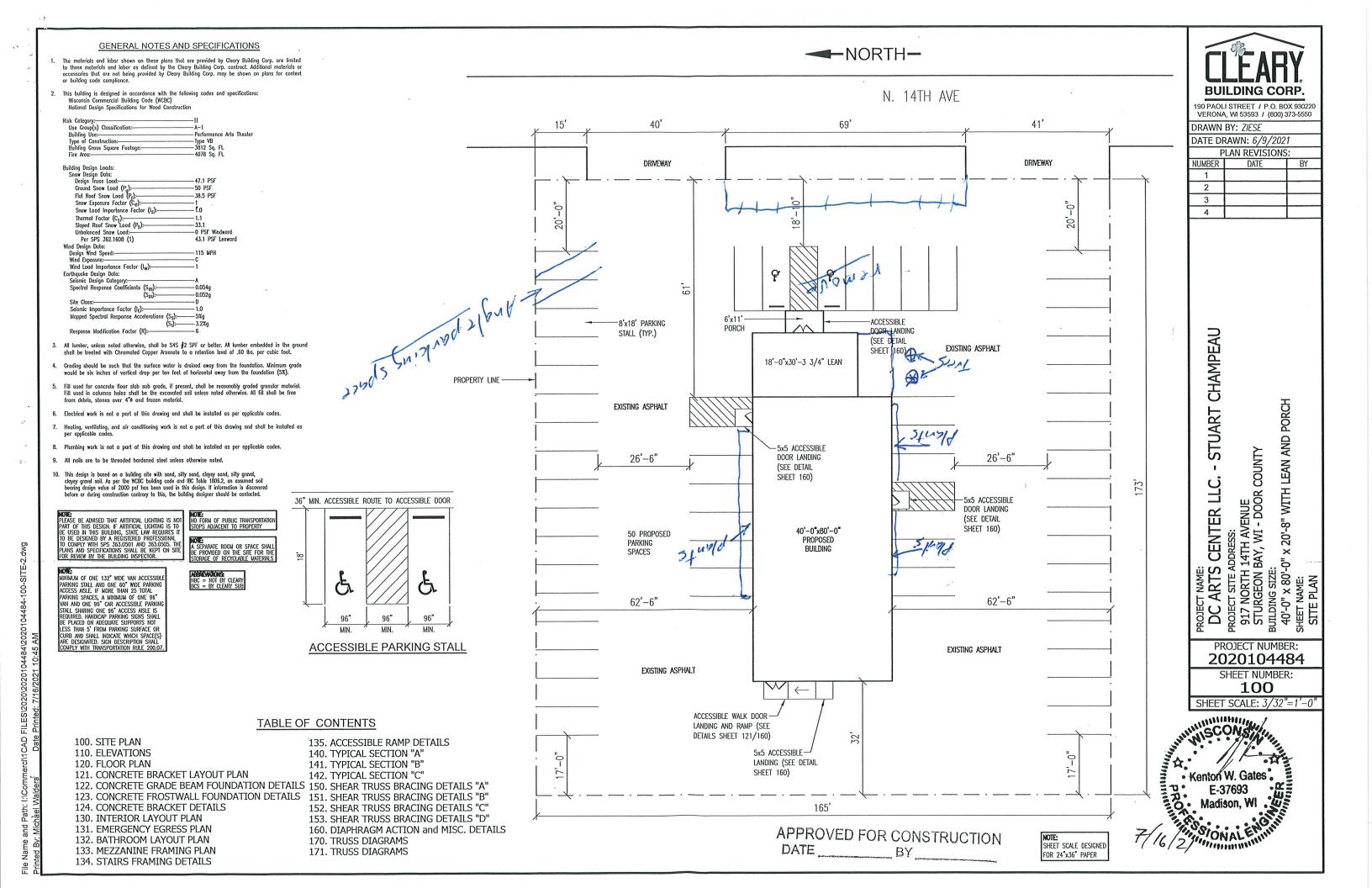
MEMO

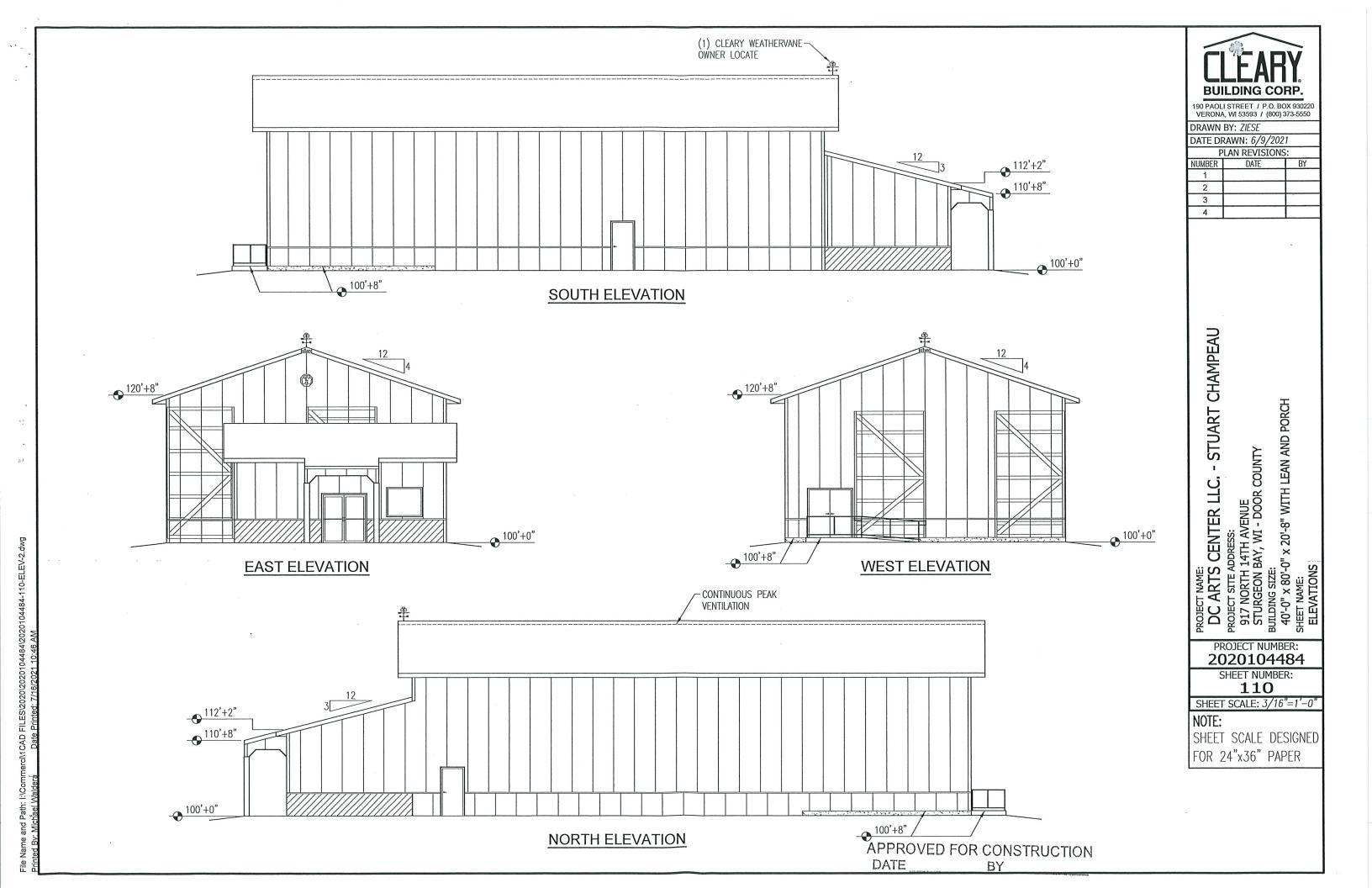
To: Aesthetic Design and Site Plan Review Board

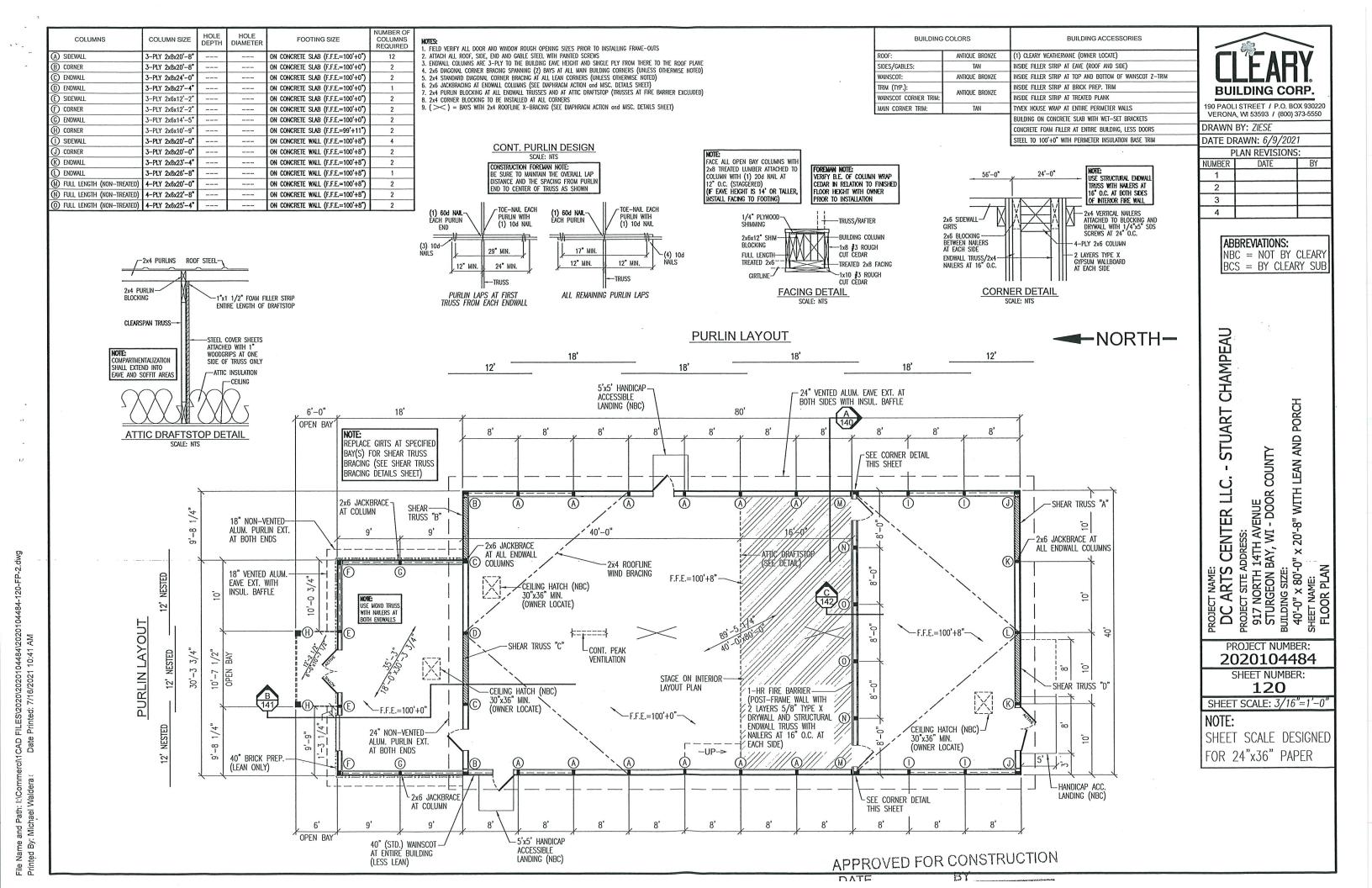
From: Christopher Sullivan-Robinson

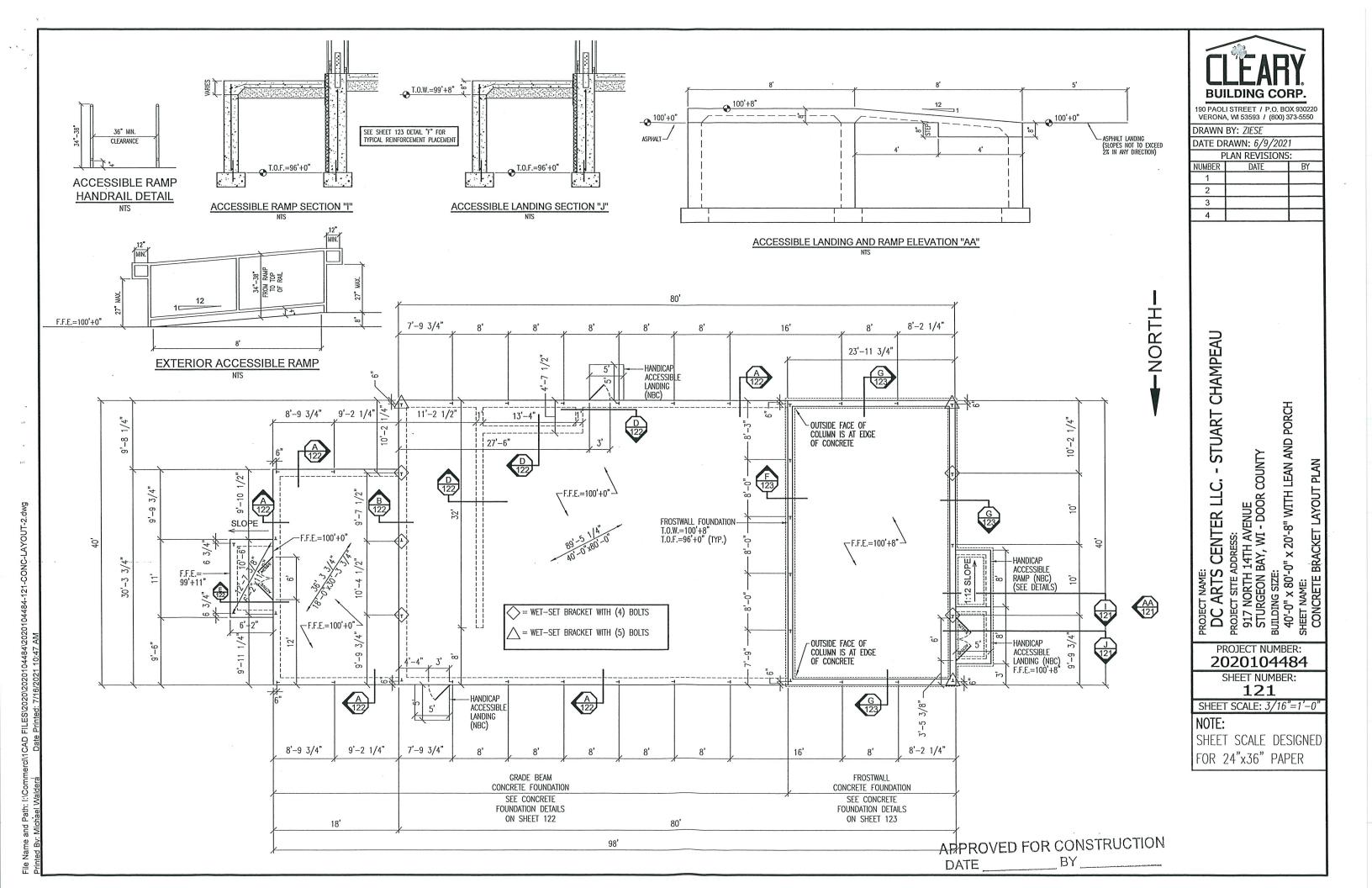
Date: October 14, 2021

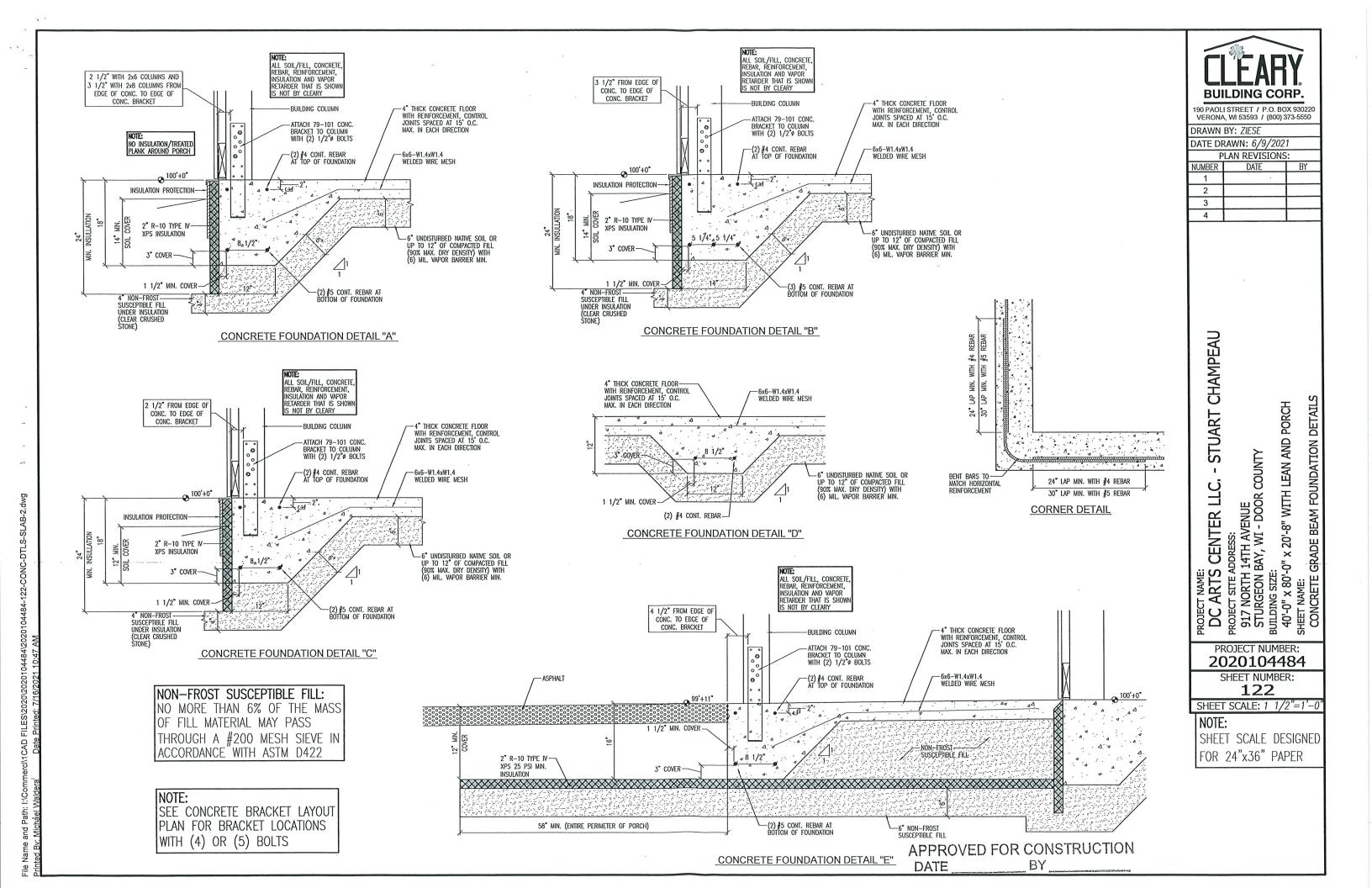

Subject: Construction of a 98' x 40' Theater Building located at 917 N 14th Avenue


Stuart Champeau representing DC Arts Center, LLC is requesting approval for the construction of a 98' x 40' building to be located at 917 N 14th Avenue. This site is currently vacant and previously contained an old carwash facility. It is important to know that this approval is solely for the building and the building footprint. The parking lot, landscaping, signage, and lighting will need to be reviewed at a later time and should be made a condition of any approval granted. Based on your guidelines the most applicable sections are as follows:


(1) Site layout.


- (b) The site shall be designed to accomplish a desirable transition from the public streetscape, and between commercial, industrial, and residential land use areas.
- (d) Where possible, buildings should be situated on the site to promote and protect public views to and along shorelines from public roads and other public lands.
- (g) Where a pattern of relatively consistent building setbacks exists on a street, new buildings should be situated to closely match such setback pattern.
- (2) Access, circulation and parking.
 - (a) Vehicular driveways into the site shall be located in a manner to minimize traffic congestion and difficult turning movements and shall be coordinated with existing and proposed access points on adjoining or nearby properties. Individual developments having more than one access points per street are discouraged and shared access driveways with adjoining properties is encouraged.
 - (b) The interior circulation of the site shall be designed to provide for the convenient and safe flow of pedestrians and non-pedestrian traffic through the site and to/from public streets or sidewalks.
 - (d) Off-street parking located to the rear or side of buildings is preferred over parking between the building and the street, particularly if the amount of off-street parking supplied is greater than required under the zoning code. For stand-alone buildings under 15,000 square feet, it is preferable that not more than one tier (single row or double row) of parking be located between the building and the street it fronts.


- (f) Permeable surfaces, bioswales, rain gardens, and other forms of stormwater runoff prevention for parking and on-site traffic areas are encouraged.
- (3) Building design.
 - (a) Buildings shall not be limited to a preferred type of architecture or building materials. However, architectural styles, which are generally not common to Sturgeon Bay or Northeastern Wisconsin, are discouraged.
 - (b) Buildings should be sited and designed to be aesthetically pleasing as viewed from adjoining public streets. Excessively long, unbroken building facades shall be avoided. Building materials and design features shall be consistent with the general design theme and/or proposed use of the development.
 - (d) Buildings on in-fill sites shall be compatible with surrounding buildings in terms of scale, massing, height, entrances, and windows.
 - (e) Rhythm/re-occurring patterns in windows and storefronts are encouraged.
 - (f) Building components, such as windows, doors, eaves, and parapet, should be in proportionate scale in relationship to one another.
 - (g) The use of door and window canopies and awnings is encouraged.
 - (h) The use of special architectural features, including projecting windows, towers, turrets, arches and cupolas are encouraged, particularly on corner buildings.
 - (j) Designs seeking Leadership in Energy and Environmental Design (LEED) certification are encouraged.
 - (m) Blank walls viewable from the street are undesirable.
- (4) Materials and colors.
 - (b) The use of identical building materials on all sides of a building that are visible from public streets is encouraged.
 - (d) Metal siding is strongly discouraged except for industrial buildings or for facades not facing public areas such as streets or parking areas.



CONCRETE FOUNDATION DETAIL "F"

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE DATE DRAWN: 6/9/2021 PLAN REVISIONS: DATE 3

STUART CHAMPEAU

4

PROJECT NAME:

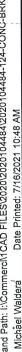
DC ARTS CENTER LLC. - STU
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND
SHEET NAME:
CONCRETE FROSTWALL FOUNDATION D

FOUNDATION DETAILS

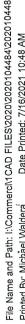
LEAN AND PORCH

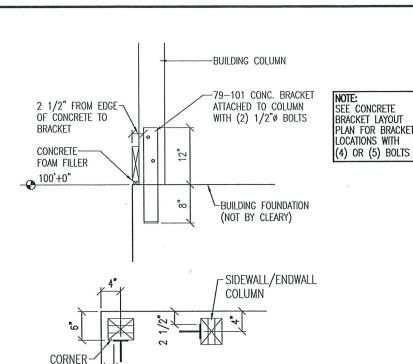
PROJECT NUMBER: 2020104484

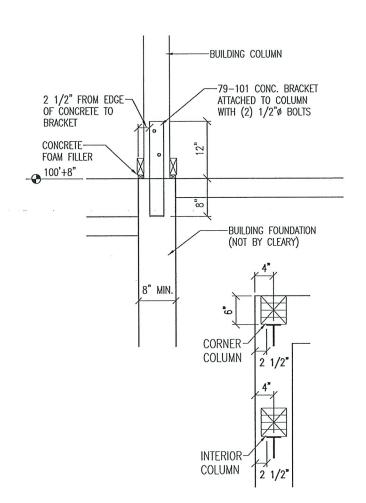
SHEET NUMBER: 123


SHEET SCALE: 1 1/2"=1'-0

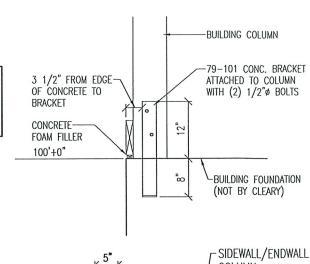
SHEET SCALE DESIGNED FOR 24"x36" PAPER

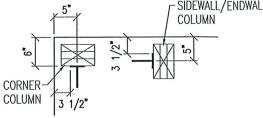

APPROVED FOR CONSTRUCTION DATE _____BY

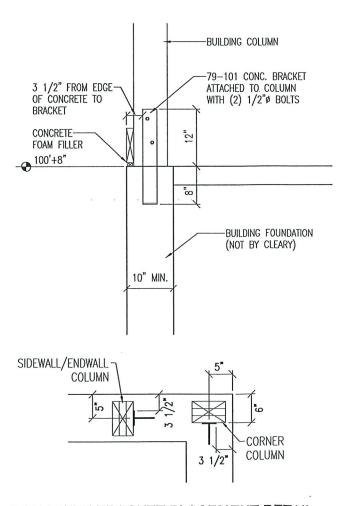

CONCRETE FOUNDATION DETAIL "G"



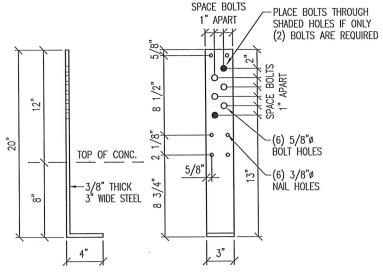
CONCRETE BRACKET PLACEMENT DETAIL AT GRADE BEAM WITH 3-PLY 2x6 COLUMNS

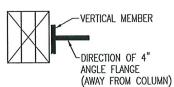

COLUMN


2 1/2"


CONCRETE BRACKET PLACEMENT DETAIL

AT 8" CONCRETE WALL WITH 4-PLY 2x6 COLUMNS




CONCRETE BRACKET PLACEMENT DETAIL AT GRADE BEAM WITH 2x8 COLUMNS

CONCRETE BRACKET PLACEMENT DETAIL

AT 10" CONCRETE WALL WITH 2x8 COLUMNS

STANDARD 79-101 CONCRETE BRACKET DETAIL

190 PAOLI STREET / P.O. BOX 930220

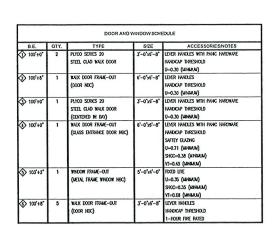
	VERONA, WI 53593 7 (800) 373-5550			
	DRAWN	BY: ZIESE		
DATE DRAWN: 6/9/2021				
	P	LAN REVISIONS	:	
	NUMBER	DATE	BY	
	1			
	2			
	3			

- STUART CHAMPEAU

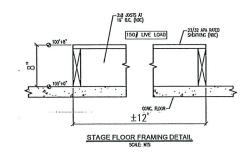
PROJECT NAME:

DC ARTS CENTER LLC. - STUART CH,
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND PORCH
SHEET NAME:
CONCRETE BRACKET DETAILS

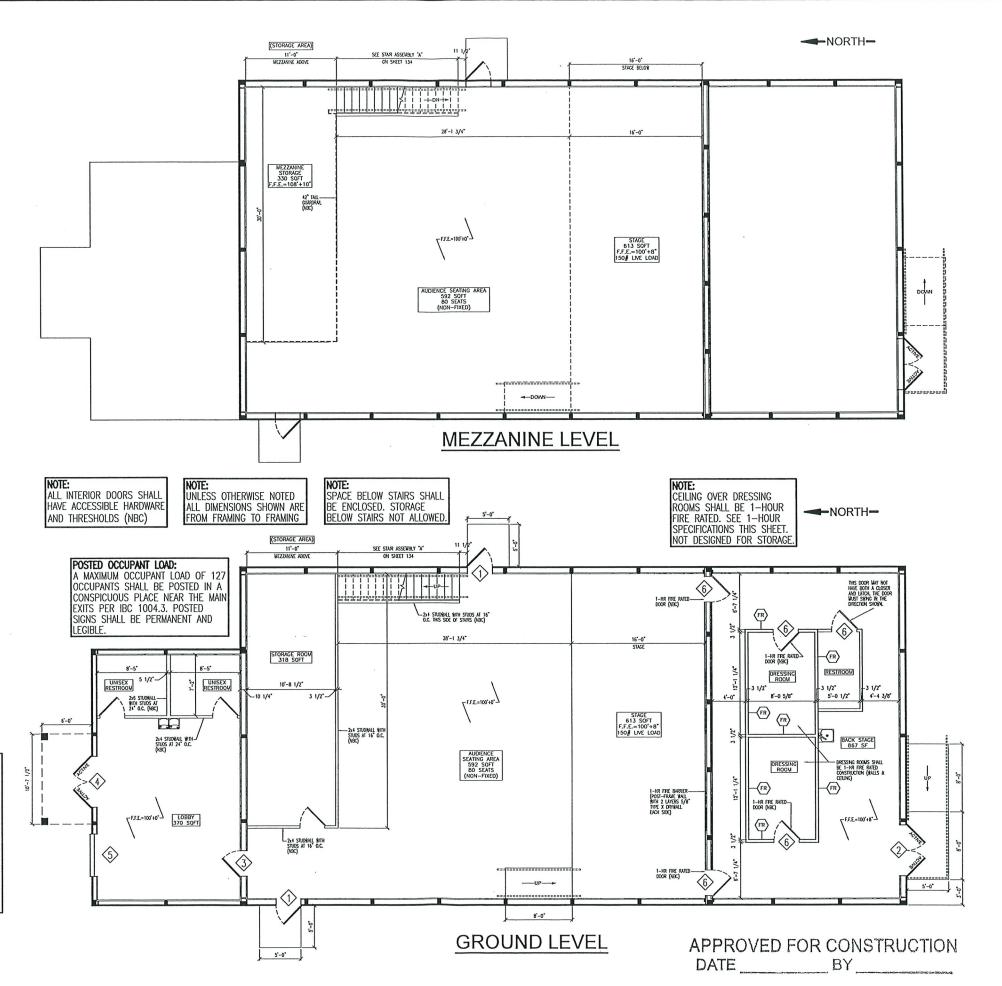
PROJECT NUMBER: 2020104484


SHEET NUMBER:

124 SHEET SCALE: NTS


NOTE:

APPROVED	FOR CONSTRUCTION
DATE	BY


1-HOUR FIRE RESISTANT WALLS/FLOOR NOTES

SYMBOLS:

FR = 1-HOUR FIRE BARRIER

PER GA FILE NO. WP 3514: ONE LAYER 5/8" TIPE "X" CYPSUM WALLBOARD OR GYPSUM VENEER BASE APPLIED PARALLEL OR AT RIGHT ANGLES TO EACH SOE OF 2X4/2X6 WOOD STUDS 16" O.C. WITH 1 1/4" TIPE W DRYMALL SCREWS 12" O.C.

1-HOUR FLOOR/CELING ASSEMELY PER BC 721 TABLE 721.1(3) \$21-1.1:
BUSE LAYER 5/8" THYE X CHYSIM WALLBOARD APPLIED AT RICHT ANGLES TO WOOD JOISTS 24" O.C. WITH 1
1/4" THYE W OR S DRYWALL SCREWS 24" O.C. FACE LAYER 5/8" THYE X GYSUM WALLBOARD OR GYPSUM
VENERE BUSE APPLIED AT RICHT ANGLES TO JOISTS WITH 1 7/8" THYE W OR S DRYWALL SCREWS 12" O.C. FACE LATER TYPE G DRYWLL SCREWS PLACED 2' BACK ON EITHER SIDE OF END JOHTS, JOHTS OFFSET 24" FROM BASE LAYER JOHTS, WOOD JOISTS SUPPORTING 23/32" RATED SHEATHING WITH EXTERIOR GLUE APPLIED AT RIGHT ANGLES TO JOISTS WITH 84 NALS.

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

DATE DRAWN: 6/9/2021

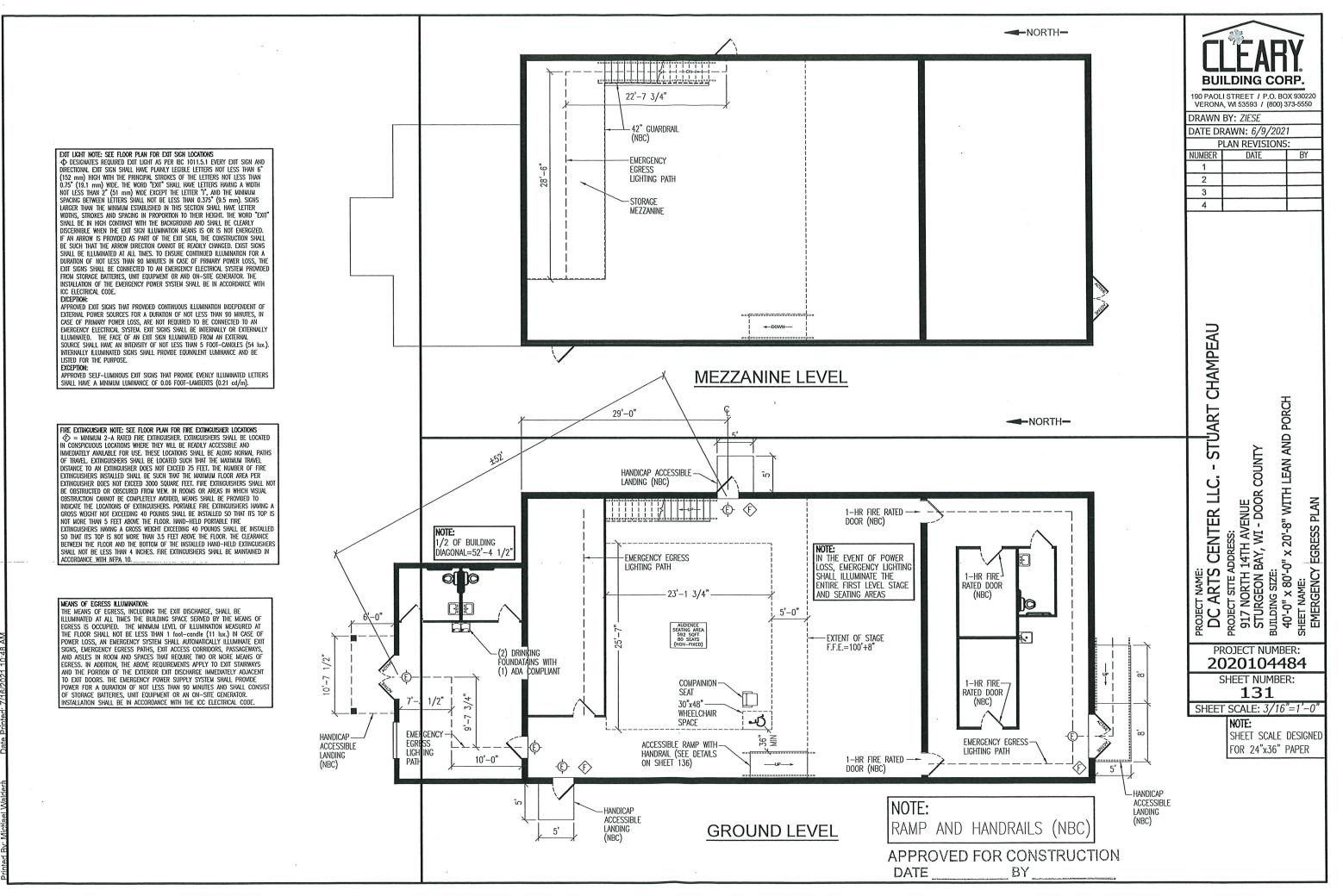
PLAN REVISIONS: DATE

3 4

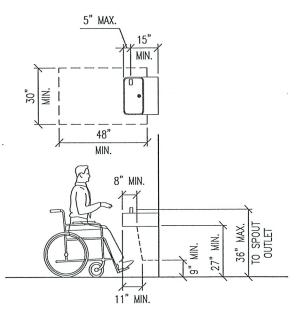
- STUART CHAMPEAU

PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND PORCH
SHEET NAME:
INTERIOR LAYOUT PLAN

PROJECT NAME: DC ARTS (

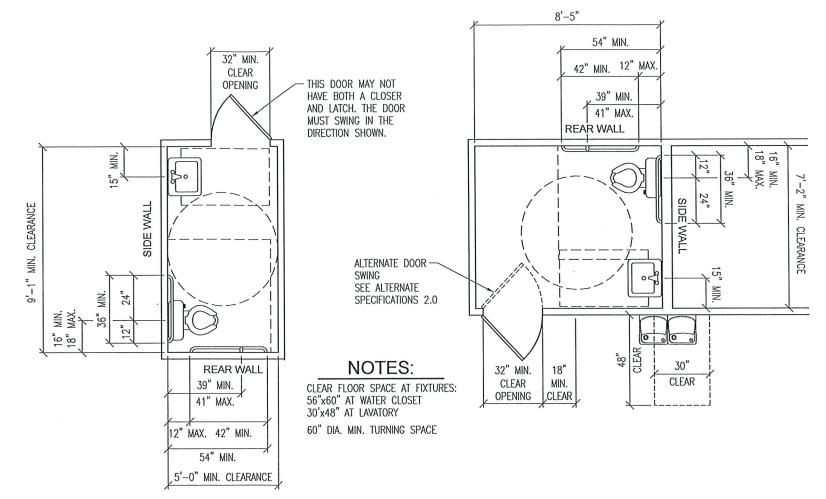

PROJECT NUMBER: 2020104484 SHEET NUMBER:

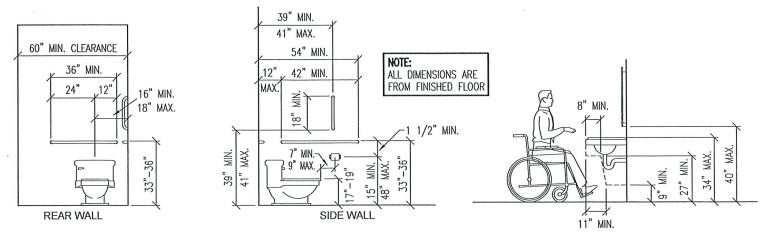
130


SHEET SCALE: 3/16"=1'-0"

NOTE:

CENTER LLC.




- 1.2 T-SHAPED SPACE: THE WHEELCHAIR TURNING SPACE SHALL BE A T-SHAPED SPACE WITHIN A 60° MINIMUM SQUARE WITH ARMS AND BASE 36° WIDE MINIMUM. EACH arm of the T shall be clear of obstructions 12° minimum in each direction and the base shall be clear of obstructions 24° minimum.
- 1.3 OMERIAP: CLEAR FLOOR OR GROUND SPACES, CLEARANCES AT FIXTURES, AND WHEELCHAIR TURNING SPACES SHALL BE PERMITTED TO OVERLAP.
- 2.0 DOORS: DOORS SHALL NOT SWING INTO THE CLEAR FLOOR OR GROUND SPACE OR CLEARANCE FOR ANY FIXTURE. EXCEPTION: WHERE THE ROOM IS FOR INDIMIDUAL USE AND A CLEAR FLOOR OR GROUND SPACE OF 30"x48" IS PROVIDED WITHIN THE ROOM, BEYOND THE ARC OF THE DOOR SWING.
- 4.0 WATER CLOSET LOCATION: THE WATER CLOSET SHALL BE POSITIONED WITH A WALL OR PARTITION TO THE REAR AND TO ONE SIDE. THE CENTERLINE OF THE WATER CLOSET SHALL BE 16" MINIMUM TO 18" MAXIMUM FROM THE SIDE WALL OR PARTITION
- 5.0 WATER CLOSET CLEARANCE: CLEARANCE AROUND THE WATER CLOSET SHALL BE 60° MINIMUM, MEASURED PERPENDICULAR FROM THE SIDE WALL, AND 56° MINIMUM, MEASURED PERPENDICULAR FROM THE REAR WALL NO OTHER FIXTURES OR OBSTRUCTIONS SHALL BE WITHIN THE WATER CLOSET CLEARANCE. THE CLEARANCE AROUND THE WATER CLOSET SHALL BE PERMITTED TO OVERLAP THE FIXTURE, ASSOCIATED GRAB BARS, TISSUE DISPENSERS, ACCESSIBLE ROUTES, AND CLEAR FLOOR OR GROUND SPACE, OR CLEARANCES AT OTHER PIXTURES AND THE WHEELCHAIR TURNING SPACE.
- 6.0 WATER CLOSET HEIGHT: THE TOP OF WATER CLOSET SEATS SHALL BE 17" MINIMUM TO 19" MAXIMUM ABOVE THE FLOOR OR GROUND. SEATS SHALL NOT RETURN
- 7.0 GRAB BARS: GRAB BARS SHALL HAVE A CIRCULAR CROSS SECTION WITH A DAMETER OF 1 1/4" MINIMUM AND 2" MAXIMUM. GRAB BARS WITH OTHER SHAPES SHALL BE PERMITTED PROVIDED THEY HAVE A PERMETER DIMENSION OF 4" MINIMUM AND 4.8" MAXIMUM AND WITH EDGES HAVING A 1/8" MINIMUM RADIUS. THE SPACING BETWEEN THE WALL AND THE GRAB BAR SHALL BE 1 1/2". THE SPACE BETWEEN THE GRAB BAR AND OBJECTS BELOW AND AT THE ENDS SHALL BE 1 1/2". MINIMUM. THE SPACE BETWEEN THE GRAB BAR AND PROJECTING OBJECTS ABOVE SHALL BE 12" MINIMUM. GRAB BARS SHALL BE MOUNTED IN A HORIZONTAL POSITION 33" MINIMUM AND 36" MAYIMUM ARCAE THE FLOOR, EXCEPTION: A VERTICAL GRAB BAR 18" MINIMUM IN LENGTH SHALL BE MOUNTED WITH THE BOTTOM OF THE BAR LOCATED BETWEEN 39" AND 41" ABOVE THE FLOOR, AND WITH THE CENTER LINE OF THE BAR LOCATED BETWEEN 39" AND 41" FROM THE REAR WALL GRAB BARS SHALL BE PROVIDED ON THE REAR WALL AND ON THE SIDE WALL CLOSEST TO THE WATER CLOSET. SIDE WALL GRAB BARS SHALL BE 42" LONG MINIMUM, 12" MAXIMUM FROM THE REAR WALL, AND EXTENDING 54" MINIMUM FROM THE REAR WALL THE REAR WALL GRAB BAR SHALL BE 24" LONG MINIMUM AND CENTERED ON THE WATER CLOSET.
- 8.0 LAVATORIES AND SINKS: A CLEAR FLOOR OR GROLIND SPACE OF 30"x48" POSITIONED FOR FORWARD APPROACH SHALL BE PROVIDED. THE FRONT OF LAVATORIES LAYAUKES AND SINKS SHALL BE 34" MAXIMUM ABOVE THE FLOOR OR GROUND, MEASURED TO THE HIGHER OF THE FAVORED SHALL BY AND SINKS SHALL BE 34" MAXIMUM ABOVE THE FLOOR OR GROUND, MEASURED TO THE HIGHER OF THE FAVORE MIN OR COUNTER SURFACE. FAVOETS SHALL HAVE OPERABLE PARTS THAT ARE OPERABLE WITH ONE HAND AND SHALL NOT REQUIRE TIGHT GRASPING, PINCHING, OR THISTING OF THE WRIST. THE FORCE REQUIRED TO ACTIVATE OPERABLE PARTS SHALL BE 5 POUNDS MAXIMUM. SINKS SHALL BE 6 1/2" DEEP MAXIMUM. WATER SUPPLY AND DRAIN PIPES UNDER LAYATORIES AND SINKS SHALL BE INSULATED OR OTHERWISE CONFIGURED TO PROTECT AGAINST CONTACT, THERE SHALL BE NO SHARP OR ABRASME SURFACES UNDER LAVATORIES
- 9.0 TOLET PAPER DISPENSERS: TOLET PAPER DISPENSERS SHALL BE OPERABLE WITH ONE HAND AND SHALL NOT REQUIRE TIGHT GRASPING, PINCHING, OR TWISTING OF THE WRIST. THE FORCE REQUIRED TO ACTIVATE OPERABLE PARTS SHALL BE 5 POUNDS MAXIMUM. TOLLET PAPER DISPENSERS SHALL 7" MINIMUM AND 9" MAXIMUM IN FRONT OF THE WATER CLOSET. THE OUTLET OF THE DISPENSER SHALL BE 15" MINIMUM AND 48" MAXIMUM ABOVE THE FLOOR OR GROUND. THERE SHALL BE A CLEARANCE OF 1 1/2" MINIMUM BELOW AND 12" MINIMUM ABOVE THE GRAB BAR. DISPENSERS SHALL NOT BE OF A TYPE THAT CONTROL DELIVERY, OR THAT DO
- 10.0 Surrounding imaterials: Toilet and Bathing room floors shall have a smooth, hard, non—absorbant surface that extends upward onto the walls at least 6 inches, walls within 2 feet of urnals and water closets shall have a smooth, hard, non—absorbant surface, to a height of 4 feet above the floor, and except for structural elements, the material used in such walls shall not be of a type that is not adversely affected by
- 11.0 LAYATORY SIZE: THESE ROOMS WERE DERIVED USING A LAYATORY WITH A MAXIMUM WIDTH OF 20" AND A MAXIMUM LENGTH OF 18". IF A LAYATORY WITH A WIDER OR LONGER DIMENSION IS USED, THE ROOM WIDTH AND/OR LENGTH WILL NEED TO BE INCREASED.

DRINKING FOUNTAIN CLEARANCES

WITH FRONT APPROACH

HANDRAILS AT WATER CLOSETS

LAVATORY CLEARANCES

APPROVED FOR CONSTRUCTION DATE BY

VERONA, WI 53593 / (800) 373-5550 DRAWN BY: ZIESE DATE DRAWN: 6/9/2021

PLAN REVISIONS: DATE

3 4

STUART CHAMPEAU

BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND PORCH
SHEET NAME:
RESTROOM LAYOUT DETAILS PROJECT NAME:

DC ARTS CENTER LLC. - STU
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY

PROJECT NUMBER: 2020104484

SHEET NUMBER: 132

SHEET SCALE: 1/2"=1'-0"

NOTE: SHEET SCALE DESIGNED

FOR 24"x36" PAPER

11'-10 1/4" SP 2400F-2.0E-2-PLY 2x12 DECK HEADER (SEE DETAIL ON SHEET 141) -2×10 RIM JOIST (TYP.) ATTACH JOISTS—
TO HEADER WITH
SIMPSON LUS210
HANGER WITH
(6) 10d NAILS
INTO HEADER AND
(4) 10d NAILS
THORUGH JOIST 80'-0"

and Path: I:\Commerc\\1CAD FILES\2020\2020104484\2020104484-133-DECK-2.dwg Michael Waldera Date Printed: 7/16/2021 10:49 AM

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

DATE DRAWN: 6/9/2021 PLAN REVISIONS:

DATE

- STUART CHAMPEAU

PROJECT NAME:

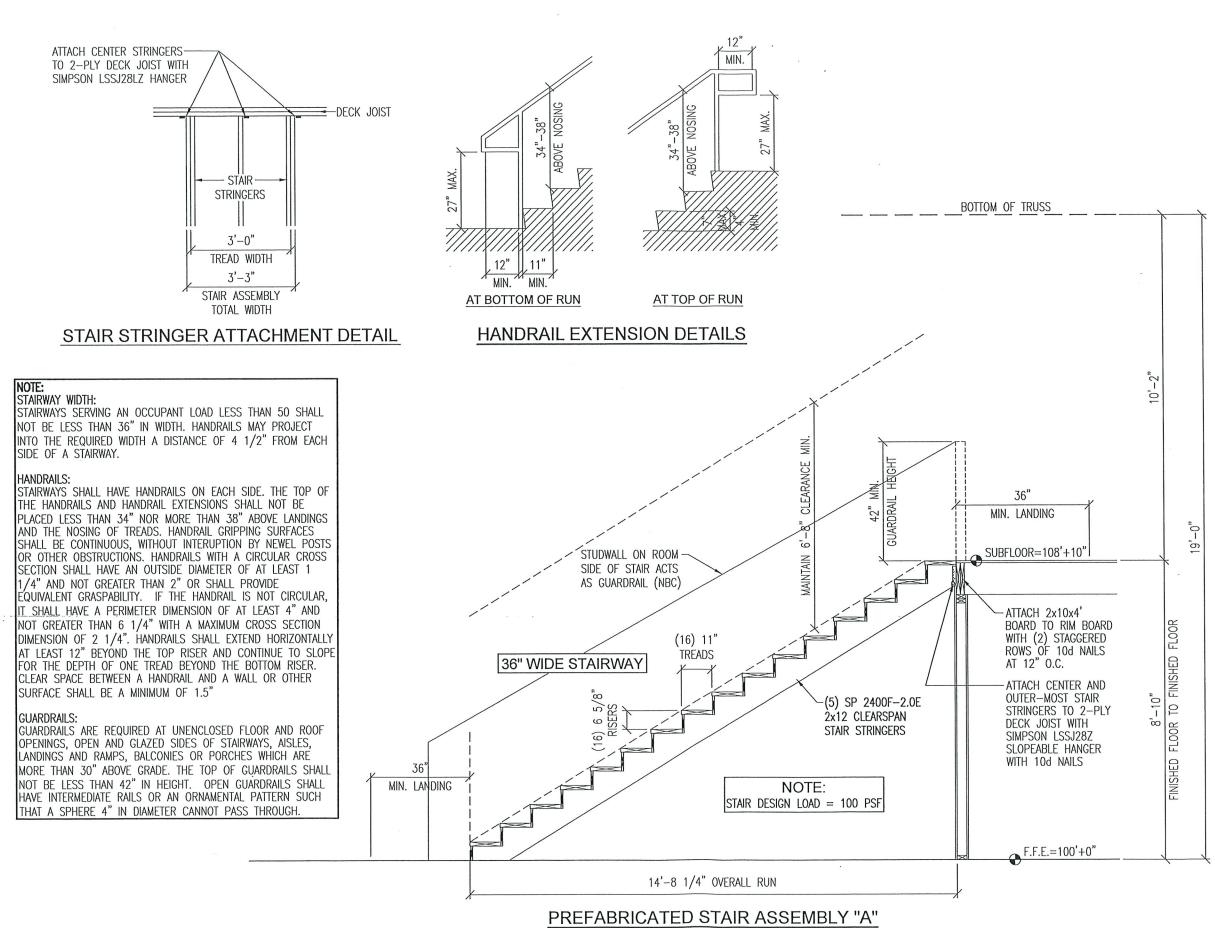
DC ARTS CENTER LLC. - STUART CH,
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" × 80'-0" × 20'-8" WITH LEAN AND PORCH
SHEET NAME:
MEZZANINE FRAMING PLAN

PROJECT NUMBER: 2020104484

SHEET NUMBER: 133

SHEET SCALE: 1/4"=1'-0"

NOTE:


SHEET SCALE DESIGNED FOR 24"x36" PAPER

APPROVED FOR CONSTRUCTION DATE _____BY____

─NORTH**-**

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE DATE DRAWN: 6/9/2021

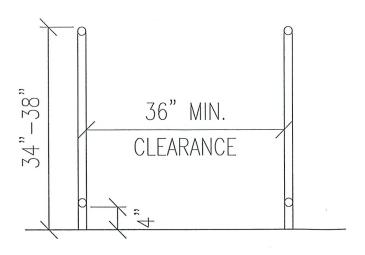
PLAN REVISIONS: NUMBER DATE 3

4

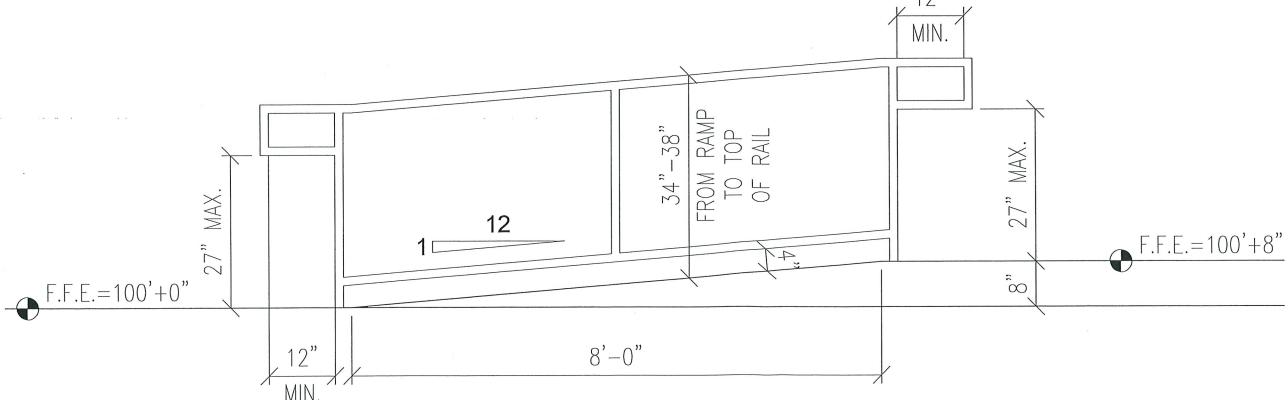
STUART CHAMPEAU

BUILDING SIZE: 40'-0" x 80'-0" x 20'-8" WITH LEAN AND PORCH SHEET NAME: STAIR FRAMING DETAILS PROJECT NAME:

DC ARTS CENTER LLC. - STU
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY


PROJECT NUMBER: 2020104484

SHEET NUMBER: 134


SHEET SCALE: 3/4"=1'-0"

SHEET SCALE DESIGNED FOR 24"x36" PAPER

APPROVED FOR CONSTRUCTION DATE _____ BY ____

ACCESSIBLE RAMP HANDRAIL DETAIL

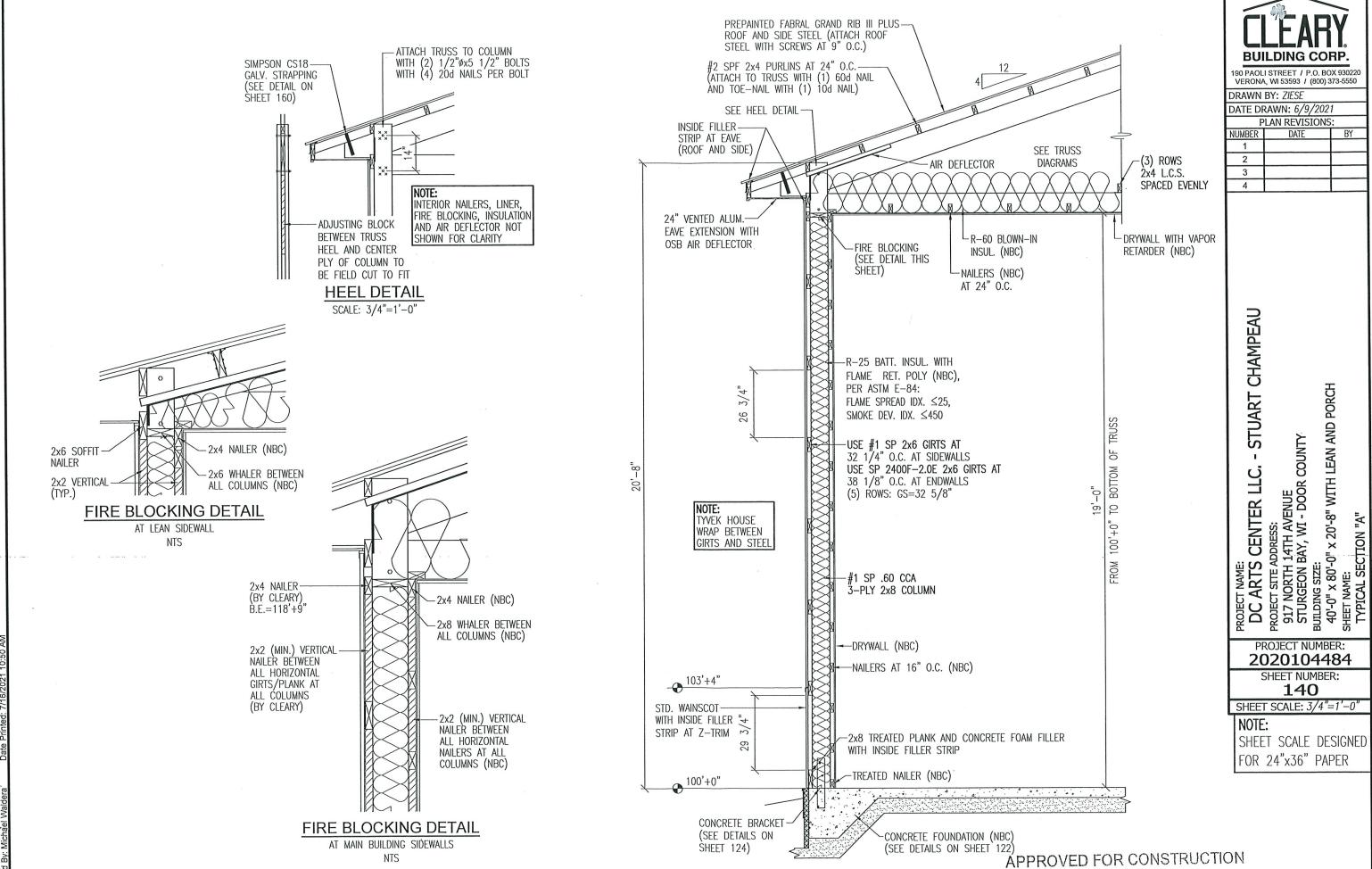
DATE DRAWN: 6/9/2021
PLAN REVISIONS:
NUMBER DATE

PROJECT NAME: DC ARTS CENTER LLC. - STUART CHAMPEAU

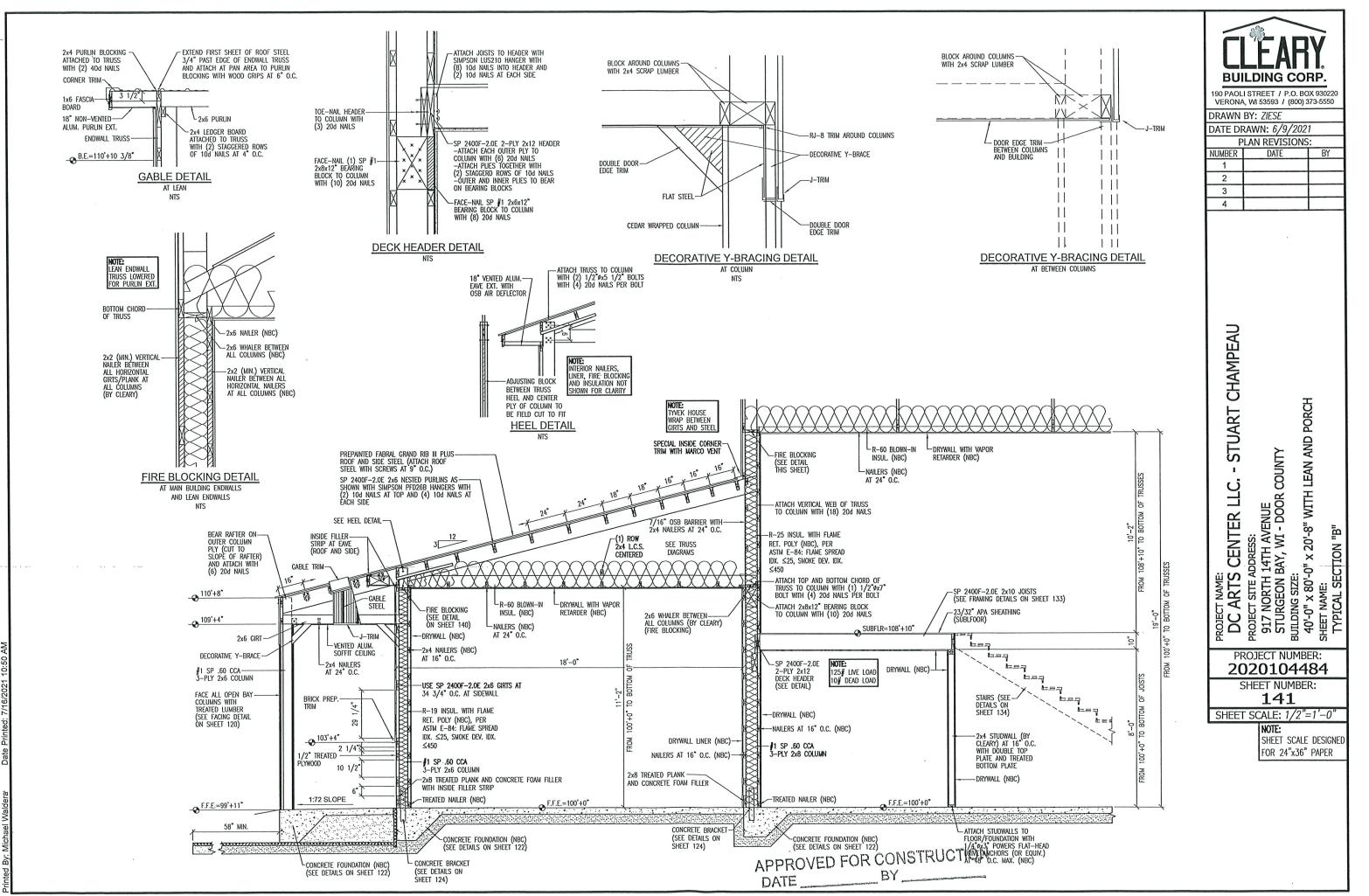
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND PORCH

PROJECT NUMBER: 2020104484

SHEET NUMBER: 135


SHEET SCALE: 1 1/2"=1'-0

SHEET SCALE DESIGNED FOR 24"x36" PAPER


ACCESSIBLE STAGE RAMP

APPROVED FOR CONSTRUCTION

nerc\\1CAD FILES\\2020\\2020104484\\2020104484-135-RAMP-2.dwg Date Printed: 7/16\\202021 10:49 AM

DATE

Name and Path: I:\Commerc\\1CAD FILES\2020\2020104484\2020104484-14

UL DESIGN NO V304 ASSEMBLY SPECIFICATIONS:

NOM. 5/8" THICK TYPE X GYPSUM BOARD

BOARD SECURED TO THE WOOD GIRTS AS

O.C. ALONG THE VERITCAL EDGE TO THE

FOLLOWS:

COLUMNS.

24" O.C.

NOTE:

APPLIED HORIZONTALLY. JOINTS IN ADJACENT

LAYERS ARE STAGGERED A MIN. 16". GYPSUM

FIRST LAYER FASTENED WITH 2" LONG TYPE W COARSE THREADED SCREWS SPACED MAX. 24" O.C. ALONG THE HORIZONTAL EDGE AND MAX. 8'

SECOND LAYER FASTENED WITH 2 1/2" LONG

TYPE W COARSE THREADED SCREWS SPACED MAX.

RECOMMENDED EXTERIOR LAYER AND LAYERS IN

CONTACT WITH CONCRETE: USG SHEET ROCK

ALL SCREWS ARE OFFSET MIN. 6" FROM

FIRECODE X (UL TYPE SHX)

ADJACENT LAYERS

PREPAINTED FABRAL 2x6 WHALER GRAND RIB III PLUS ROOF AND SIDE STEEL LU24 HANGERS-2x4 PURLINS-STRUCTURAL ENDWALL TRUSS WITH NAILERS AT 16" O.C. AT EACH SIDE OF COLUMN. FASTEN 6" O.C. AT EACH SIDE OF COLUMN TOP AND BOTTOM CHORDS TO COLUMNS WITH (4) 16d NAILS FASTEN 2x6 TRUSS VERTICALS WITH (4) 16d NAILS EVENLY SPACED BETWEEN HORIZONTAL NAILERS /-(3) ROWS 2x4 L.C.S. TRUSS B.E.=119'+0" ATTACH L.C.S. TO 2x4--R-60 BLOWN-IN BLOCK WITH (2) INSUL. (NBC) 1/4"x5" SDS SCREWS └─NAILERS (NBC) 2x4 BLOCK ATTACHED~ AT 24" O.C. TO NAILER AND BOTTOM CHORD OF TRUSS DRYWALL WITH VAPOR RETARDER (NBC) -6" R-19 UNFACED BATT. INSUL. (NBC) -#1 SP NON-TREATED 4-PLY 2x6 COLUMN -2 LAYERS 5/8" TYPE X GYPSUM WALLBOARD LAYER EACH SIDE OF COLUMN (NBC) -NAILERS AT 16" O.C. AT EACH SIDE OF COLUMN FASTEN TO COLUMN WITH (2) 16d NAILS (NBC) ─2x6 BLOCKING BETWEEN NAILERS FASTENED TO COLUMNS WITH (4) 16d NAILS EVENLY SPACED F.F.E=100'+8' 100'+8"

CONCRETE BRACKET-

(SEE DETAILS ON SHEET 123)

-2x6 FASTENED THROUGH DRYWALL INTO TRUSS WITH 1/4"x5" SDS SCREWS AT SPACED EVENLY

> CONCRETE FOUNDATION (NBC) (SEE DETAILS ON SHEET 123)

APPROVED FOR CONSTRUCTION

- STUART CHAMPEAU

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

2

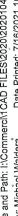
3

4

DATE DRAWN: 6/9/2021 PLAN REVISIONS: DATE

BUILDING SIZE: 40'-0" × 80'-0" × 20'-8" WITH LEAN AND PORCH PROJECT NAME:

DC ARTS CENTER LLC. - STU
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY


PROJECT NUMBER: 2020104484 SHEET NUMBER:

142

SHEET SCALE: 3/4"=1'-0"

NOTE:

By:

ENDWALL TRUSS-BOTTOM CHORD OF ENDWALL TRUSS ATTACHED TO BUILDING #1 SP 2x6 NAILER FIT TIGHT BETWEEN COLUMNS WITH (7) 20d NAILS COLUMNS AND ATTACHED TO BOTTOM CHORD OF TRUSS AND TOP OF SHEAR TRUSS WITH 10d NAILS AT 4" O.C. OR 2 3/4"x.120 GUN NAILS AT 2" O.C. SHEAR TRUSS ATTACHED TO BUILDING COLUMNS WITH 20d NAILS AT 6" O.C. OR 3 1/2"x.131 GUN NAILS AT 3" O.C. BUILDING COLUMN - DOUBLE #1 SP 2x6 NAILER FIT TIGHT BETWEEN COLUMNS AND ATTACHED TO 2x8 TREATED PLANK AND BOTTOM OF SHEAR TRUSS WITH 20d NAILS AT 8" O.C. OR 3 1/2"x.131 GUN NAILS AT 3" O.C. 2x8 TREATED PLANK ATTACHED TO BUILDING COLUMNS WITH (7) 20d NAILS

ENDWALL SHEAR TRUSS SECTION

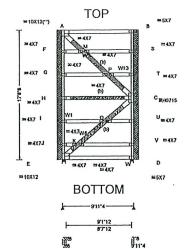
-BUILDING COLUMN

SHEAR TRUSS

SHEAR TRUSS DETAIL

AT BUILDING COLUMN

2x6 WALL GIRTS-


ATTACHED TO (1) PLY OF BUILDING

COLUMN

2x6 WALL GIRTS-BUILDING COLUMN-SHEAR TRUSS SHEAR TRUSS DETAIL AT CORNER COLUMN

SEQN: 23382 FLAT Ply: 1 Job Number: 2020104484 FROM: ZEW Qty: 1 Truss Label: SA9-11-4X17-8-8SHEAR2650 TOP FOREMAN NOTE: TO ENSURE PROPER

INSTALLATION OF SHEAR TRUSS, PLEASE NOTE TOF AND BOTTOM NOTED ON DIAGRAM AND VERIFY ENDWALL GIRT SPACING PRIOR TO INSTALLATION

ing Criteria (psf)	Wind Criteria	Snow Criteria (Pg,Pf in PSF)	Defl/CSI Criteria	▲ Maximum Reactions (II	
1.00	Wind Std:	Pg: NA Ct: NA CAT: NA	PP Deflection in loc L/defl L/#	Gravity	Non-Gravity
: 1,00	Speed:		VERT(LL): 0.008 B 999 240	Loc R+ /R- /Rh	/Rw /U /RL
: 0.00	Enclosure:	Lu: NA Cs: NA	VERT(CL): 0.008 B 999 180	E 103 /- /31	/261 /242 /1313
. 1.00	Risk Category:	Snow Duration: NA	HORZ(LL): -0.096 B	W 103 /- /31	/326 /307 /1312
4. 3 UV I	EXP: Kzt:		HORZ(TL): 0.096 B	Wind reactions based on M	MWFRS
211.20.00	Mean Height:	Building Code:	Creep Factor: 2.0	E Brg Width = 5.5	Min Req = 5.5
0.00	TCDL: BCDL:	IBC 2015	Max TC CSI: 0.046	W Brg Width = 5.5	Min Req = 5.5
	MWFRS Parallel Dist:	TPI Std: 2014	Max BC CSI: 0.989	Bearings E & W are a rigid	
		Rep Fac: Varies by Ld Case	Max Web CSI: 1.000	Members not listed have for	
	C&C Dist a:		max rroz don mode	Maximum Top Chord For	rces Per Ply (lbs)
	Loc. from endwall:	FT/RT/PT:20(20)/10(10)/4(0)		Chords Tens.Comp.	
	GCpl:	Plate Type(s):			
	Wind Duration:	WAVE, HS	VIEW Ver: 18.02.01A.0205.19	A - B 2629 - 2631	

Lumber

TCLL:

TCDL: BCLL:

BCDL:

Des Ld

NCBCL

Soffit:

Load D

Spacin

Top chord: 2x6 SP 2400f-2.0E; Bot chord: 2x6 SP 2400f-2.0E; Webs: 2x6 SP 2400f-2.0E; W1,W13 2x4 SP #2; W5, W8 2x8 SP 2400f-2.0E:

(b) #3 or better scab reinforcement. Same size & 80% length of web member. Attach with 10d Box or Gun (0.128"x3",min.)nails @ 6" oc.

In lieu of rigid sheathing use purlins to brace TC @ 24" oc

See Cleary Building Corp. drawings for bearing attachment and bottom chord bracing details. This design applies to both open wall and enclosed wall buildings. Loading

Truss transfers a maximum horizontal load of 2650 # (283.30 plf) along top chord, from either direction, to supports where indicated. Diaphragm and Case 1: 2650 283.30 BC 0.29 9.65

Bottom chord checked for 20.00 psf non-concurrent bottom chord live load applied per IBC-15 section

Maximum Bot Chord Forces Per Ply (lbs) Chords Tens.Comp.

Cust: R 7054 JRef: 1WZO70540008 T2901

10/20/2020

DrwNo: 294.20.1321.52990

DEH / AHF

1325 - 1325 E-D

3422 - 3422

Maximum Web Forces Per Ply (lbs) Webs Tens. Comp Webs Tens.Comp. 2388 - 2398 3528 - 3528 0-C 3435 - 3435 2424 - 2434 P-C 3558 - 3558 1989 - 1998 3405 - 3405 C-U 1634 - 1643 S-T 1680 - 1689 -743 734 780 - 789 S-B 2534 - 2543 1011 - 1020 T-C H-1 1089 - 1098 U-V 1911 - 1920

BRUCE ALAN FELDMANN E-26209 ST. LOUIS, MO

APPROVED FOR CONSTRUCTION DATE

WARNING READ AND FOLLOW ALL NOTES ON THIS DRAWING!

IMPORTANT FURNISH THIS DRAWING TO ALL CONTRACTORS INCLUDING THE INSTALLERS

Trusses require extreme care in fabricating, handling, shipping, installing and bracing. Refer to and follow the latest edition of BCSI (Building Component) Safety Information, by TPI and SBCA) for safety practices prior to performing these functions. Installers shall provide temporary bracing per BCSI, Unless noted otherwise, top chord shall have properly attached structural sheathing and bottom chord shall have a properly attached night ceiling. Locations shrown for permanent lateral restraint of webs shall have bracing installed per BCSI sections B3, B7 or B10, as applicable. Apply plates to each face of truss and position as shown above and on the Joint Details, unless noted otherwise. Refer to drawings 160A-Z for standard plate positions. Refer to job's General Notes page for additional information.

Alpine, a division of ITW Building Components Group Inc. shall not be responsible for any deviation from this drawing, any failure to build the truss in conformance with ANSI/TPI 1, or for handling, shipping, installation and bracing of trusses. A seal on this drawing or cover page listing this drawing, indicates acceptance of professional engineering responsibility solely for the design shown. The suitability and use of this drawing for any structure is the responsibility of the Building Designer per ANSI/TPI 1 Sec.2.

For more information see these web sites: Alpine: alpineitw.com; TPI: tpinst.org; SBCA: sbcindustry.com; ICC: iccsafe.org; AWC: awc.org

190 PAOLI STREET / P.O. BOX 93022 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

DATE DRAWN: 6/9/2021 PLAN REVISIONS: DATE

2 3

ABBREVIATIONS:

NBC = NOT BY CLEARY

BCS = BY CLEARY SUB

CHAMPEAU STUART

CENTER LLC.

CT NAME:

2

BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND
SHEET NAME:
SHEAR TRUSS BRACING DETAILS "A"

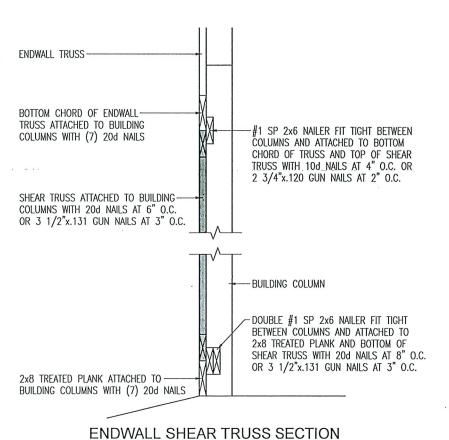
PORCH

PROJECT SITE ADDRESS: 917 NORTH 14TH AVENUE STURGEON BAY, WI - DOOR

PROJECT NUMBER: 2020104484

SHEET NUMBER:

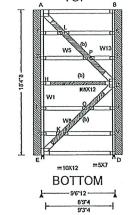
150 SHEET SCALE: NTS


SHEET SCALE DESIGNED FOR 24"x36" PAPER

Earth City, Missouri 63045

-2x8 VERTICAL UP TO BOTTOM OF MONO TRUSS ATTACHED TO COLUMN (2) 2x8 VERTICALS UP-WITH 10d NAILS AT 12" O.C. TO EAVE HEIGHT AND ATTACHED TO -2x6 WALL GIRTS BUILDING COLUMN COLUMN/VERTICAL WITH 10d NAILS STAGGERED BUILDING COLUMN 2x6 WALL GIRTS AT 12" O.C. ATTACHED TO (1) PLY OF BUILDING SHEAR TRUSS-COLUMN SHEAR TRUSS DETAIL SHEAR TRUSS DETAIL

AT BUILDING COLUMN


AT CORNER COLUMN

SEQN: 489570 FROM: MJS Loading Criteria (psf) TCLL: 1.00 TCDL: 1.00 BCLL: 0.00 BCDL: 1.00 Des Ld: 3.00 NCBCLL: 20.00 Soffit: 2.00 Load Duration: 1.60 Spacing: 12.0 " Top chord: 2x6 SP 2400f-2.0E; Bot chord: 2x6 SP 2400f-2.0E; Webs: 2x6 SP 2400f-2.0E; W1,W13 2x4 SP #2; W5, (b) #3 or better scab reinforcement. Same size & 80% length of web member. Attach with 10d Box or Gun (0.128"x3",min.)nails @ 6" oc. See Cleary Building Corp. drawing for bearing attachment and bottom chord bracing details. This designs applies to both open wall and enclosed wall buildings.

FLAT Ply: 1 Job Number: 2020104484 Cust: R 7054 JRef: 1WYS70540003 T2898 DrwNo: 262,20,0940,06710 Qty: 1 Truss Label: SB9-6-12X18-4-8SHEAR2550 / FK 09/18/2020 TOP

FOREMAN NOTE: TO ENSURE PROPER INSTALLATION OF SHEAR TRUSS, PLEASE NOTE TOF AND BOTTOM NOTED ON DIAGRAM AND VERIFY ENDWALL GIRT SPACING PRIOR TO INSTALLATION

Plates 4X7 Unless Noted Snow Criteria (Pg,Pf in PSF) Defl/CSI Criteria ▲ Maximum Reactions (lbs) Pg: NA Ct: NA CAT: NA PP Deflection in loc L/defl L/# VERT(LL): 0.006 B 999 240 Pf: NA Ce: NA Lu: NA VERT(CL): 0.006 B 999 180 E 99 Cs: NA HORZ(LL): -0.100 B -Snow Duration: NA HORZ(TL): 0.100 B Building Code: Creep Factor: 2.0 IBC 2018 Max TC CSI: 0.042 TPI Std: 2014 Max BC CSI: 0.987

Max Web CSI: 1.000 Rep Fac: Varies by Ld Case FT/RT/PT:20(20)/10(10)/4(0) Plate Type(s): VIEW Ver: 18.02.01A.0205.19 WAVE

Gravity Non-Gravity Loc R+ /R-/Rw /U /RL /Rh /21 /283 /266 /1264 D 99 121 /349 /331 /1264 Wind reactions based on MWFRS E Brg Width = 3.5 Min Reg = 3.5D Brg Width = 3.5 Min Req = 3.5 Bearings E & D are a rigid surface. Members not listed have forces less than 375# Maximum Top Chord Forces Per Ply (lbs) Chords Tens.Comp.

2529 - 2531

Loading Truss transfers a maximum horizontal load of 2550 # (283.99 plf) along top chord, from either direction, to supports where indicated. Diaphragm and

connections are to be designed by Engineer of Record.

Drag Loads: Force(#) (PLF) Mbr Start End

Case 1: 2550 283.99 TC 0.29 9.27

2550 283.99 BC 0.29 9.27

Maximum Bot Chord Forces Per Ply (lbs) Chords Tens.Comp.

E - D 1275 - 1275

Maximum Web Forces Per Ply (lbs) Webs Tens.Comp. Webs Tens. Comp. A-F 2388 - 2397 I - P 3470 - 3470 A - L 3454 - 3454 0-0 3478 - 3478 E-J 2626 - 2635 P-C 3482 - 3482 3451 - 3451 C-U 2160 -2169 1678 - 1687 S-T 1638 - 1647 G-H 776 - 785 S-B 736 -745 H-1 1020 - 1029 T-C 2540 - 2549 1922 - 1931 U-V 1258 - 1267 K-0 3465 - 3465

WI COA #2902-011

APPROVED FOR CONSTRUCTION

DATE

WARNING* READ AND FOLLOW ALL NOTES ON THIS DRAWINGI

IMPORTANT FURNISH THIS DRAWING TO ALL CONTRACTORS INCLUDING THE INSTALLERS

Trusses require extreme care in fabricating, handling, shipping, installing and bracing. Refer to and follow the latest edition of BCSI (Building Component Safety Information, by TPI and SBCA) for safety practices prior to performing these functions. Installers shall provide temporary bracing per BCSI. Unless noted otherwise, top chord shall have properly attached structural sheathing and bottom chord shall have a properly attached rigid ceiling. Locations shown for permanent lateral restraint of webs shall have bracing installed per BCSI sections 83, B7 or B10, as applicable. Apply plates to each face of truss and position as shown above and on the Joint Details, unless noted otherwise. Refer to drawings 160A-Z for standard plate positions. Refer to job's General Notes page for additional information.

Alpine, a division of ITW Building Components Group Inc. shall not be responsible for any deviation from this drawing, any failure to build the truss in conformance with ANSI/TPI 1, or for handling, shipping, installation and bracing of trusses. A seal on this drawing or cover page listing this drawing, indicates acceptance of professional engineering responsibility solely for the design shown. The suitability and use of this drawing for any structure is the responsibility of the Building Designer per ANSI/TPI 1 Sec.2.

For more information see these web sites: Alpine: alpineitw.com; TPI: tpinst.org; SBCA: sbcindustry.com; ICC: iccsafe.org; AWC: awc.org

514 Earth City Expressway Suite 242 Earth City, Missouri 63045

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

DATE DRAWN: 6/9/2021

PLAN REVISIONS: DATE 2 3

ABBREVIATIONS:

4

NBC = NOT BY CLEARY BCS = BY CLEARY SUB

STUART CHAMPEAU

PROJECT NAME:

DC ARTS CENTER LLC. - STUART CH,
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND PORCH
SHEET NAME:
SHEAR TRUSS BRACING DETAILS "B"

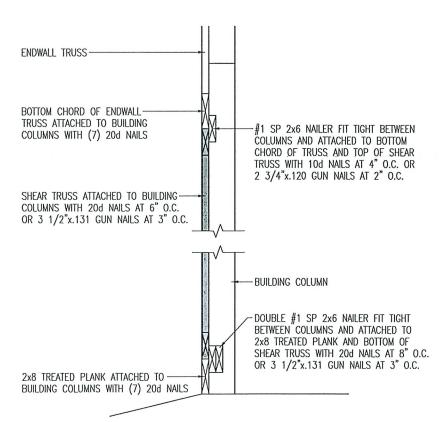
PROJECT NUMBER: 2020104484

SHEET NUMBER: 151

SHEET SCALE: NTS

MONO TRUSS-

2x4 NAILERS -


COLUMN

ATTACHED TO (1)

PLY OF BUILDING

. Ву:

-MONO TRUSS -BUILDING COLUMN BUILDING COLUMN-ATTACHED TO (1) PLY OF BUILDING -SHEAR TRUSS SHEAR TRUSS-COLUMN SHEAR TRUSS DETAIL SHEAR TRUSS DETAIL AT BUILDING COLUMN AT BUILDING COLUMN

ENDWALL SHEAR TRUSS SECTION

SEQN: 489573 FLAT Ply: 1 Job Number: 2020104484 FROM: MJS Qty: 1 Truss Label: SC10-1-8X18-4-8SHEAR2550

> FOREMAN NOTE: TO ENSURE PROPER INSTALLATION OF SHEAR TRUSS, PLEASE NOTE TOP AND BOTTOM NOTED ON DIAGRAM AND VERIFY ENDWALL GIRT SPACING PRIOR TO INSTALLATION

Loading

TCLL:

TCDL: BCLL:

BCDL:

Des Ld:

NCBCLL:

Load Dur

Spacing:

Top chord: 2x6 SP 2400f-2.0E;

Bot chord: 2x6 SP 2400f-2.0E;

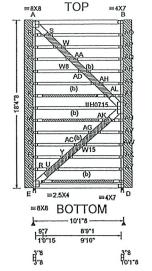
(0.128"x3",min.)nails @ 6" oc.

enclosed wall buildings.

All plates are 3X5 except as noted.

Plating Notes

Webs: 2x4 SP #2; W8,W15 2x8 SP 2400f-2.0E;


(b) #3 or better scab reinforcement. Same size & 80%

length of web member. Attach with 10d Box or Gun

See Cleary Building Corp. drawing for bearing attachment and bottom chord bracing details.

This designs applies to both open wall and

Soffit:

g Criteria (psf)	Snow Criteria (Pg,Pf in PSF)	Defl/CSI Criteria	▲ Maximum Reactions (lb	s)
1.00	Pg: NA Ct: NA CAT: NA	PP Deflection in loc L/defl L/#	Gravity	Non-Gravity
1.00	Pf: NA Ce: NA	VERT(LL): 0.008 B 999 240	Loc R+ /R- /Rh	/Rw /U /RL
0.00	Lu: NA Cs: NA	VERT(CL): 0.008 B 999 180	E 105 /- /63	1252 /233 /120
1.00	Snow Duration: NA	HORZ(LL): -0.099 B	D 105 /- /63	/313 /294 /120
3.00		HORZ(TL): 0.099 B	Wind reactions based on M	WFRS
L: 20.00	Building Code:	Creep Factor: 2.0	•	Min Req = 3.5
2.00	IBC 2015	Max TC CSI: 0.044		Min Req = 3.5
uration: 1.60	TPI Std: 2014	Max BC CSI: 0.990	Bearings E & D are a rigid s	
1: 12.0 "	Rep Fac: Varies by Ld Case	Max Web CSI: 1.000	Members not listed have for	
J. 12.0	FT/RT/PT:20(20)/10(10)/4(0)		Maximum Top Chord Ford	es Per Ply (lbs)
			Chords Tens.Comp.	
	Plate Type(s):		A D Grot Gros	
	WAVE, HS	VIEW Ver: 18.02.01A.0205.19	A - B 2504 - 2509	

Truss transfers a maximum horizontal load of 2550 # (267.25 plf) along top chord, from either direction, to supports where indicated. Diaphragm and connections are to be designed by Engineer of Record.

Drag Loads: Force(#) (PLF) Mbr Start End 2550 267.25 TC 0.29 9.83 2550 267.25 BC 0.29 9.83 Case 1: 2550

Maximum Bot Chord Forces Per Ply (lbs) Chords Tens.Comp.

Cust: R 7054 JRef: 1WYS70540003 T2899 DrwNo: 262.20.0943.33180

09/18/2020

/313 /294 /1206

/ FK

E-D 1275 - 1275

Maximum Web Forces Per Ply (lbs)				
Webs	Tens.Comp.	Webs	Tens.	Comp.
A-F	2340 - 2349	AA-AD	3436	- 3436
A-S	3404 - 3405	AC-AG	3318	-3318
E-Q	2378 - 2387	AD-AH	3436	-3436
E-R	3260 - 3262	AG-AK	3318	- 3318
F-G	2022 - 2032	AH-AL	3435	- 3436
G-H	1666 - 1676	AK- C	3346	- 3347
H-1	1310 - 1319	AL-C	3477	- 3477
I - J	953 - 963	C-AU	1957	- 1966
J-K	597 -607	AO-AP	697	-706
L-M	462 -472	AP-AQ	1053	- 1063
M - N	819 - 828	AQ-AR	1409	- 1419
N - O	1175 - 1185	AR-AS	1766	- 1775
0-P	1531 - 1541	AS-AT	2122	-2132
P - Q	1888 - 1897	AT- C	2478	-2488
R-U	3323 - 3322	AU-AV	1600	- 1610
S - W	3443 - 3443	AV-AW	1244	- 1253
U-Y	3317 - 3317	AW-AX	888	- 897
W-AA	3437 - 3437	AX-AY	531	- 541
Y-AC	3318 - 3318			

WI COA #2902-011

(1119-006

MILLSTADT,

APPROVED FOR CONSTRUCTION BY DATE

WARNING READ AND FOLLOW ALL NOTES ON THIS DRAWINGI

IMPORTANT FURNISH THIS DRAWING TO ALL CONTRACTORS INCLUDING THE INSTALLERS

Trusses require extreme care in fabricating, handling, shipping, installing and bracing. Refer to and follow the latest edition of BCSI (Building Component Safety Information, by TPI and SBCA) for safety practices prior to performing these functions. Installers shall provide temporary bracing per BCSI. Unless noted otherwise, top chord shall have properly attached structural sheathing and bottom chord shall have a properly attached rigid ceiling. Locations shown for permanent lateral restraint of webs shall have pracing installed per BCSI sections B3, B7, or B10, as applicable. Apply plates to each face of truss and position as shown above and on the Joint Details, unless noted otherwise. Refer to drawings 160A-Z for standard plate positions. Refer to job's General Notes page for additional information.

Alpine, a division of ITW Building Components Group Inc. shall not be responsible for any deviation from this drawing, any failure to build the truss in conformance with ANSI/TPI 1, or for handling, shipping, installation and bracing of trusses. A seal on this drawing or cover page listing this drawing, indicates acceptance of professional engineering responsibility solely for the design shown. The suitability and use of this drawing for any structure is the responsibility of the Building Designer per ANSI/TPI 1 Sec.2.

For more information see these web sites: Alpine: alpineitw.com; TPI: tpinst.org; SBCA: sbcindustry.com; ICC: iccsafe.org; AWC: awc.org

514 Earth City Expressway

Earth City, Missouri 63045

Suite 242

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

3

DATE DRAWN: 6/9/2021 PLAN REVISIONS: NUMBER DATE 2

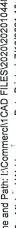
ABBREVIATIONS:

NBC = NOT BY CLEARY BCS = BY CLEARY SUB

CHAMPEAU STUART CENTER LLC.

BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND
SHEET NAME:
SHEAR TRUSS BRACING DETAILS "C" H 14TH AVENUE I BAY, WI - DOOR (

PORCH


PROJECT NAME:
DC ARTS
PROJECT SITE AL
917 NORTH 1
STURGEON B

PROJECT NUMBER: 2020104484

SHEET NUMBER: 152

SHEET SCALE: NTS

NOTE:

By:

2020104484-153-SHEAR-D-2.

2x6 WALL GIRTS-

ATTACHED TO (1)

PLY OF BUILDING

COLUMN

-BUILDING COLUMN

SHEAR TRUSS

SHEAR TRUSS DETAIL

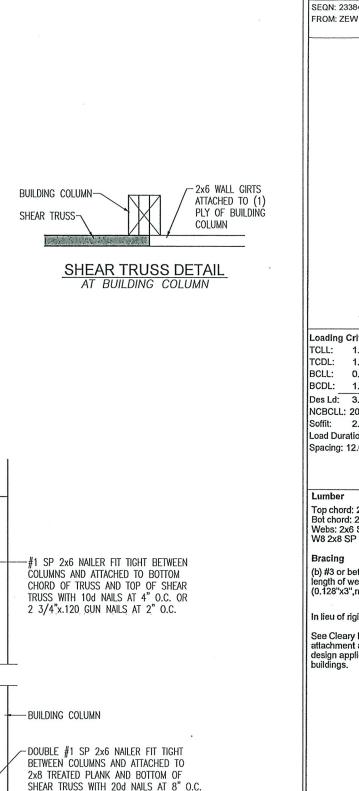
AT BUILDING COLUMN

ENDWALL TRUSS-

BOTTOM CHORD OF ENDWALL TRUSS ATTACHED TO BUILDING

COLUMNS WITH (7) 20d NAILS

SHEAR TRUSS ATTACHED TO BUILDING-


COLUMNS WITH 20d NAILS AT 6" O.C.

2x8 TREATED PLANK ATTACHED TO-

BUILDING COLUMNS WITH (7) 20d NAILS

ENDWALL SHEAR TRUSS SECTION

OR 3 1/2"x.131 GUN NAILS AT 3" O.C.

OR 3 1/2"x.131 GUN NAILS AT 3" O.C.

FLAT Ply: 1 SEON: 23384 FROM: ZEW FOREMAN NOTE: TO ENSURE PROPER INSTALLATION OF SHEAR TRUSS, PLEASE NOTE TOP AND BOTTOM NOTED ON DIAGRAM AND VERIFY ENDWALL GIRT SPACING PRIOR TO INSTALLATION Loading Criteria (psf) Wind Criteria 1.00 Wind Std: 1.00 Enclosure: 0.00 Risk Category: 1.00 EXP: Kzt: Des Ld: 3,00 Mean Height: NCBCLL: 20.00 TCDL: 2.00 BCDL: Load Duration: 1.60 MWFRS Parallel Dist: Spacing: 12.0 " C&C Dist a: Loc. from endwall Wind Duration: Top chord: 2x6 SP 2400f-2.0E: Bot chord: 2x6 SP 2400f-2.0E; Webs: 2x6 SP 2400f-2.0E; W1,W13 2x4 SP #2; W5, W8 2x8 SP 2400f-2.0E; (b) #3 or better scab reinforcement. Same size & 80% length of web member. Attach with 10d Box or Gun (0.128"x3",min.)nails @ 6" oc. In lieu of rigid sheathing use purlins to brace TC @ 24" oc See Cleary Building Corp. drawings for bearing attachment and bottom chord bracing details. This design applies to both open wall and enclosed wall buildings.

Qty: 1

GCpi:

Snow Criteria (Pg,Pf in PSF) Ct: NA CAT: NA Pf: NA Ce: NA Lu: NA Cs: NA Snow Duration: NA **Building Code:** IBC 2015

TPI Std: 2014 Plate Type(s): WAVE, HS

Max TC CSI: 0.047 Max BC CSI: 0.989 Rep Fac: Varies by Ld Case Max Web CSI: 1.000 FT/RT/PT:20(20)/10(10)/4(0) VIEW Ver: 18.02.01A.0205.19 Loading

Truss transfers a maximum horizontal load of 2650 # (277.73 plf) along top chord, from either direction, to supports where indicated. Diaphragm and connections are to be designed by Engineer of Record.

Drag Loads: Force(#) (PLF) Mbr Start End
Case 1: 2650 277.73 TC 0.29 9.83 2650 277.73 BC 0.29

Bottom chord checked for 20.00 psf non-concurrent bottom chord live load applied per IBC-15 section

Job Number: 2020104484 Cust: R 7054 JRef: 1WZO70540008 T2902 DrwNo: 294.20.1303.36857 Truss Label: SD10-1-8X17-8-8SHEAR2650 DEH / AHF 10/20/2020

101'8 TOP =10X12(") =4X7 =4X7 =4X7 =4X7 S=4X7 = 4X7 = 4X7 H C 1H0715 =10X12

BOTTOM-I

Defi/CSI Criteria

HORZ(LL): -0.095 B

HORZ(TL): 0.095 B

Creep Factor: 2.0

▲ Maximum Reactions (lbs) Non-Gravity Gravity PP Deflection in loc L/defl L/# /Rw /U /RL Loc R+ /R-VERT(LL): 0.007 B 999 240 VERT(CL): 0.007 B 999 180 E 105 /251 /232 /1313 W 105 /-/33 /314 /295 /1312 Wind reactions based on MWFRS Brg Width = 5.5 Min Req = 5.5W Brg Width = 5.5 Min Req = 5.5

Bearings E & W are a rigid surface. Members not listed have forces less than 375# Maximum Top Chord Forces Per Ply (lbs) Chords Tens.Comp.

A - B 2628 - 2631

Maximum Bot Chord Forces Per Ply (lbs) Chords Tens.Comp.

1325 - 1325

Maximum Web Forces Per Ply (lbs) Tens.Comp. Webs 2344 - 2353 M-P 3515 - 3515 A - M 3499 - 3499 0-C 3410 - 3410 2374 - 2383 P-C 3529 - 3529 E-K 3380 - 3380 C-U 1955 - 1964 F-G 1649 - 1659 S-T 1601 - 1611 G-F 767 -777 S-B 719 -729 H-1 988 - 998 T-C 2484 -2493 1 - J 1871 - 1880 U-V 1072 - 1082

FELOMANN E-26209 ST. LOUIS,

APPROVED FOR CONSTRUCTION

3397 - 3397

10/20/2020 DATE BY

WARNING READ AND FOLLOW ALL NOTES ON THIS DRAWING! **IMPORTANT** FURNISH THIS DRAWING TO ALL CONTRACTORS INCLUDING THE INSTALLERS

Trusses require extreme care in fabricating, handling, shipping, installing and bracing. Refer to and follow the latest edition of BCSI (Building Component Safety Information, by TPI and SBCA) for safety practices prior to performing these functions. Installers shall provide temporary bracing per BCSI, Unless noted otherwise, top chord shall have properly attached structural sheathing and bottom chord shall have a properly attached nigid celling. Locations shown for permanent lateral restraint of webs shall have bracing installed per BCSI sections B3, B7, or B10, as applicable. Apply plates to each face of truss and position as shown above and on the Joint Details, unless noted otherwise. Refer to drawings 160A-Z for standard plate positions. Refer to job's General Notes page for additional information.

Alpine, a division of ITW Building Components Group Inc. shall not be responsible for any deviation from this drawing, any failure to build the truss in conformance with ANSI/TPI 1, or for handling, shipping, installation and bracing of trusses. A seal on this drawing or cover page listing this drawing, indicates acceptance of professional engineering responsibility solely for the design shown. The suitability and use of this drawing for any structure is the responsibility of the Building Designer per ANSI/TPI 1 Sec. 2. For more information see these web sites: Alpine: alpineitw.com; TPI: tpinst.org; SBCA: sbcindustry.com; ICC: iccsafe.org; AWC; awc.org

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

4

DATE DRAWN: 6/9/2021 PLAN REVISIONS: NUMBER DATE 2

ABBREVIATIONS:

NBC = NOT BY CLEARY BCS = BY CLEARY SUB

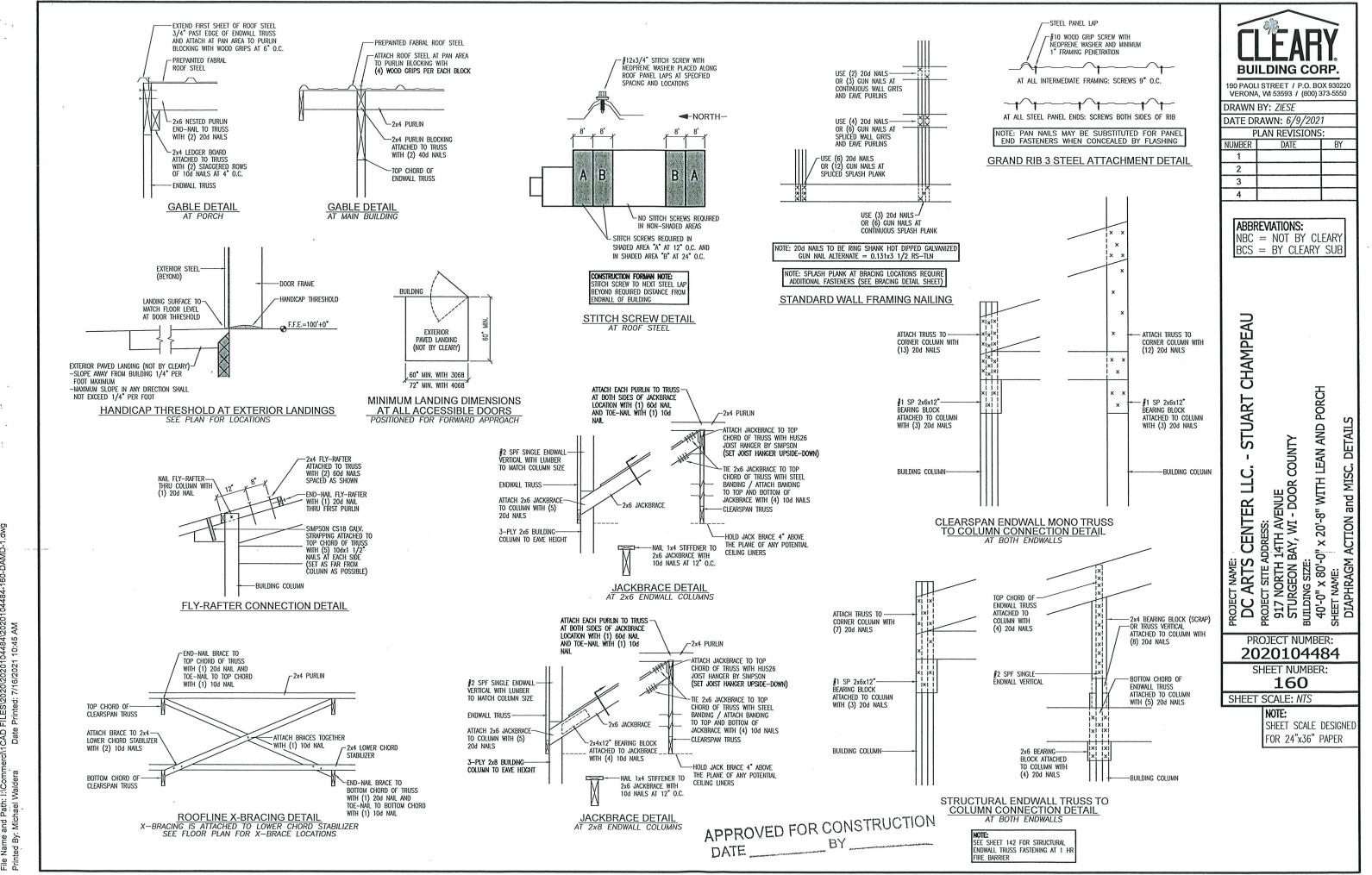
CHAMPEAU STUART CENTER LLC.

PORCH

DETAILS

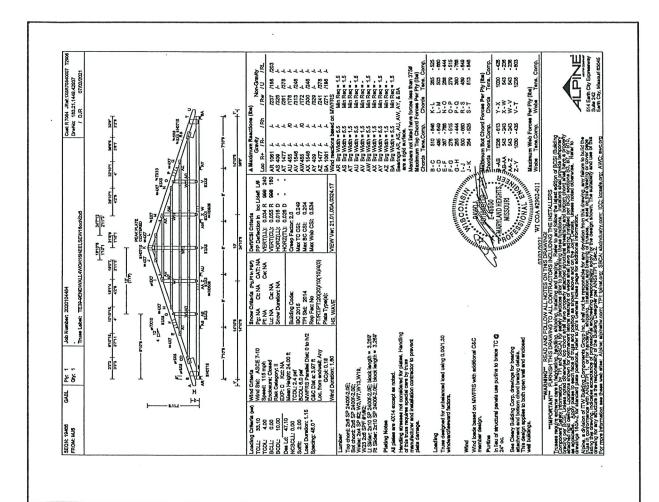
BUILDING SIZE: 40'-0" x 80'-0" x 20'-8" WITH LEAN AND SHEET NAME: SHEAR TRUSS BRACING DETAILS "D" 14TH AVENUE BAY, WI - DOOR COUNTY PROJECT SITE A 917 NORTH : STURGEON E

PROJECT NUMBER: 2020104484


SHEET NUMBER:

153 SHEET SCALE: NTS

NOTE:


CT NAME: ARTS

PROJECT I

S14 Earth City Expresswoy Sulto 242 Earth City, Misecuri 63045 6013. C 1487 1262 1275 829 679 679 1361 - 1825 678 - 2312 829 - 2482 1274 - 1716 1262 - 1715 1488 - 2777 Advinios THE INSTALLERS
deficio and Glow the Infrast edition of BCSI (Bullding
deficio and Glow the Infrast edition of BCSI (Bullding
these fundions, installate shell provide temporary
at treating and part BCSI sections B1
and part BCSI sections B2 B7 of B10, or Story
a deficion and part BCSI sections B2 B7 of B10, or Story
a dentification and or otherwise. Acter 10. | DenilCSI Chtorta | DenilCSI | De 4.0.8 15'10" 7571 5 5 5 5 ALPINE
JINESONA
Stills 242
Earth City, Missourt 63045 NO YTHS REVINIVE INSTALLERS

The property of the part of part of the release adjoin of BCSI (Building benefit of the part of p 1.5"6 12'3"2 9 9 9 %

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

PRAWN BY: ZIESE

DATE DRAWN: 6/9/2021

PLAN REVISIONS:
R DATE

3

PROJECT NAME:

DC ARTS CENTER LLC. - STUART CH,
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" × 80'-0" × 20'-8" WITH LEAN AND PORCH
SHEET NAME:
TRUSS DIAGRAMS

- STUART CHAMPEAU

PROJECT NUMBER: 2020104484
SHEET NUMBER: 170

SHEET SCALE: NTS

NOTE:

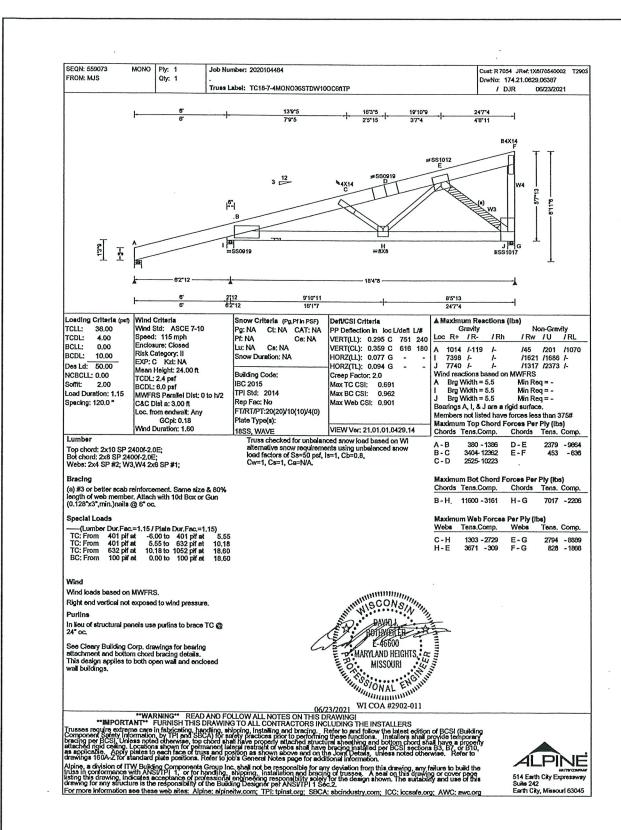
SHEET SCALE DESIGNED FOR 24"x36" PAPER

APPROVED FOR CONSTRUCTION DATE ______BY _____

SEQN: 559080

MONO Phy: 1

Qty: 1


Job Number: 2020104484

Truss Label: TD18-7-4MONO36STDW100C1ff6ftT4

Cust R 7054 JRef: 1X8170540002 T2904

DrwNo: 174.21.0651.09483

/ DJR 06/23/2021

190 PAOLI STREET / P.O. BOX 930220 VERONA, WI 53593 / (800) 373-5550

DRAWN BY: ZIESE

DATE DRAWN: 6/9/2021

PLAN REVISIONS: NUMBER DATE

2 3

STUART CHAMPEAU

4

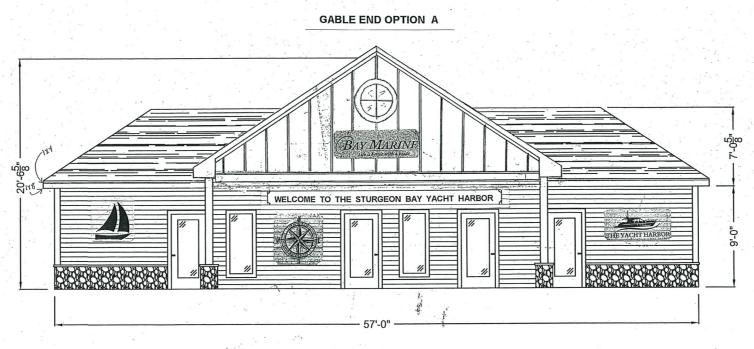
PORCH PROJECT NAME:

DC ARTS CENTER LLC. - STUAF
PROJECT SITE ADDRESS:
917 NORTH 14TH AVENUE
STURGEON BAY, WI - DOOR COUNTY
BUILDING SIZE:
40'-0" x 80'-0" x 20'-8" WITH LEAN AND PC

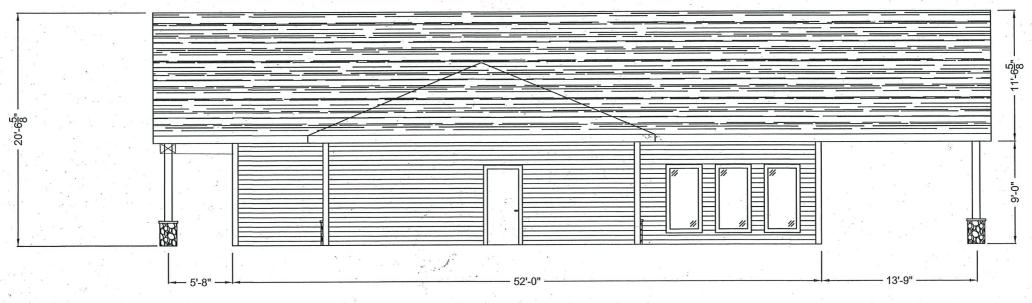
PROJECT NUMBER: 2020104484

SHEET NUMBER:

171 SHEET SCALE: NTS

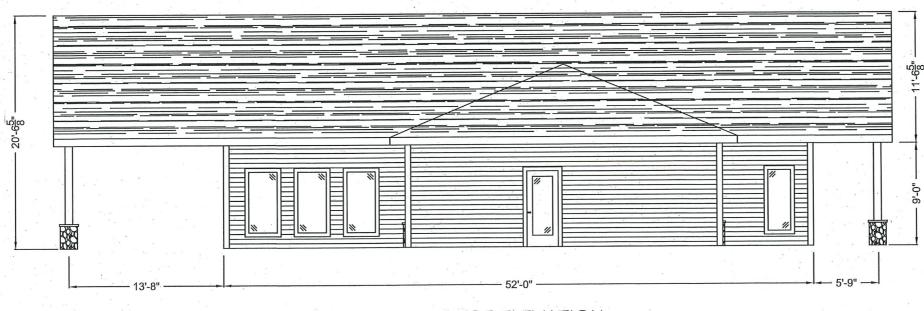

SHEET SCALE DESIGNED FOR 24"x36" PAPER

APPROVED FOR CONSTRUCTION DATE BY

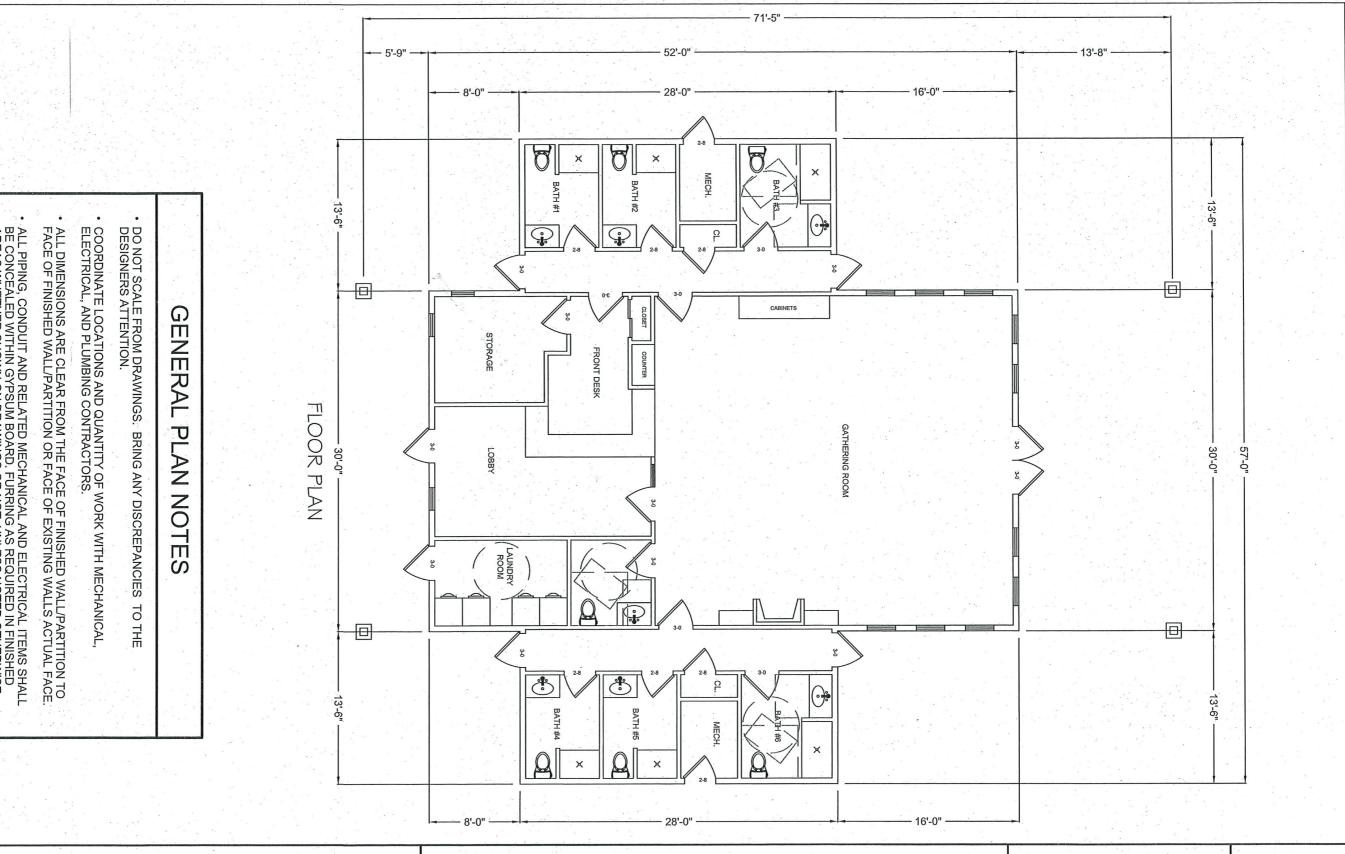

CITY OF STURGEON BAY

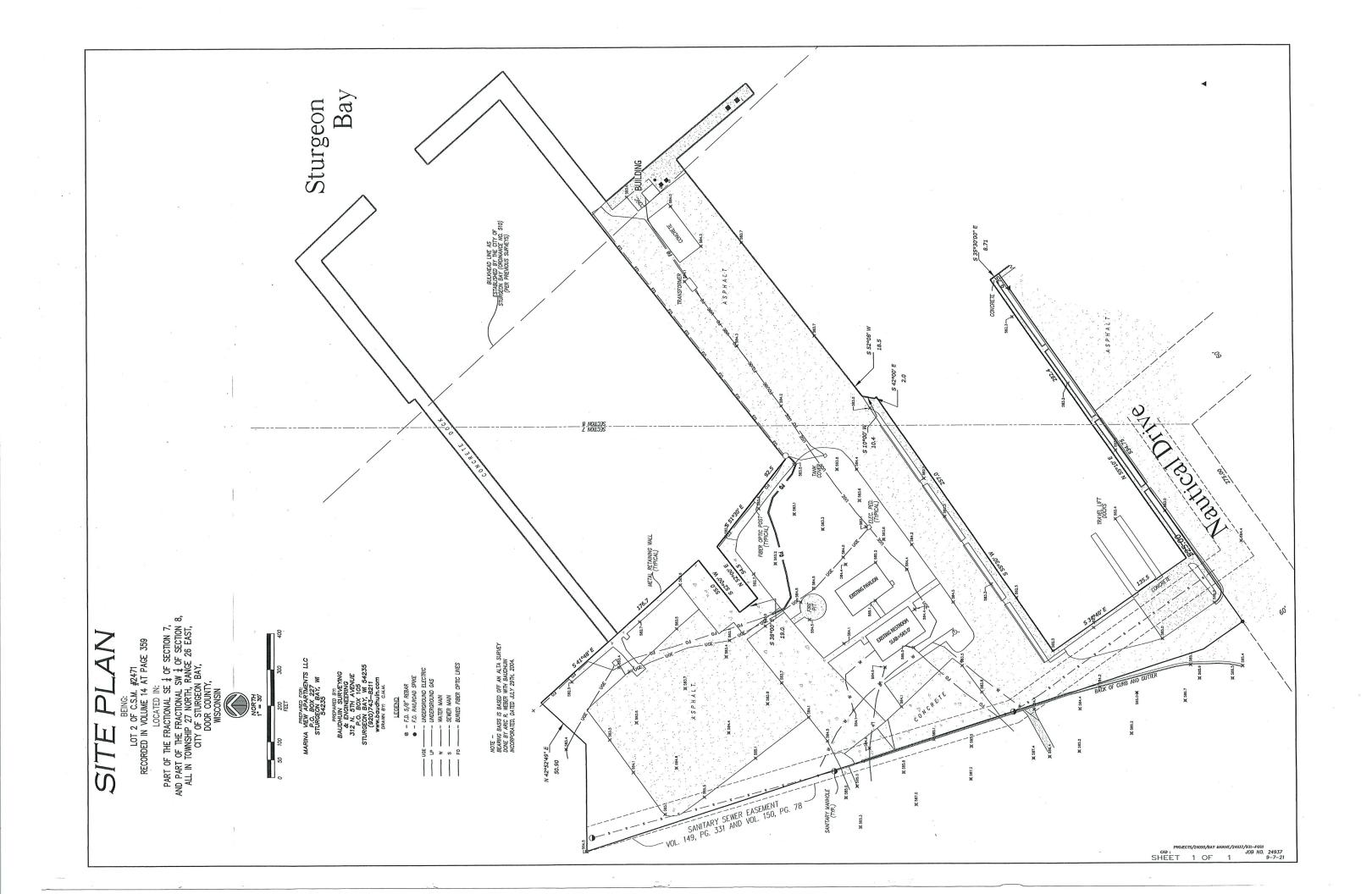
AESTHETIC DESIGN & SITE PLAN REVIEW BOARD APPLICATION FOR CERTIFICATE OF APPROPRIATENESS

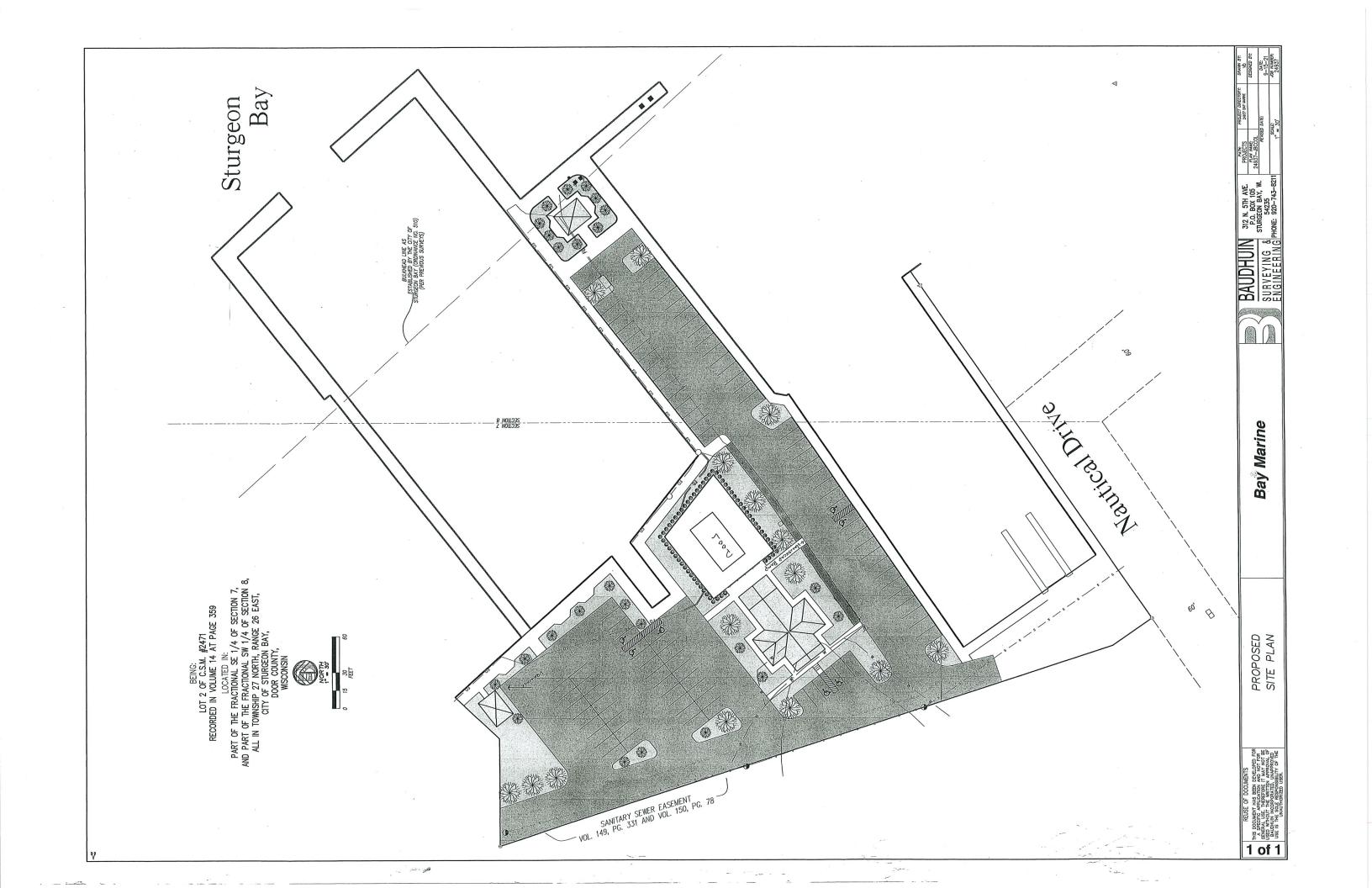
Name: John Borkovetz				
Owner of Premises: MAH & MARK Felhofer BAY MARINE INC.				
Address or Lega	I Description of Premises:			
267 Nautu	cal Drive Sturgeon BAY			
Statement of Specific Item Requested for Approval: <u>Aesthetic Design</u>				
	·			
Date Applicant				
	Date Received: Staff Signature: Date Approved/Denied:			



SOUTH ELEVATION




EAST ELEVATION


GABLE END OPTION B GABLE END OPTION B ST-0" NORTH ELEVATION

WEST ELEVATION

W------

Door County can not and does not make any representation regarding the accuracy or completeness, nor the error-free nature, of information depicted on this map. This information is provided to users "as is". The user of this information assumes any and all risks associated with this information. Door County makes no warranty or representation, either express or implied, as to the accuracy, completeness, or finess for a particular purpose of this information. The Web Map is only a compilation of information and is NOT to be considered a legally recorded map or a legal land survey to be relied upon.

(//www.co.door.wi.gov)

Door County, Wisconsin
... for all seasons!

... from the Web Map of ...

Printed 10/21/2021 courtesy of Door County Land Information Office

CITY OF STURGEON BAY

AESTHETIC DESIGN & SITE PLAN REVIEW BOARD APPLICATION FOR CERTIFICATE OF APPROPRIATENESS

Name: ACE	HARDWARE	
Owner of Premis	ises: AUSTADS, LLC- AMY LABOTT	
•	al Description of Premises: HARBOR ROAD	
Please revie	pecific Item Requested for Approval: ew this project for all sections except exteri will be submitted at a later date.	<u>or</u>
10/14/21 Date	Richard Fisher AIA Applicant	
	Date Received: Staff Signature: Date Approved/Denied:	

PROPOSED NEW STORE FOR:

City of Sturgeon Bay

SHEET INDEX

CIVIL

COO1 - COVER SHEET

C002 - GENERAL NOTES AND QUANTIFIES

C100 - EXISTING CONDITIONS , DEMOLITION AND EROSION CONTROL PLAN

C200 - SITE PLAN

C300 - UTILITY PLAN

C400 - GRADING PLAN

C500 - CONSTRUCTION DETAILS - SITE

C501 - CONSTRUCTION DETAILS - UTILITY

ARCHITECTURAL

TS - TITLE SHEET

G1.1 - GENERAL INFORMATION

CA1.0 - ARCHITECTURAL SITE PLAN

A1.1 - FLOOR PLAN

A1.2 - ENLARGED FLOOR PLANS

A3.1 - EXTERIOR ELEVATIONS

ELECTRICAL

E1.0 SITE PHOTOMETRIC

BUILDING CODE ANALYSIS

OCCUPANT LOAD: 426 + 52 = 418 (SEE PLAN)

NUMBER OF STORIES (1) THIS BUILDING HAS (1) FLOOR LEVEL

ALLOWABLE FLOOR AREA FER TABLE 506.2

M, WITH ACCESSORY B, FI & SI (NON-SEPARATED)
ALLOHABLE BULDING SIZE 50,000 S.F. WO FRONTAGE INCREAS

I SERVICE SINK WAREHOUSE I WATER COOLER

PROJECT INFORMATION

10/13/21 RELEASE #1

RELEASED FOR SITE PLAN SUBMITTAL 10/13/21

DOOR COUNTY ACE HARDWARE

CIVIL CONSTRUCTION PLAN SET

INDEX OF SHEETS

C001 **COVER SHEET** GENERAL NOTES AND QUANTITIES C002

EXISTING CONDITIONS, DEMOLITION, AND EROSION CONTROL PLAN C100

C200 SITE PLAN C300 UTILITY PLAN

GRADING PLAN CONSTRUCTION DETAILS - SITE C400 C500

C501 CONSTRUCTION DETAILS - UTILITY

SITE DATA

OWNER: AUSTADS, LLC. 321 JEFFERSON STREET

STURGEON BAY, WI 54235

SITE ADDRESS: 1227 EGG HARBOR ROAD STURGEON BAY, WI 54235

PARCEL NUMBER: 2816210000103 & 2816210000117 PARCEL SIZE: 89,205 SF (2.05 ACRES) C-1 (GENERALCOMMERCIAL) ZONING:

EXISTING SITE:

GREEN SPACE: 70,485 (79.02%) IMPERVIOUS AREA: 18,720 SF (20.98%) 3,852 SF BUILDING:

PAVEMENT: 14,868 SF

PROPOSED SITE:

GREEN SPACE PROVIDED:

15,548 SF (17.43% - PER APPROVED VARIANCE) REQUIREMENT: IMPERVIOUS AREA:

BUILDING: PAVEMENT:

PERVIOUS PAVEMENT:

TOTAL DISTURBED AREA: 2.08 ACRES

PROVIDED:

82 (INCLUDES 4 ADA-COMPLIANT)

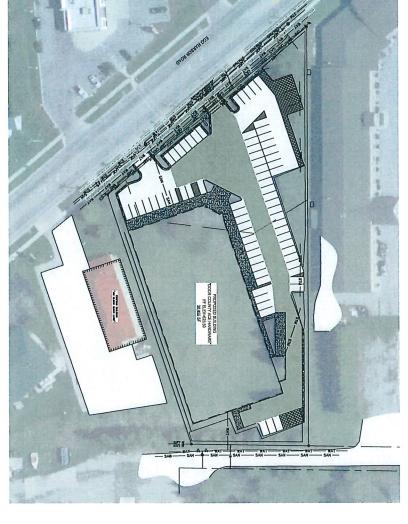
17,425 (19.53%)

71,780 SF (80.47%) 30,855 SF

43,423 SF

2,498 SF

REUSE OF DOCUMENTS


THIS DOCUMENT HAS BEEN DEVELOPED FOR A SPECIFIC APPLICATION AND NOT FOR GENERAL USE. THEREFORE IT MAY NOT BE USED WITHOUT THE WRITTEN APPROVAL OF BAUDHUIN INCORPORATED. UNAPPROVED USE IS THE SOLE RESPONSIBILITY OF

BAUDHUIN SURVEYING & ENGINEERING

DOOR COUNTY ACE HARDWARE

C001 1 8

DOOR COUNTY, WISCONSIN

Bluebird

CITY OF STURGEON BAY, WI

Bluebird St

Alabama St

SURVEY DOES NOT GUARANTEE THE ACCURACY OF UNDERGROUND UTILITIES. UTILITIES SHOWN ARE BASED ON ABOVE GROUND UTILITY STRUCTURE LOCATIONS AND AVAILABLE UTILITY MAPS AND PLANS UNLESS OTHERWISE INDICATED ALL EXISTING ITEMS TO REMAIN. EXECUTE ALL WORK WITH CARE AS TO PROTECT

EXISTING ITEMS AND ADJACENT PROPERTIES FROM HARM. NO LAND DISTURBING ACTIVITIES SHALL TAKE PLACE UNTIL ALL EROSION CONTROL DEVICES ARE INSTALLED. NO

LAND DISTURBANCE SHALL OCCUR OUTSIDE OF PROJECT LIMITS

ALL GRADE TRANSITIONS SHALL BE SMOOTH AND GRADUAL UNLESS OTHERWISE SPECIFIED

FINISHED GRADE OF TOPSOIL AFTER COMPACTION SHALL BE & BELOW TOP OF ALL ABUTTING HARD SURFACES GENERAL CONTRACTOR TO COORDINATE THE WORK OF ALL TRADES, VERIFY ALL FIELD CONDITIONS, QUANTITIES, AND DIMENSIONS PRIOR TO THE COMMENCEMENT OF WORK. ANY DISCREPANCIES TO BE BROUGHT TO THE ENGINEER OF RECORD

GENERAL CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS PRIOR TO THE START OF ANY WORK
GENERAL CONTRACTOR TO VERIFY ALL SPECIFICATIONS, DETAILS, AND MATERIALS CONFORM TO LATEST EDITION

OF APPROPRIATE GUIDELINES AND REGULATIONS

NO HAZARDOUS MATERIALS WILL BE STORED ON SITE

EROSION CONTROL NOTES

•EROSION CONTROL METHODS SHALL BE IMPLEMENTED AS DIRECTED BY THE ENGINEER PRIOR TO AND DURING CONSTRUCTION TO CONTROL WATER POLLUTION, EROSION, AND SILTATION

•THE LANDOWNER (REPRESENTATIVE) SHALL INSPECT EROSION AND SEDIMENT CONTROL PRACTICES WEEKLY, AND WITHIN 24
HOURS FOLLOWING A RAINFALL OF 0.5 INCHES OR GREATER. WRITTEN DOCUMENTATION OF EACH INSPECTION SHALL BE MAINTAINED AT THE CONSTRUCTION SITE. SEE CONSTRUCTION SITE INSPECTION REPORT (FORM 3400-187) FROM THE WONR

•CONTRACTOR IS RESPONSIBLE FOR MAINTENANCE AND DOCUMENTATION OF EROSION CONTROL MEASURES THROUGHOUT

CONSTRUCTION PHASE. OWNER IS RESPONSIBLE FOR POST-CONSTRUCTION MAINTENANCE AND EFFORT
•ALL DISTURBED AREAS SHALL BE TREATED WITH STABILIZATION MEASURES, AS SPECIFIED, WITHIN 3 WORKING DAYS OF FINAL GRADING

•A MINIMUM OF 4 TO 6 INCHES OF TOPSOIL MUST BE APPLIED TO ALL AREAS TO BE SEEDED OR SODDED

*WINTER STABILIZATION: ALL AREAS REQUIRING SEED AFTER OCTOBER 15TH SHALL BE STABILIZED BY AN APPROVED WINTER STABILIZATION METHOD

•ALL OFF-SITE SEDIMENT DEPOSITS OCCURRING AS A RESULT OF CONSTRUCTION WORK OR STORM EVENT SHALL BE CLEANED BY THE END OF EACH WORKDAY. FLUSHING SHALL NOT BE ALLOWED

•WIND EROSION SHALL BE KEPT TO A MINIMUM DURING CONSTRUCTION. WATERING, MULCHING, OR A TACKING AGENT MAY NEED TO BE UTILIZED TO PROTECT NEARBY RESIDENTS AND WATER RESOURCES

•ANY DISTURBED AREAS OR SOIL STOCKPILES THAT REMAINS FOR MORE THAN 7 DAYS SHALL BE COVERED OR TREATED WITH STABILIZATION PRACTICES. ALL TOPSOIL STOCKPILES SHALL BE SEEDED OR HAULED OFF-SITE WITHIN 60. DAYS OF CONSTRUCTION COMPLETION. THE CONTRACTOR SHALL DISPOSE OF ALL OTHER WASTE AND EXCESS MATERIAL IN AN APPROVED MANNER

*ALL TEMPORARY BEST MANAGEMENT PRACTICES SHALL BE MAINTAINED UNTIL THE SITE IS STABILIZED. ANY SOIL EROSION THAT OCCURS AFTER FINAL GRADING AND/OR THE APPLICATION OF STABILIZATION MEASURES MUST BE REPAIRED AND STABILIZATION WORK REDONE •WHEN THE DISTURBED AREA HAS BEEN STABILIZED BY PERMANENT VEGETATION OR OTHER MEANS, TEMPORARY EROSION

CONTROL PRACTICES SHALL BE REMOVED

•EROSION CONTROL CONSTRUCTION STANDARDS — SEE WDNR CONSTRUCTION SITE EROSION & SEDIMENT CONTROL STANDARDS AS FOLLOWS:

1053 = CHANNEL EROSION MAT

1066 = CONSTRUCTION SITE DIVERSION 1062 = DITCH CHECKS

1068 = DUST CONTROL

1050 = LAND APPLICATION OF ADDITIVES FOR EROSION CONTROL

1058 = MULCHING FOR CONSTRUCTION SITES 1052 = NON-CHANNEL EROSION MAT

1059 = SEEDING

1057 = TRACKOUT CONTROL PRACTICES

1067 = GRADING PRACTICES FOR EROSION CONTROL - TEMPORARY

1054 = VEGETATIVE BUFFER FOR CONSTRUCTION SITES

1061 = DE-WATERING 1055 = SEDIMENT BALE BARRIER

1064 = SEDIMENT BASIN 1063 = SEDIMENT TRAP

1070 = SILT CURTAIN

ARRREVIATIONS & SYMBOLS

1056 = SILT FENCE

1060 = STORM DRAIN INLET PROTECTION FOR CONSTRUCTION SITES

1069 = TURBIDITY BARRIERS

1051 = WATER APPLICATION OF ADDITIVES FOR EROSION CONTROL

1071 = INTERIM MANUFACTURED PERIMETER CONTROL AND SLOPE INTERRUPTION PRODUCTS

INVERT

ARRKE AIA I	ION2 & 21WROF2		HYY	HAACKI
	DEGREES			MAXIMUM
±				MANHOLE
				MINIMUM
				NORTH
				ON CENTER
			OD	OUTSIDE DIAMETER
AS IM			OHP	OVERHEAD POWER LINE
RM			PSI	POUNDS PER SQUARE INCH
			PVC	POLYVINYL CHLORIDE
DI CL				RADIUS
C			RCP	REINFORCED CONCRETE PIPE
			REQ'D	REQUIRED
			ROW	RIGHT OF WAY
			S	SOUTH
			SAN	SANITARY
			SCHD	SCHEDULE
			SF	SQUARE FOOT(AGE)
			STH	STATE TRUNK HIGHWAY
			STM	STORM
			TELE	TELECOMMUNICATIONS
Ε	EAST		TOC	TOP OF CURB
ELEC	FLECTRIC		W	WEST
			WDOT	WISCONSIN DEPARTMENT OF
FDM	FACILITIES DEVELOPMENT			TRANSPORTATION
	MANUAL		WDNR	WISCONSIN DEPARTMENT OF
FFE	FIRST FLOOR ELEVATION			NATURAL RESOURCES
FL	FLOW LINE		WSFU	WATER SERVICE FIXTURE UNITS
FO	FIBER OPTIC		WTR	WATER
FT	FEET		W	WSCONSIN
G	GAS			
GFE	GROUND FLOOR ELEVATION			
HDPE	HIGH DENSITY POLYETHYLENE			
INL	INLET			
	± # # AC ACW ASTM BM BPGE C C CB CI CL CMP CO CSM CTH DIA DFU E ELEC ELEC FDM FFE FL G G GFE HDDPE	## APPROXIMATELY ## DIAMETER AC ACRE AEW APRON END WALL ASTM AMERICAN SOCIETY FOR TESTING AND MATERIALS ## BENCHMARK BPGE BUILDING PAD GROUND ELEVATION C CABLE CB CATCH BASIN CI CURB INLET CL CENTERLINE CMP CORRIGATED METAL PIPE CO CLEAN OUT CSM CETIFIED SURVEY MAP CTH COUNTY HIGHWAY TRUNK DIA DIAMETER DFU DRAINAGE FIXTURE UNITS E EAST ELEC ELECTRIC ELECY ELEVATION FOM FACILITIES DEVELOPMENT MANUAL FFE FIRST FLOOR ELEVATION FIL FLOW LINE FO FIBER OPTIC FT FEET G GAS GFE GROUND FLOOR ELEVATION HIGH DENSITY POLYETHYLENE	DEGREES # APPROXIMATELY # DIAMETER AC ACRE AEW APRON END WALL ASTM AMERICAN SOCIETY FOR TESTING AND MATERIALS BM BENCHMARK BPGE BUILDING PAD GROUND ELEVATION C CABLE CB CATCH BASIN CI CURB INLET CL CENTERLINE CMP CORRUGATED METAL PIPE CO CLEAN OUT CSM CERTIFIED SURVEY MAP CTH COUNTY HIGHWAY TRUNK DIA DIAMETER DFU DRAINAGE FIXTURE UNITS E EAST ELEC ELECTRIC ELEVATION FDM FACILITIES DEVELOPMENT MANUAL FFE FIRST FLOOR ELEVATION FL FLOW LINE FO FIBER OPTIC FT FEET G GAS GFE GROUND FLOOR ELEVATION HIGH ENSITY POLVETHIYLENE	DEGREES # APPROXIMATELY # DIAMETER AC ACRE ACW APRON END WALL CC ACRE ASTM AMERICAN SOCIETY FOR DESTRUCTION IESTING AND MATERIALS BM BENCHMARK BPGE BUILDING PAD GROUND ELEVATION CC CABLE CB CATCH BASIN CI CURB INLET CL CENTERLINE CMP CORRUGATED METAL PIPE CMP CORRUGATED METAL PIPE CSM CERTIFIED SURVEY MAP CTH COUNTY HIGHWAY TRUNK DIA DIAMETER STH DIA DIAMETER DIFFUR STH DIA DIAMETER ELEC ELECTRIC ELEC ELECTRIC ELEC ELECTRIC W ELEVATION FOM FACILITIES DEVELOPMENT MANUAL FEE FIRST FLOOR ELEVATION FOR GROUND FLOOR ELEVATION FOR FIRST FLOOR ELEVATION F

DRAWING LEGEND - LINES

ENTITY:	EXISTING	REMOVALS	PROPOSED
ASPHALT PAVEMENT			Section 1
BUILDING	2,,,,,,,	7.7.7.2.	
BRICK PAVEMENT		1222	
CONCRETE PAVEMENT			848.63
EROSION MAT			
GREEN SPACE			
GRAVEL	Pre2544		F1255
RETAINING WALL	55050		12020
CONTOUR - MAJOR	-		-
CONTOUR - MINOR			
DITCH CENTERLINE			
ELECTRIC - UNDERGROUND	— væ —	vae	væ
ELECTRIC - OVERHEAD		ap	— ap—
EROSION - SEDIMENT BALE			++++++-
EROSION - SILT FENCE			— s —
FENCE			
GAS	— cas —	— cus —	— cus —
PARKING STRIPE			
SANITARY SEWER	— SAN —		— SAN —
STORM SEWER	— sти —	— STV —	— STM —
TREE LINE	uu		uu
WATER MAIN	WAT	WAT	WAT

DRAWING LEGEND - SYMBOLS

ENTITY:	<u>SYMBOL</u>
SANITARY MANHOLE SANITARY CLEANOUT SANITARY RISER SANITARY CLEANOUT/RISER (COMBINED) SANITARY LIFT STATION WATER/ELECTRIC RISER (COMBINED)	\$08\$9 5
WELL	w

o5 C5

BAUDHUIN SURVEYING & ENGINEERING

DOOR COUNTY ACE HARDWARE

COVER

CONSTRUCTION

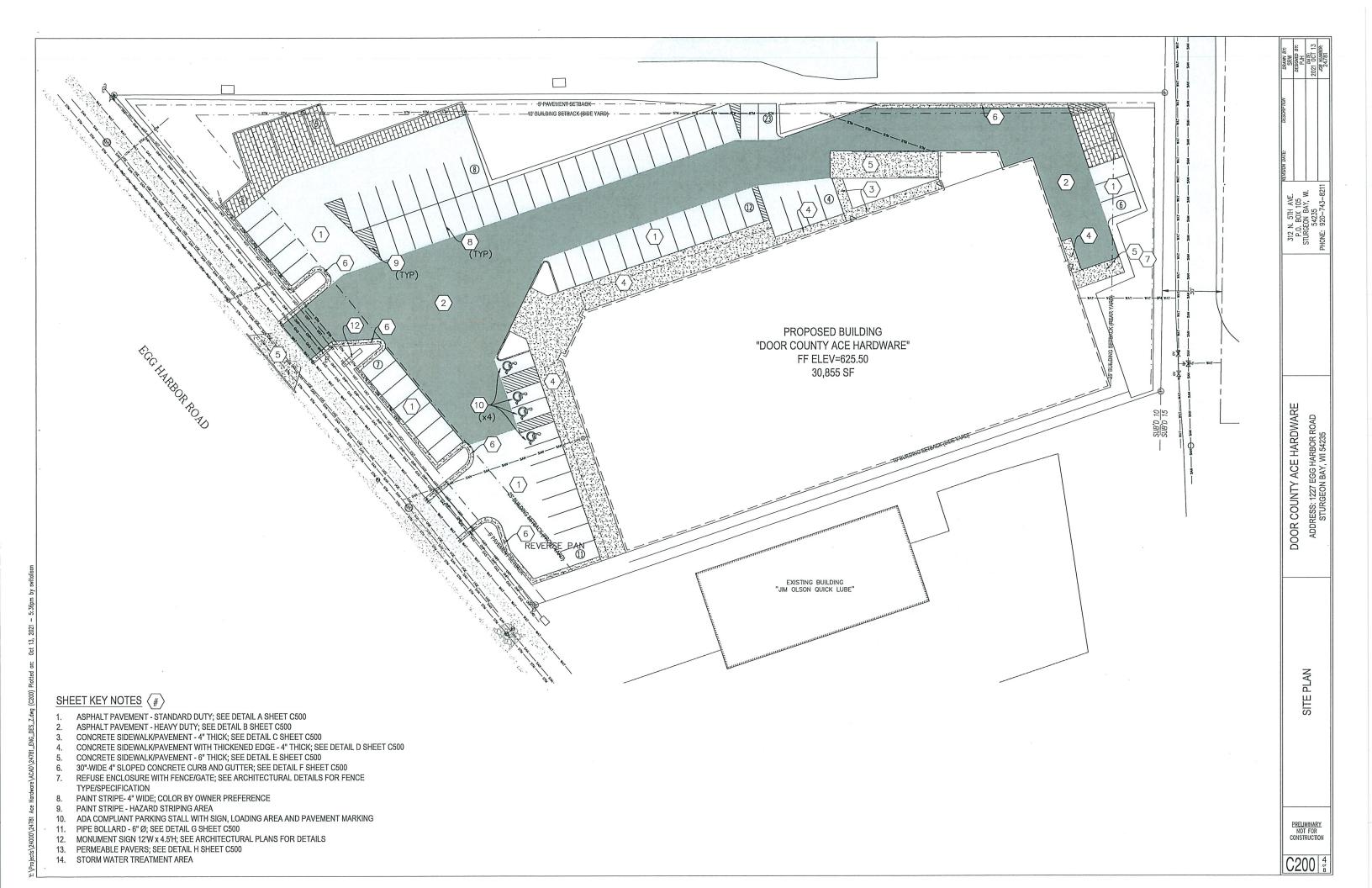
SHEET KEY NOTES (#)

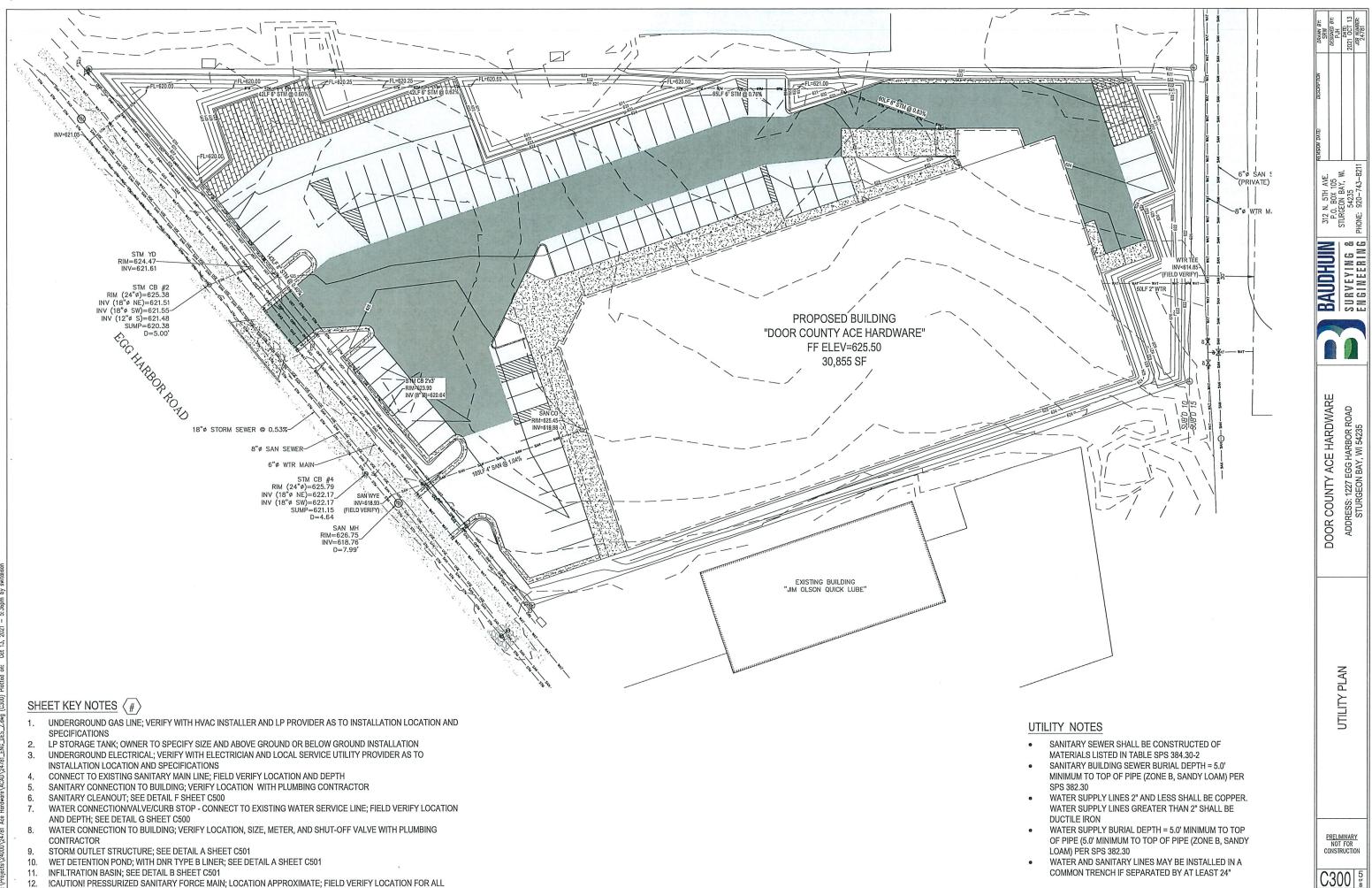
SEE EROSION CONTROL NOTES SHEET C002

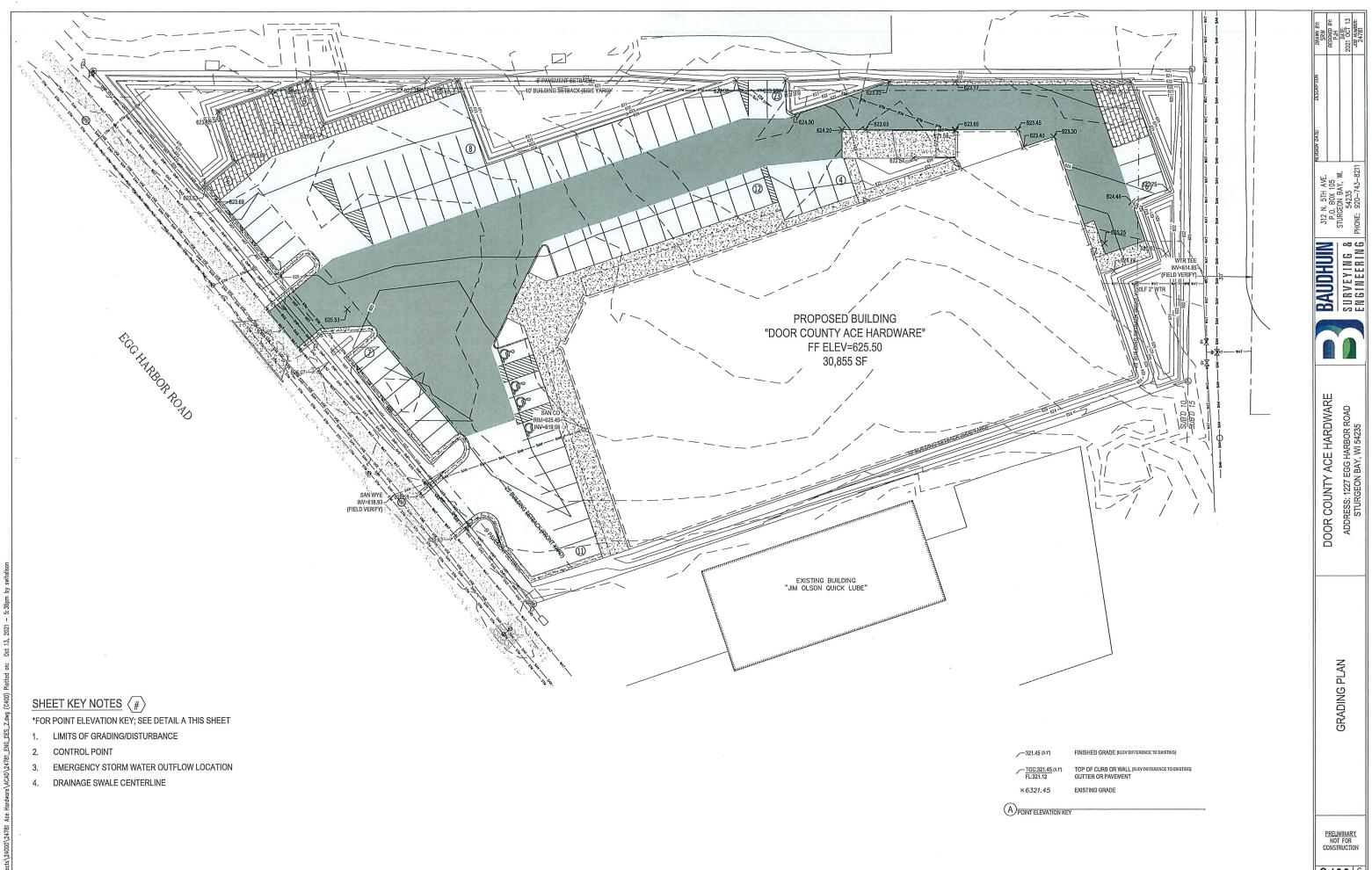
- STONE TRACKING PAD; SEE WDNR STANDARD 1057 "TRACKOUT CONTROL PRACTICES"
- SILT FENCE; SEE WDNR STANDARD 1056 "SILT FENCE"
- EROSION CONTROL MAT; SEE WDNR STANDARD 1053 "CHANNEL EROSION MAT" AND 1052 "NON-CHANNEL **EROSION MAT"**
- SEED & MULCH AREA OR HYDROSEED; SEE WDNR STANDARDS 1058 "MULCHING FOR CONSTRUCTION SITES" AND 1059 "SEEDING"
- INLET PROTECTION; SEE WDNR STANDARD 1060 "...INLET PROTECTION..."
- DRY POND AREA TO SERVE AS TEMPORARY SEDIMENT BASIN; SEE WDNR STANDARD 1064 "SEDIMENT

SHEET KEY NOTES (#)

- REMOVE CONCRETE
- REMOVE ASPHALT
- REMOVE CONCRETE DRIVEWAY; REPAIR CURB HEAD OR REPLACE ENTIRE CURB AND GUTTER SECTION 10.
- SAW CUT CURB HEAD AND PREPARE FOR NEW DRIVEWAY CONNECTION; OR RECONSTRUCT ENTIRE CURB AND GUTTER SECTION
- REMOVE UNDERGROUND ELECTRICAL (FIELD VERIFY LOCATION)
- REMOVE UNDERGROUND GAS (FIELD VERIFY LOCATION)
- REMOVE/PROPERLY ABANDON SANITARY CLEANOUT AND LATERAL STUB
- REMOVE/PROPERLY ABANDON WATER SERVICE LATERAL (FIELD VERIFY LOCATION)
- REMOVE LIGHTPOLE AND ASSOCIATED ELECTRICAL CONNECTIONS 16.
- 17. STRIP/SALVAGE TOPSOIL AND PREPARE SUBGRADE FOR CONSTRUCTION ACTIVITIES
- 18. REMOVE SIGN AND ASSOCIATED ELECTRICAL CONNECTIONS


EXISTING CONDITIONS
AND
DEMOLITION PLAN


DOOR COUNTY ACE HARDWARE


RESS: 1227 EGG HARBOR ROAD STURGEON BAY, WI 54235

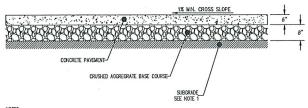
BAUDHUIN SURVEYING & ENGINEERING

PRELIMINARY NOT FOR

C400

NOTES

1. COMPACT SUBGRADE TO 95% STANDARD PROCTOR. SUBGRADE TO BE INSPECTED BY PROJECT FOREMAN PRIOR TO PRACEIDENT OF AGREGISHTE BASE COURSE.

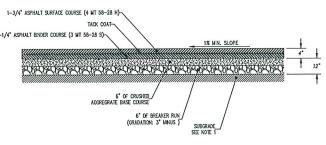

2. IN AREAS OF REPAREMENT, VERRY OR UNDERCUT AND RE-ESTABUSH FULL SECTION OF STONE BASE COURSE AND REFEAKER RAY.

SPECIFICATIONS

A ASPHALT PAYMENT CONSTRUCTION SHALL BE IN ACCORDANCE WITH WISCONSIN DOT FOW

ASPHALT PAYMEN CONTRACTOR TO SAW OUT EXISTING ASPHALT EDGE PRIOR TO JOINING NEW PAYMENT

(A)NLS ASPHALT PAVEMENT - STANDARD DUTY


NOIES
I. COMPACT SUBGRADE TO 95% STANDARD PROCTOR. SUBGRADE TO BE INSPECTED BY PROJECT FOREMAN PRIOR TO PRAYSHINT OF AGGREGRATE BASE COURSE.

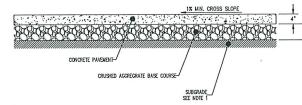
SPECIFICATIONS

- CONCRETE PAYMENT CONSTRUCTION SHALL BE IN ACCORDANCE WITH WISCONSIN DOT FOM CONCRETE SHALL BE 4,000 PS MINIMAN

- CONCRETE SHALL RECEIVE A BROOMED FINISH

ECONCRETE SIDEWALK/PAVEMENT/SLAB - 6" THICKNESS

NOTES

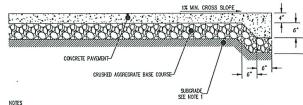

1. COMPACT SUBGRADE TO 95% STANDARD PROCTOR. SUBGRADE TO BE INSPECTED BY PROJECT FOREMAN PRIOR TO PLANSFURANT PAISS COURSE.

SPECIFICATIONS

ASPIRALT PAVING CONTRACTOR TO SAW CUT EXISTING ASPIRALT EDGE PROR TO JOINING NEW PAVEMENT

ASPIRALT PAVING CONTRACTOR TO SAW CUT EXISTING ASPIRALT EDGE PROR TO JOINING NEW PAVEMENT

BASPHALT PAVEMENT - HEAVY DUTY



NOTES 1. Compact subgrade to 95% standard proctor. Subgrade to Be inspected by project foreman prior to be accurate of acceptant page course

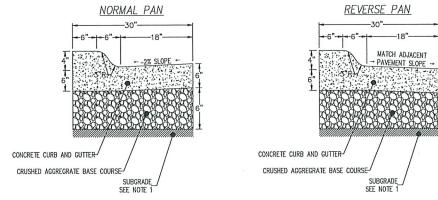
SPEOFICATIONS

CONCRETE PAYMENT CONSTRUCTION SHALL BE IN ACCORDANCE WITH WISCONSIN DOT FDM
CONCRETE SHALL BE 4,000 PSI MINIMUM
CONCRETE SHALL RECEIVE A BROOMED FINISH

ONLS CONCRETE SIDEWALK/PAVEMENT/SLAB — 4" THICKNESS

NOTES

1. COMPACT SUBGRADE TO 95% STANDARD PROCTOR. SUBGRADE TO BE INSPECTED BY PROJECT FOREMAN PRIOR TO PLACEMENT OF ACCEPTANT PASS COLLEGE.

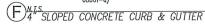

SPECIFICATIONS

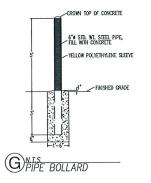
- CONCRETE PANEMENT CONSTRUCTION SHALL BE IN ACCORDANCE WITH WISCONSIN DOT FOW

- CONCRETE SHALL BE 4,000 PS MINIMUM

- CONCRETE SHALL RECEIVE A BROOMED FINISH

DNTS CONCRETE SIDEWALK WITH THICKENED EDGE - 4" THICKNESS


NOTES


1. COMPACT SUBGRADE TO 95% STANDARD PROCTOR. SUBGRADE TO BE INSPECTED BY PROJECT FOREMAN PRIOR TO PLACEMENT OF AGGREGRATE BASE COURSE

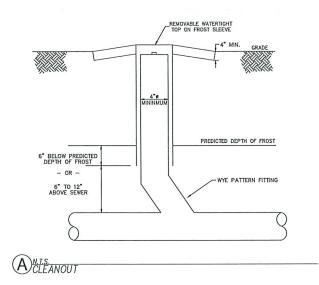
2. BEGINNING AND TERMINATION CONSTRUCTION: THE FINAL 18* SECTION OF CURB SHALL BE TAPERED TO MATCH INTO ADJACENT GRADE OR CURB—LINE.

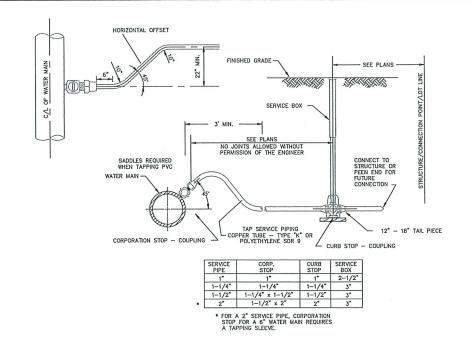
SPECIFICATIONS

CONCRETE CURB AND GUTTER CONSTRUCTION SHALL BE IN ACCORDANCE WITH WISCONSIN DOT FDM (SEE STANDARD DETAIL SDD

CONSTRUCTION DETAILS SITE

312 N. 5TH AVE. P.O. BOX 105 STURGEON BAY, W. 54235 PHONE: 920-743-82


BAUDHUIN SURVEYING & ENGINEERING


DOOR COUNTY ACE HARDWARE

RESS: 1227 EGG HARBOR ROAD STURGEON BAY, WI 54235

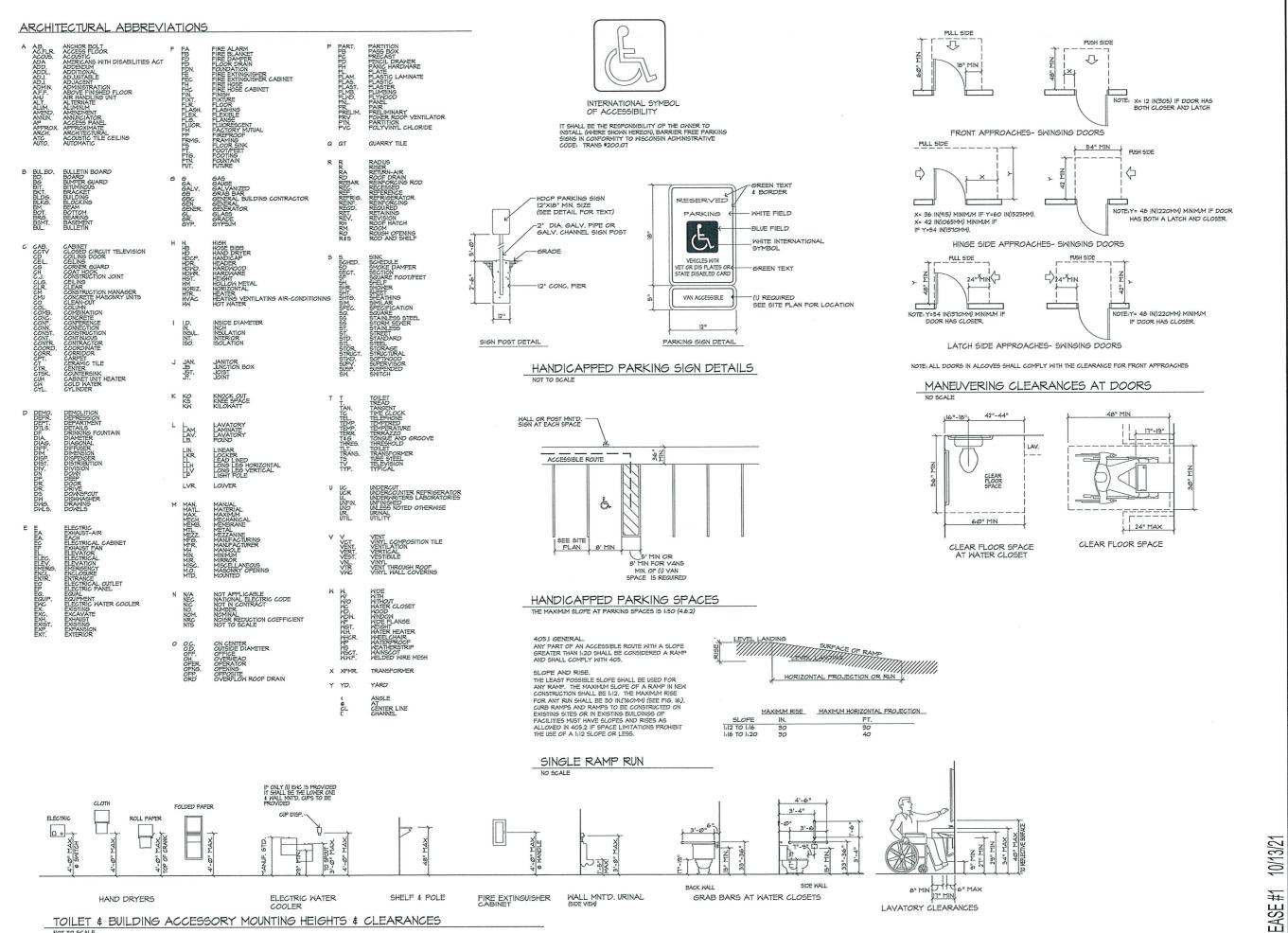
PRELIMINARY
NOT FOR
CONSTRUCTION

C500

BWATER CONNECTION/VALVE/CURB STOP

000\24781 Ace Hard⊮are\ACAD\24781_ENG_DES_Z.dwg (C501) Plotted on: Oct 13, 2021 — 5:37pm by swital

DOOR COUNTY ACE HARDWARE
ADDRESS: 1227 EGG HARBOR ROAD
STURGEON BAY, WI 54235


312 N. 5TH AVE. P.O. BOX 105 STURGEON BAY, M. 54235 PHONE: 920-743-8211

BAUDHUIN SURVEYING & ENGINEERING

CONSTRUCTION DETAILS UTILITY

> PRELIMINARY NOT FOR CONSTRUCTION

C501

핊

SALES: RJF SBBEET ARCHT. NO.: 21043 DATE

PROPOSED NEW STORE FOR:

1225 City o

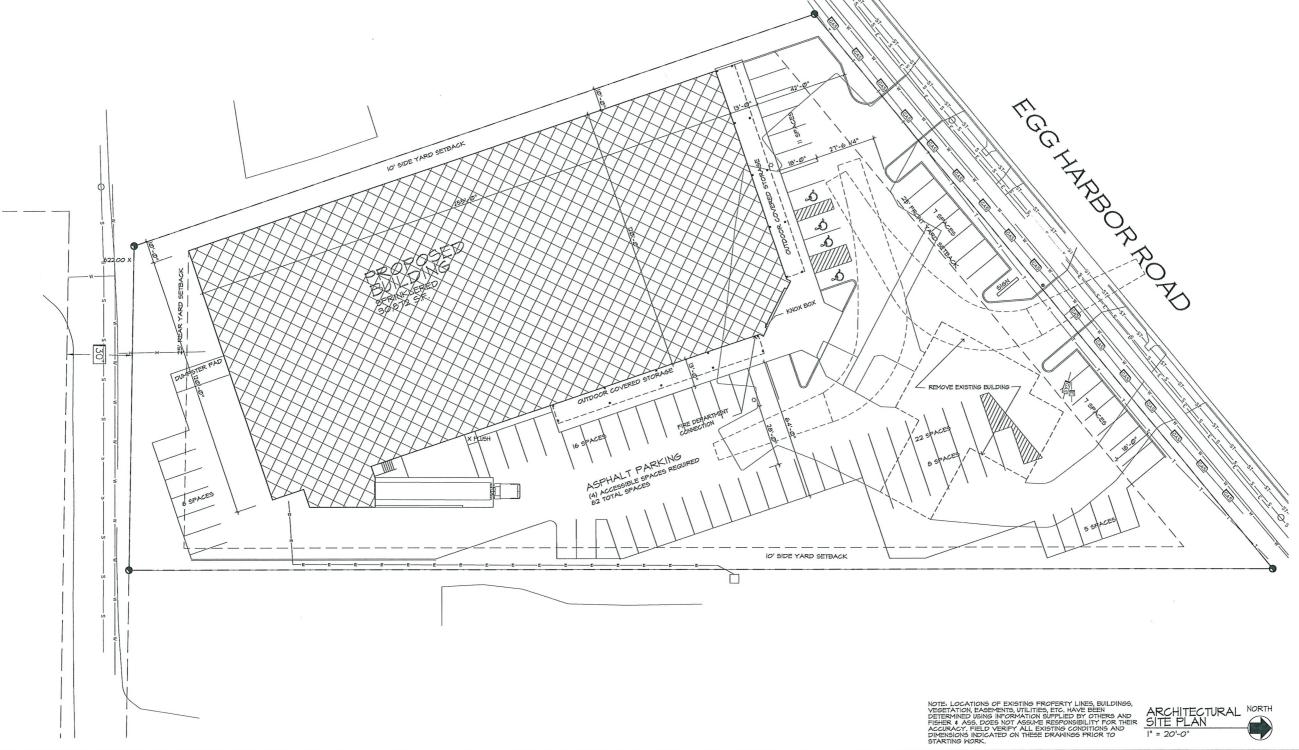
275-1872 532-3828 532-3831

UTATION IS BUILDING

SMET THE SME

Hittory

井 EASE


PARKING

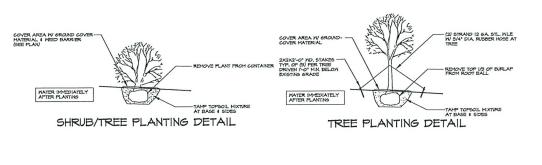
The gross floor area of this store used for merchandising and storage is 21000 s.f. the remainder is customer service and dedicated storages. All stock of all merchandize is displayed/stored on the soles floor including all furnishings and appliances of the 21000 s.f. approximately 60% is retail and 40% is furnishings and storage $21000 \times 6 = 12600 / 200 = 63$ spaces $21000 \times .4 = 8400 / 500 = 11$ spaces

LANDSCAPING

PARKING LOT LANDSCAPING

I TREE PER 6 PARKING SPACES MITHIN IO' OF PARKING SURFACE BO SPACE /6 = 14 TREES REQUIRED

-RELEASE #1


10/13/21

SMET NO. ARCHT. NO.: 21043 DATE:

1225 Egg Harbor Drive City of Sturgeon Bay

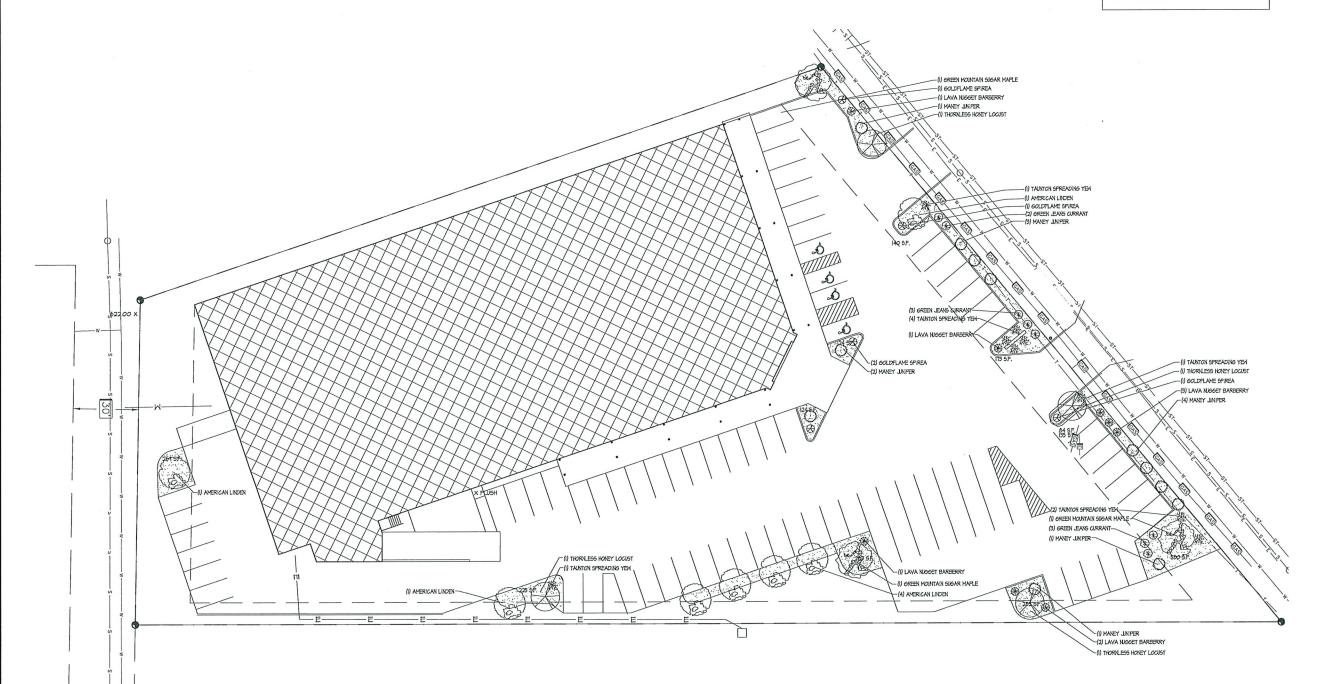
PROPOSED NEW STORE FOR:

CONSTRUCTION SERVICES
OUR REPUTATION IS BUILDING

	DESCRIPTION	aty.	SIZE	PTS.	REMARKS
@	American Linden	٦	2º DIA		
(2)	Green Mountain Sugar Maple	3	2º DIA	П	
\otimes	Thornless Imperial Honey Locust	4	DIA.		
-			-	+	
				$\dagger \dagger$	
	TOTAL	14			

NOTES

- I. REPAIR AND RESERD ALL DISTURCED AREAS


 2. PROVIDE GROUND COVER AROUND NOT TREES

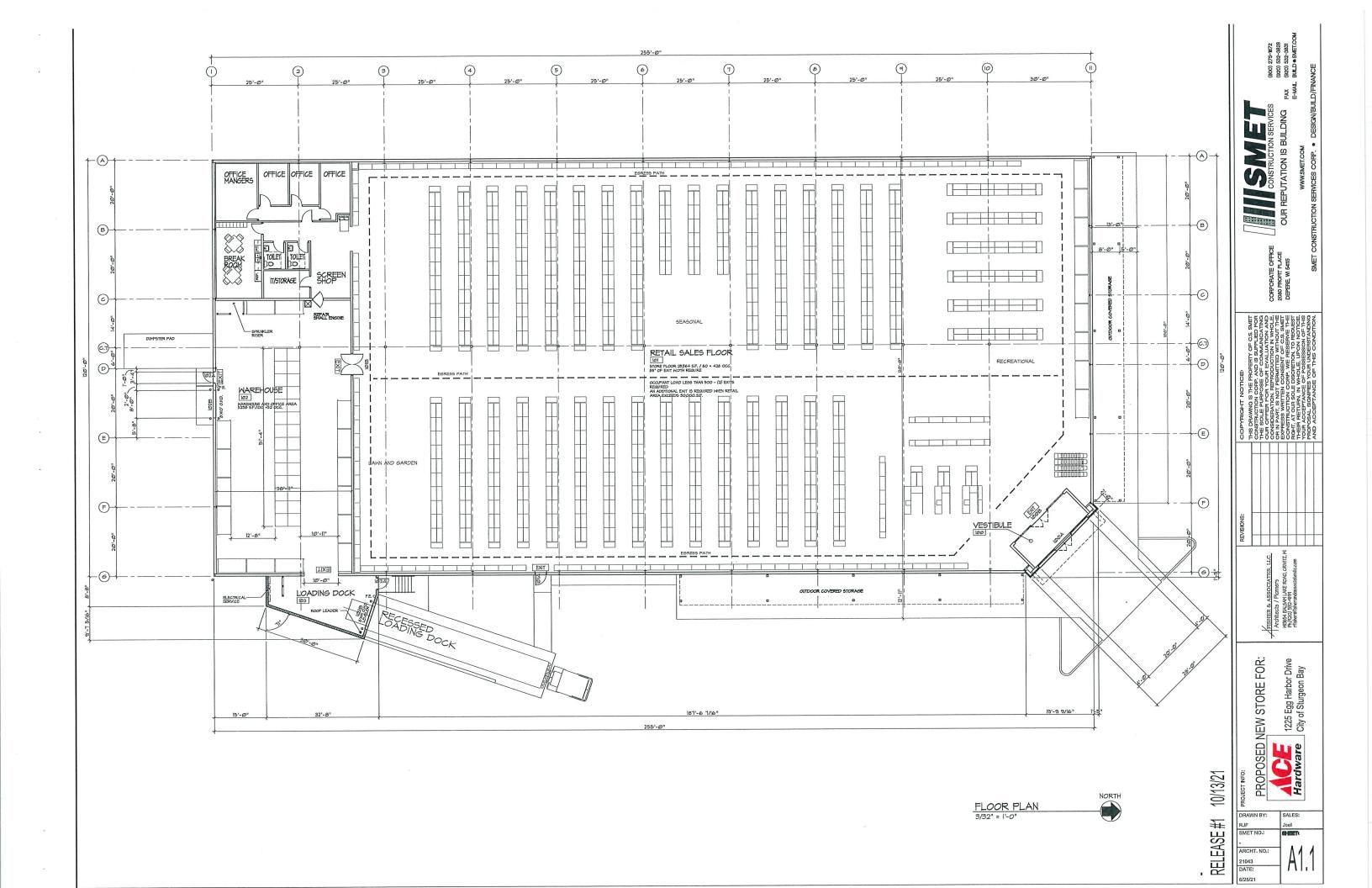
 3. ALL FLATTING AREAS TO HAVE FLASTIC EDGING INTERE NEEDED AND MEDI BARRIER AND COVERED MY MISSISSIPPI LARGE PERBLE LANDSCAPE STONE

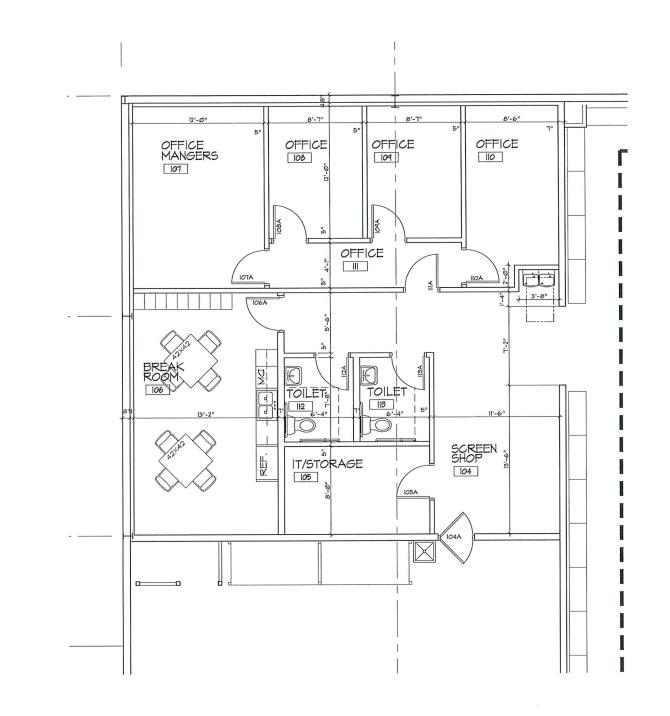
DESCRIPTION			SIZE	PTS.	REMARKS
®	Lava Nugget Barberry	8	9 GAL M.N.		
8	Goldlane Sprea	Б	B GAL MIN.		
①	Green Jeans Alpine Currant	В	9 GAL MN.		
0	Maney Juniper	12	5 GAL MIN		
뾽	Tainton Spreading Yen	9	5 GAL MIN.		
	TOTAL	39			

INTERIOR GREEN SPACE CALCULATION

PARKING AREA 30,666 + 30,756 X .05 = 1681
2424 S.F. PROVIDED

10/13/21


-RELEASE #1


PROPOSED NEW STORE FOR:

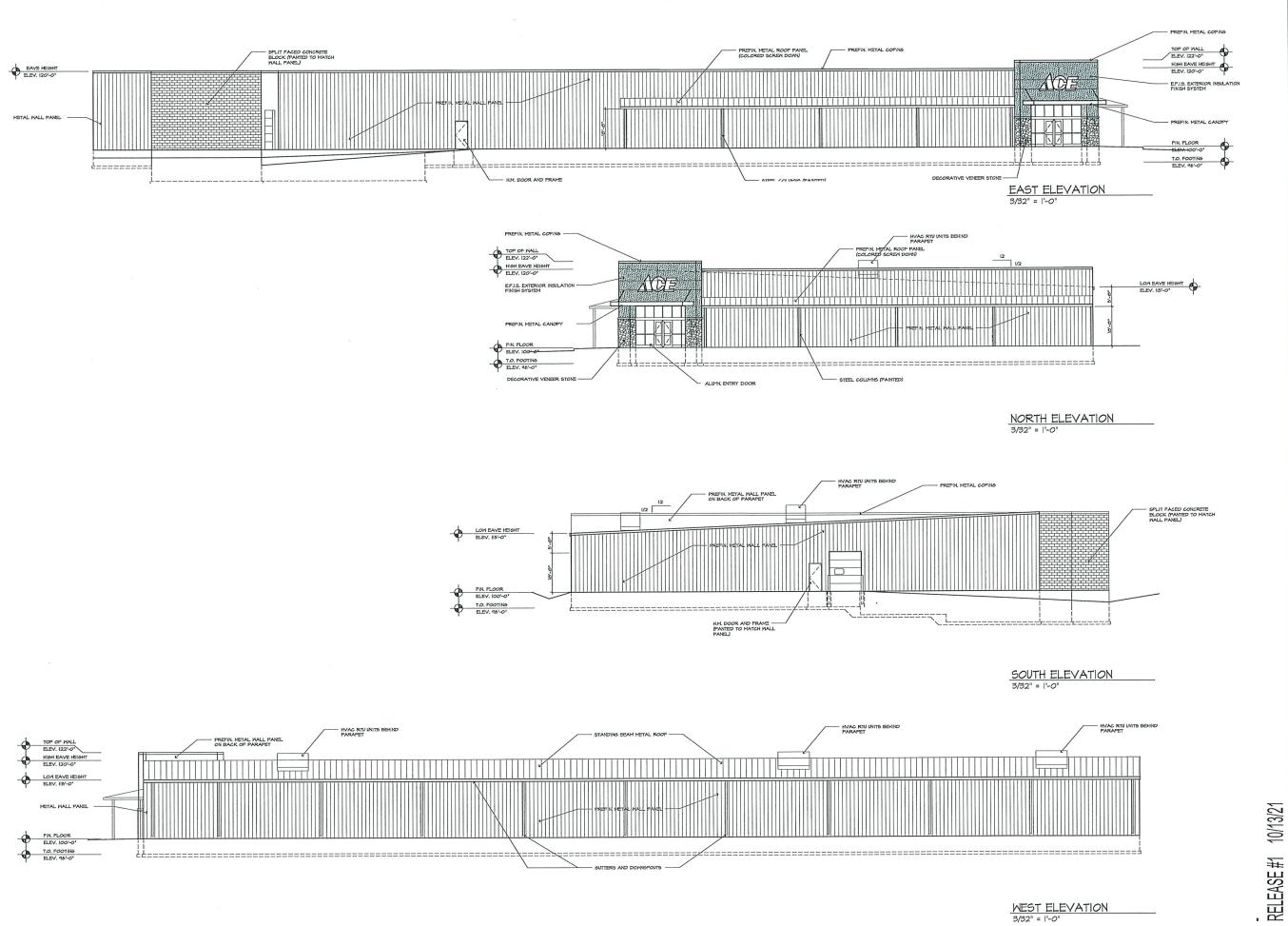
r Drive Bay

5 Egg Harbor I of Sturgeon B

PRELIMINARY NORTH LANDSCAPE PLAN 1" = 20'-0"

1225 Egg Harbor Drive City of Sturgeon Bay PROPOSED NEW STORE FOR:

CONSTRUCTION SERVICES
OUR REPUTATION IS BUILDING

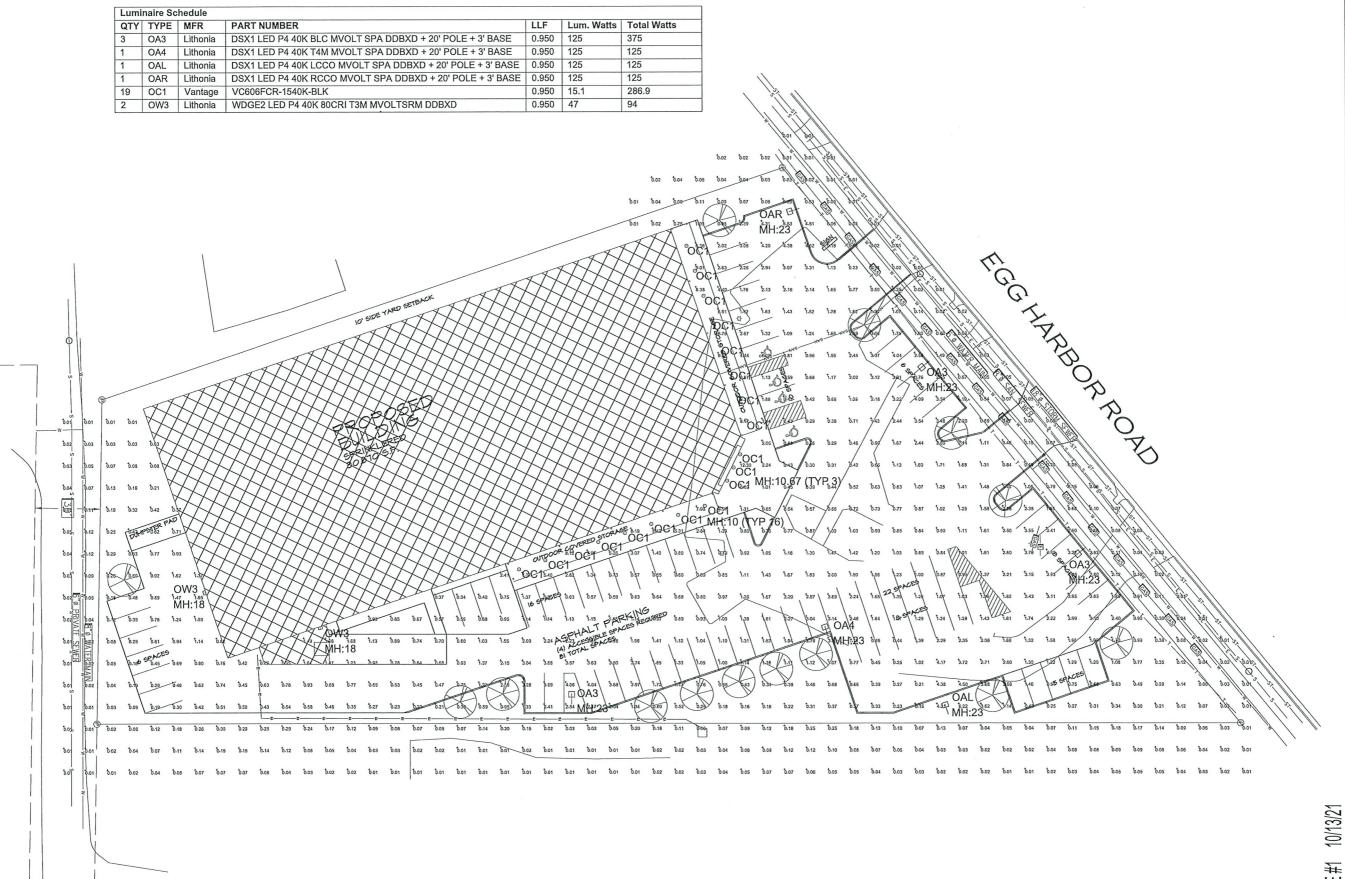

CORPORATE OFFICE 2080 PROPIT PLACE DEPERE, WI SAIIS

NORTH

10/13/21 . RELEASE #1 21043 DATE:

A1.2

ENLARGED FLOOR PLAN 1/8" = 1'-0"


(800) 275-1872 (920) 532-3828 (920) 532-3831 BUILD & SMET.CC REPUTATION IS BUILDING

1225 Egg Harbor Drive City of Sturgeon Bay PROPOSED NEW STORE FOR:

SALES: RJF SMET NO.: ARCHT. NO.: 21043 DATE: 6/25/21

WEST ELEVATION

3/32" = 1'-0"

IATES, LLC

THIS DRAWNG IS THE PROPERTY OF C
THIS DRAWNG IS THE PROPERTY OF C
THIS DRAWNG IS THE PROPERTY OF C
THIS DRAWNG IS SUPPLY
THE STATE OF TH

RELEASE #1 10/

E. DRAWN BY: SALES:
RJF Joel
SMETNO.: SHEET:
- ARCHT. NO.: 21043
DATE:

1225 Egg Harbor Drive City of Sturgeon Bay

PROPOSED NEW STORE FOR:

Part #	VC606FCR1540KBLK	Prepared By
Project		Notes
Туре	OC1	
Date		

LED 6"x6" Open, Commercial Cylinder, non-IC, 1100-2000 Lumens

Description

Fortimo LED DLM Flex Systems

New Fortimo LED Downlight Module (DLM) system now provide the latest advances, including 1% dimming and high quality LED options to satisfy both functional and performance requirements along with excellent energy efficiency and color consistency. For practical and general lighting applications, the Fortimo LED DLM is an excellent solution. Its direct white mid-power LED technology combines high light quality and energy efficiency levels of 100 Lm/W, offering superior price/performance long with low maintenance costs and a long lifetime of 50,000 hours. Three lumen packages are available: 1100, 1500, 2000 lumens with color temperatures of 3000K, 3500K or 4000K. This cylinder delivers an even, wide light distribution.

Specifications and Features

Benefits

- · High energy efficiency system up to 107 lm/W.
- · Wide range of lumen packages from 1100-2000 lumens.
- · High quality of light with CRI 80 and 3 SDCM color consistency.
- · Philips 0-10V dimming to 1% of lumen output.
- Input volts 120-277V.
- · Minimum 50,000 hours of life at L70 standard.
- 5 year warranty on LED components.

Cylinder

Housing is .064" thick spun aluminum cylinder. Polyester powdercoat exterior finish with factory standard colors White (WHT), Black (BLK), Silver (CS).

VC Mounting - Ceiling mount over recessed octagonal or 4" square junction box (by others).

VP Mounting - Pendant mount with 3/8" IP x 12" long rigid stem and swivel canopy for mounting on sloped ceilings up to 45°. 2'and 3' length stems also available

CCK Cord and Cable Mounting kits available, standard length 72". Provided with 5 conductor cord to support 0-10V dimming.

Listings

Manufactured and Listed to UL 1598, ETL and CSA standards. Non-IC rated. Insulation to be kept 3" from luminaire. Suitable for Damp Locations; Wet location under covered ceiling. All photometric tests performed by an accredited NVLP facility and in accordance to IESNA LM-79-2008 testing procedures. ENERGY STAR® certified product.

Warranty

5-year warranty on LED components.

Ordering Information

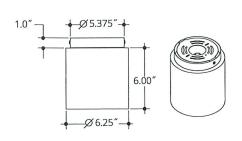
П

VC	606FCR -	-	15 -	40K	BLK -	
Mounting	Series	Voltage*	Lumens	Kelvin	Color	Options*
VC VP	606FCR	1-120V 2-277V	-11 -1100 -15 - 1500 -20 - 2000	30K - 3000K 35K - 3500K 40K - 4000K	WHT BLK CS	CCK-72 P24 P36 REM

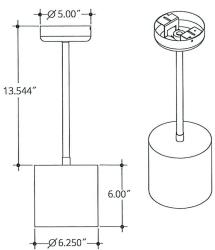
Options

CCK-72 - 6 foot cord and cable

P24 - 2 foot stem


P36 - 3 foot stem

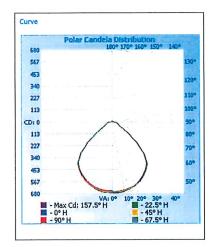
REM - Remote mount emergency


Vantage reserves the right to change components, finishes or design details in any manner which does not alter the installed appearance or reduce performance and intended function.

Dimensional Data: LED 6"x6" Open, Commercial Cylinder, non-IC, 1100-2000 Lumens

Ceiling Mount

Pendant Mount



Lumens

Lumens	Wattage*	
1100	10.4	
1500	15.1	
2000	20.1	
,	red at 3000K /Lumens may vary.	

Photometrics

Cone of Light						
000						
	Center Beam fc	Beam Width				
1.7	229	3.9	3.8			
3.3	60.8	7.5	7.4			
5.0	26.5	11.3	11.3			
6.7	14.8	15.2	15.1			
8.3	9.61	18.8	18.7			
10.0	6.62	22.7	22.6			

Vantage reserves the right to change components, finishes or design details in any manner which does not alter the installed appearance or reduce performance and intended function.

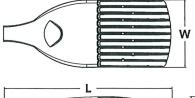
D-Series Size 1

LED Area Luminaire

Specifications

EPA: 1.01 ft² (0.09 m²)

Length: 33" (83.8 cm)
Width: 13"


Width: 13"
(33.0 m)

Height H1: 7-1/2"

(19.0 cm)
Height H2: 3-1/2"

Weight (max):

27 lbs (12.2 kg)

Catalog

DS1XLEDP440KLCCOMVOLTSPADDBXD

Notes

OAL

Hit the Tab key or mouse over the page to see all interactive elements.

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

Ordering Information

EXAMPLE: DSX1 LED P7 40K T3M MVOLT SPA NLTAIR2 PIRHN DDBXD

DSX1 LED	P4	40K	LCCO	MVOLT SPA
Series	LEDs	Color temperature	Distribution	Voltage Mounting
DSX1 LED	Forward optics P1 P41 P71 P2 P51 P8 P3 P61 P91 Rotated optics P102 P122 P112 P1312	30K 3000 K 40K 4000 K 50K 5000 K	T1S Type I short (Automotive) T5S Type V very short 3 T2S Type II short T5M Type V medium 3 T2M Type II medium T5W Type V wide 3 T3S Type III short BLC Backlight control 4 T3M Type III medium LCCO Left corner cutoff 4 T4M Type IV medium RCCO Right corner cutoff 4 TFTM Forward throw medium	MVOLT 5 XVOLT (277V-480V) 6-7.8 120 9 208 9 240 9 277 9 347 9 480 9 Shipped included SPA Square pole mounting 10 WBA Wall bracket 3 SPUMBA Square pole universal mounting adaptor 11 RPUMBA Round pole universal mounting adaptor 9 Shipped separately KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) 12

DDBXD

Control options Control options			Other options		Finish (required)	
Shipped installed NLTAIR2 nLight AIR generation 2 enabled ¹³ PIRHN Network, high/low motion/ambient sensor ¹⁴ PER NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ PER5 Five-pin receptacle only (controls ordered separate) ^{15,16} PER7 Seven-pin receptacle only (controls ordered separate) ^{15,16} DMG 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) ¹⁷ DS Dual switching ^{18,19,20}	PIR PIRH PIR1FC3V PIRH1FC3V FAO	High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor enabled at 1fc ^{20,21} Bi-level, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 1fc ^{20,21} Field adjustable output ^{20,21}	HS SF DF L90 R90 HA BAA	ped installed House-side shield ²³ Single fuse (120, 277, 347V) ⁹ Double fuse (208, 240, 480V) ⁹ Left rotated optics ² Right rotated optics ² 50°C ambient operations ¹ Buy America(n) Act Compliant ped separately Bird spikes ²⁴ External glare shield	DDBXD DBLXD DNAXD DWHXD DDBTXD DBLBXD DNATXD DWHGXD	Dark bronze Black Natural aluminum White Textured dark bronze Textured black Textured natural aluminum Textured white

Ordering Information

Accessories

Ordered and shipped separately.

DLL127F 1.5 JU Photocell - SSL twist-lock (120-277V) 25 DLL347F 1.5 CUL JU Photocell - SSL twist-lock (347V) 25 DLL480F 1.5 CUL JU Photocell - SSL twist-lock (480V) 25

DSHORT SBK U Shorting cap 25 DSX1HS 30C U

House-side shield for P1, P2, P3, P4 and P523 DSX1HS 40C U House-side shield for P6 and P723 House-side shield for P8, P9, P10, P11 and P12²³ DSX1HS 60C U

Square and round pole universal mounting bracket (specify finish) 26 PUMBA DDBXD U* Mast arm mounting bracket adaptor (specify finish) 12

KMA8 DDBXD U

DSX1EGS (FINISH) U External glare shield

For more control options, visit DTL and ROAM online.

NOTES

HA not available with P4, P5, P6, P7, P9 and P13

P10, P11, P12 or P13 and rotated optics (L90, R90) only available together.

Any Type 5 distribution with photocell, is not available with WBA Not available with HS.

MVOLT driver operates on any line voltage from 120-277V (50/60 Hz). XVOLT only suitable for use with P3, P5, P6, P7, P9 and P13.

XVOLT works with any voltage between 277V and 480V.
XVOLT not available with fusing (SF or DF) and not available with PIR, PIRH, PIRHFC3V, PIRH1FC3V.

9 Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF. 10 Suitable for mounting to round poles between 3.5" and 12" diameter.

11 Universal mounting to reduce poles between 3.3 and 1.2 columeter.

12 Universal mounting brackets intended for retrofit on existing, pre-drilled poles only. 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8

12 Must order fixture with SPA option. Must be ordered as a separate accessory; see Accessories information. For use with 2-3/8" diameter mast arm (not included).

13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.

14 Must be ordered with NLTAIR2. For more information on nLight Air 2 visit this link.

15 Photocell Ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included.

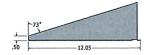
16 If ROAM³ node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming.

17 DMG not available with PIRHN, PERS, PERF, PIR, PIRH, PIRHT-C3V or PIRH1FC3V, FAO.

18 Provides SO/Softwire operation via (2) independent drivers. Not available with PER, PERF, PIR, PIRH. Not available P1, P2, P3, P4 or P5.

19 Requires (2) separately switched circuits with isolated neutrol.

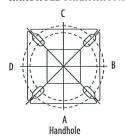
19 Requires (4) separatery switched circuits with isolated neutron.
20 Reference Controls Option Default settings table on page 4.
21 Reference Motion Sensor table on page 4 to see functionality.
22 Not available with other dimming controls options.
23 Not available with BLC, LCCO and RCCO distribution. Also available as a separate accessory; see Accessories information.

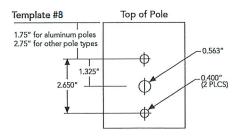

24 Must be ordered with fixture for factory pre-drilling.
25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4.

26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield





Drilling

HANDHOLE ORIENTATION

Tenon Mounting Slipfitter

	3						
Tenon O.D.	Mounting	Single Unit	2@180	2@90	3 @ 90	3 @120	4@90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-11		L	- T-	Y	m in
Mounting Option	Drilling Template	Single	2@180	2@90	3@90	3 @ 120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

© 2011-2021 Acuity Brands Lighting, Inc. All rights reserved.

*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2 @ 90 DM29	3 @ 90 DM39	3 @ 120 DM32	4 @ 90 DM49
Mounting Type		=-=	T _m	<u>T</u>	*	m 1 m
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

	Drilling Template	Minimum Acceptable Outside Pole Dimension													
SPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"								
RPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"								
SPUMBA	#5	2-7/8"	3"	4"	4"	3.5"	4"								
RPUMBA	#5	2-7/8"	3.5"	5"	5"	3.5"	5"								

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 1 homepage.

Isofootcandle plots for the DSX1 LED 60C 1000 40K. Distances are in units of mounting height (25'). with Test No. LTL23222 tested in accordance with IESNA LM-79-08. LEGEND 0 1 2 3 Test No. LT.23271 tested in accordance with Test No. LTL23164B tested in accordance in ESNA LM-79-08. Test No. LTL23211 tested in accordance IESNA LM-79-08. 0.1 fc 3 3 2 0.5 fc 2 2 2 1 0 0 0 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 T2M T2S CS CS Tost No. LT.23271 tasted in accordance with IESNA LM-79-08. Test No. LTL23164B tested in accordance with IESNA LM-79-08. Test No. LTL23222 tested in accordance with IESNA LM-79-08. 3 2 1 0 1 2 3 3 2 1 0 1 2 3 3 2 1 0 1 2 3 Test No. LTL23211 tested in accordance IESNA LM-79-08. 3 3 3 2 2 1 0 -1 -1 -2 -2 -2 -3 -3 -3 -3 T4M Test No. LTL23164B tested in accordance with IESNA LM-79-08. with 0 Fest No. LTL23271 tested in accordance with IESNA LM-79-08. 0 2 Test No. LTL23211 tested in accordance with IESNA LM-79-08. Test No. LTL23222 tested in accordance in ESNA LM-79-08. 3 2 2 0 -1 -1 -2 -2 -2 -3 -3 -3 Test No. LTL23164B tested in accordance with IESNA LM-79-08. Test No. LTL23211 tested in accordance with IESNA LM-79-08. 2 3 3 2 2 1 0 0 -1 -1 -2 -2 -3

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

Amb	ient	Lumen Multiplier
0°C	32°F	1.04
5°C	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
35°C	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

	Motion Sensor Default Settings													
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time								
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min								

Electrical Load

							Curre	nt (A)		
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22
	P4	30	1250	125	1.06	0.60	0.52	0.46	0.37	0.27
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29
,	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

Forward Op	otics																												
	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)												
LED Count	Current	Package	Watts	Туре	Lumens	B	U U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW										
				T1S	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130										
				TZS	6,450	2	0	2	119	6,949	2	0	2	129	7,037	2	0	2	130										
				T2M	6,483	1	0	1	120	6,984	2	0	2	129	7,073	2	0	2	131										
				T35	6,279	2	0	2	116	6,764	2	0	2	125	6,850	1	0	2	127 131										
	=			T3M T4M	6,468	1	0	2	120 117	6,967 6,816	1	0	2	129 126	7,056 6,902	1	0	2	128										
				TFTM	6,327 6,464	1	0	2	120	6,963	1	0	2	129	7,051	1	0	2	131										
30	530	P1	54W	TSVS	6,722	2	0	0	124	7,242	3	0	0	134	7,334	3	0	0	136										
				TSS	6,728	2	0	1	125	7,248	2	0	1	134	7,340	2	0	1	136										
				T5M	6,711	3	0	1	124	7,229	3	0	1	134	7,321	3	0	2	136										
				T5W	6,667	3	0	2	123	7,182	3	0	2	133	7,273	3	0	2	135										
				BLC	5,299	1	0	1	98	5,709	1	0	2	106	5,781	1	0	2	107 80										
				LCCO	3,943	1	0	2	73	4,248 4,248	1	0	2	79 79	4,302 4,302	1	0	2	80										
				RCCO T1S	3,943 8,249	1 2	0	2	73 118	8,886	2	0	2	127	8,999	2	0	2	129										
				T2S	8,240	2	0	2	118	8,877	2	0	2	127	8,989	2	0	2	128										
				T2M	8,283	2	0	2	118	8,923	2	0	2	127	9,036	2	0	2	129										
				T3S	8,021	2	0	2	115	8,641	2	0	2	123	8,751	2	0	2	125										
				T3M	8,263	2	0	2	118	8,901	2	0	2	127	9,014	2	0	2	129										
				T4M	8,083	2	0	2	115	8,708	2	0	2	124	8,818	2	0	2	126 129										
30	700	P2	70W	TFTM	8,257	2	0	2	118	8,896 9,252	3	0	0	127	9,008	3	0	0	134										
				T5VS T5S	8,588 8,595	3	0	1	123	9,252	3	0	1	132	9,376	3	0	1	134										
				T5M	8,573	3	0	2	122	9,236	3	0	2	132	9,353	3	0	2	134										
				T5W	8,517	3	0	2	122	9,175	4	0	2	131	9,291	4	0	2	133										
				BLC	6,770	1	0	2	97	7,293	1	0	2	104	7,386	11	0	2	106										
				LCCO	5,038	1	0	2	72	5,427	1	0	2	78	5,496	1	0	2	79										
				RCCO	5,038	1	0	2	72	5,427	1	0	2	78	5,496	1	0	2	79										
				TIS	11,661	2	0	2	114	12,562 12,548	3	0	3	123	12,721 12,707	3	0	3	125 125										
			T2S T2M	11,648 11,708	2	0	2	115	12,548	2	0	2	124	12,773	2	0	2	125											
				T3S	11,708	2	0	2	111	12,215	3	0	3	120	12,370	3	0	3	121										
			P3 102W	T3M	11,680	2	0	2	115	12,582	2	0	2	123	12,742	2	0	2	125										
				T4M	11,426	2	0	3	112	12,309	2	0	3	121	12,465	2	0	3	122										
30	1050	D2		102W	102W	102W	102W	102W	102W	102W	102W	102W	102W	TFTM	11,673	2	0	2	114	12,575	2	0	3	123	12,734	2	0	3	125
30	1030	13												102W	102W	102W	10244	10214	10244	10244	102W	102W	T5VS	12,140	3	0	1	119	13,078
				TSS	12,150	3	0	2	119	13,089 13,056	3	0	2	128 128	13,254 13,221	4	0	2	130										
										T5M T5W	12,119 12,040	4	0	3	118	12,970	4	0	3	127	13,134	4	0	3	129				
				BLC	9,570	1	0	2	94	10,310	1	0	2	101	10,440	1	0	2	102										
				LCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76										
				RCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76										
				T1S	13,435	3	0	3	107	14,473	3	0	3	116	14,657	3	0	3	117										
				T2S	13,421	3	0	3	107	14,458	3	0	3	116 116	14,641	3	0	3	117										
				T2M	13,490	3	0	3	108	14,532 14,074	3	0	3	113	14,716 14,252	3	0	3	114										
				T3S T3M	13,064 13,457	2	0	2	103	14,497	2	0	2	116	14,681	2	0	2	117										
				T4M	13,165	2	0	3	105	14,182	2	0	3	113	14,362	2	0	3	115										
	1050	D.	12511	TFTM	13,449	2	0	3	108	14,488	2	0	3	116	14,672	2	0	3	117										
30	1250	P4	125W	T5VS	13,987	4	0	1	112	15,068	4	0	1	121	15,259	4	0	1	122										
				TSS	13,999	3	0	1	112	15,080	3	0	1	121	15,271	3	0	1	122										
				T5M	13,963	4	0	3	112	15,042 14,944	4	0	3	120	15,233 15,133	4	0	3	122										
				T5W BLC	13,872 11,027	1	0	2	88	11,879	1	0	2	95	12,029	1	0	2	96										
				LCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72										
				RCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72										
				T1S	14,679	3	0	3	106	15,814	3	0	3	115	16,014	3	0	3	116										
				T2S	14,664	3	0	3	106	15,797	3	0	3	114	15,997	3	0	3	116										
				T2M	14,739	3	0	3	107	15,878	3	0	3	115	16,079	3	0	3	117										
				T35	14,274	3	0	3	103	15,377	3	0	3	111	15,572 16,040	3	0	3	113										
				T3M T4M	14,704 14,384	2	0	3	107	15,840 15,496	3	0	3	112	15,692	3	0	3	114										
				TFTM	14,384	2	0	3	106	15,830	3	0	3	115	16,030	3	0	3	116										
30	1400	P5	138W	TSVS	15,283	4	0	1	111	16,464	4	0	1	119	16,672	4	0	1	121										
		1		TSS	15,295	3	0	1	111	16,477	4	0	1	119	16,686	4	0	1	121										
				T5M	15,257	4	0	2	111	16,435	4	0	2	119	16,644	4	0	2	121										
				T5W	15,157	4	0	3	110	16,328	4	0	3	118	16,534	4	0	3	120										
				BLC	12,048	1	0	2	87	12,979	1	0	2	94 70	13,143	1	0	3	95										
				LCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780 9,780	1	0	3	71										
			RCCO	8,965	1	0	3	65	9,657		U	1 3	///	7,700	1 -	1 0	,	1 /1											

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Op	otics																																												
LED Count	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)																												
LED Count	Current	Package	Watts	Туре	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW																										
				T1S	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	118																										
				T2S	17,635	3	0	3	108	18,998	3	0	3	117	19,238	3	0	3	118																										
				T2M	17,726	3	0	3	109	19,096	3	0	3	117	19,337	3	0	3	119																										
				T3S	17,167	3	0	3	105	18,493	3	0	3	113	18,727	3	0	3	115																										
				ТЗМ	17,683	3	0	3	108	19,049	3	0	3	117	19,290	3	0	3	118 116																										
				T4M	17,299	3	0	3	106	18,635	3	0	4	114 117	18,871 19,279	3	0	4	118																										
40	1250	P6	163W	TFTM	17,672	3	0	3	108	19,038 19,800	4	0	1	121	20,050	4	0	1	123																										
				T5VS T5S	18,379 18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2	123																										
				T5M	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123																										
				T5W	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	122																										
				BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	97																										
				LCC0	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72																										
				RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72																										
				T15	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3	115																										
				T2S	19,206	3	0	3	105	20,690	3	0	3	113	20,952	3	0	3	114																										
				T2M	19,305	3	0	3	105	20,797	3	0	3	114	21,060	3	0	3	115																										
				T3S	18,696	3.	0	3	102	20,141	3	0	3	110 113	20,396 21,009	3	0	3	115																										
				T3M	19,258	3	0	3	105	20,746 20,296	3	0	4	111	20,553	3	0	4	112																										
				T4M TFTM	18,840 19,246	3	0	4	105	20,734	3	0	4	113	20,996	3	0	4	115																										
40	1400	P7	183W	T5VS	20,017	4	0	1	109	21,564	4	0	1	118	21,837	4	0	1	119																										
				TSS	20,033	4	0	2	109	21,581	4	0	2	118	21,854	4	0	2	119																										
				T5M	19,983	4	0	2	109	21,527	5	0	3	118	21,799	5	0	3	119																										
				T5W	19,852	5	0	3	108	21,386	5	0	3	117	21,656	5	0	3	118																										
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	94																										
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70																										
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70																										
				- T15	22,490	3	0	3	109	24,228	3	0	3	117	24,535	3	0	3	119																										
																														T2S	22,466	3	0	4	109	24,202	3	0	3	117	24,509	3	0	3	118 119
				T2M	22,582	3	0	3	109	24,327 23,560	3	0	4	118	24,635 23,858	3	0	4	115																										
				T3S T3M	21,870 22,527	3	0	4	109	24,268	3	0	4	117	24,575	3	0	4	119																										
				T4M	22,038	3	0	4.	106	23,741	3	0	4	115	24,041	3	0	4	116																										
				TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	119																										
60	1050	P8	207W	T5VS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	123																										
				T5S	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	123																										
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123																										
				T5W	23,221	5	0	4	112	25,016	5	0	4	121	25,332	5	0	4	122																										
				BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	97																										
				LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72																										
					RCCO	13,735	2	0	3	106	14,796	2	0	3	71	14,983 27,900	3	0	3	72 116																									
				T1S	25,575	3	0	3	106	27,551 27,522	3	0	4	114	27,900	3	0	4	116																										
				T2S T2M	25,548 25,680	3	0	3	107	27,664	3	0	3	115	28,014	3	0	3	116																										
				T3S	24,870	3	0	4	107	26,791	3	0	4	111	27,130	3	0	4	113																										
				T3M	25,617	3	0	4	106	27,597	3	0	. 4	115	27,946	3	0	4	116																										
				T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4	113																										
			244111	TFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4	116																										
60	1250	P9	241W	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047	5	0	1	121																										
				TSS	26,648	4	0	2	111	28,707	5	0	2	119	29,070	5	0	2	121																										
				T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997	5	0	3	120																										
				T5W	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	120																										
				BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	95																										
				LCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71																										
				RCCO	15,619	2	0	4	65	16,825	2	0	1 4	1 /0	17,038		1 0	1 4	1 /1																										

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Rotated Op	otics	666																																						
I T D C	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)																							
LED Count	Current	Package	Watts	Туре	Lumens	B	U U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW																					
		-		T1S	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	134																					
				T2S	12,967	4	0	4	122	13,969	4	0	4	132	14,146	4	0	4	133																					
				T2M	13,201	3	0	3	125	14,221	3	0	3	134	14,401	3	0	3	136																					
				T35	12,766	4	0	4	120	13,752	4	0	4	130	13,926	4	0	4	131																					
				T3M	13,193	4	0	4	124	14,213	4	0	4	134	14,393	4	0	4	136																					
				T4M	12,944	4	0	4	122	13,945	4	0	4	132	14,121	4	0	4	133																					
				TFTM	13,279	4	0	4	125	14,305	4	0	4	135	14,486	4	0	4	137																					
60	530	P10	106W	T5VS	13,372	3	0	1	126	14,405	4	0	1	136	14,588	4	0	1	138																					
				TSS	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0	1	136																					
				T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	136																					
				T5W	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0	3	135																					
				BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	112																					
				LCCO	7,789	1	0	3	73	8,391	1	0	3	79	8,497	1	0	3	80																					
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4	80																					
				T1S	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0	4	132																					
				T2S	16,461	4.	0	4	120	17,733	4	0	4	129	17,957	4	0	4	131																					
				T2M	16,758	4	0	4	122	18,053	4	0	4	132	18,281	4	0	4	133																					
				T3S	16,205	4	0	4	118	17,457	4	0	4	127	17,678	4	0	4	129																					
				·T3M	16,748	4	0	4	122	18,042	4	0	4	132	18,271	4	0	4	133																					
				T4M	16,432	4	0	4	120	17,702	4	0	4	129	17,926	4	0	4	131																					
				TFTM	16,857	4	0	4	123	18,159	4	0	4	133	18,389	4	0	4	134																					
60	700	P11	137W	T5VS	16,975	4	0	1	124	18,287	4	0	1	133	18,518	4	0	1	135																					
				TSS	16,832	4	0	1	123	18,133	4	0	2	132	18,362	4	0	2	134																					
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2	134																					
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0	3	133																					
			1	BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3	110																					
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3	79																					
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	79																					
																									T1S	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	121
																									T2S	22,864	4	0	4	110	24,631	5	0	5	119	24,943	5	0	5	120
			8	T2M	23,277	4	0	4	112	25,075	4	0	4	121	25,393	4	0	4	123																					
				T35	22,509	4	0	4	109	24,248	5	0	5	117	24,555	5	0	5	119																					
				T3M	23,263	4	0	4	112	25,061	4	0	4	121	25,378	4	0	4	123																					
				T4M	22,824	5 .	0	5	110	24,588	5	0	5	119	24,899	5	0	5	120																					
				TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	123																					
60	1050	P12	207W	TSVS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	124																					
				TSS	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	123																					
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123																					
				T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	122																					
				BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0	4	101																					
				LCCO	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72																					
				RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963	4	0	4	72																					
				T1S	25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4	120																					
				T2S	25,254	5	0	5	109	27,205	5	0	5	118	27,550	5	0	5	119																					
				T2M	25,710	4	0	4	111	27,696	4	0	4	120	28,047	4	0	4	121																					
				T3S	24,862	5	0	5	108	26,783	5	0	5	116	27,122	5	0	5	117																					
				T3M	25,695	5	0	5	111	27,680	5	0	5	120	28,031	5	0	5	121																					
				T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	119																					
				TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	122																					
60	1250	P13	231W	T5VS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1	123																					
				T5S	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	122																					
				T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	122																					
				T5W	25,586	5	0	4	111	27,563	5	0	4	119	27,912	5	0	4	121																					
				BLC	21,241	4	0	4	92	22,882	4	0	4	99	23,172	4	0	4	100																					
				LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549	2	0	4	72																					
				RCCO	15,150	5	0	5	66	16,321	5	0	5	71	16,527	5	0	5	72																					
L			I ncco	ווינו ו		1 0	1 ,	1 00	10/221	1 ,	1 0		1 /1	1 10/02/	-																									

Page 7 of 8

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED® and Green Globes™ criteria for eliminating wasteful uplight.

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERIS™ series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

© 2011-2021 Acuity Brands Lighting, Inc. All rights reserved.

5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions

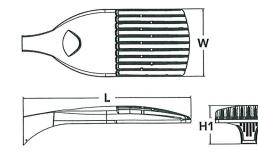
Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C.

Specifications subject to change without notice.

D-Series Size 1

LED Area Luminaire



Specifications

EPA: 33" Length: (83.8 cm) 13" Width: (33.0 cm) 7-1/2" Height H1: (19.0 cm) 3-1/2" Height H2: Weight 27 lbs (max): (12.2 kg)

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

Ordering Information

EXAMPLE: DSX1 LED P7 40K T3M MVOLT SPA NLTAIR2 PIRHN DDBXD

DSX1 LED	P4	40K	RCCO	MVOLT SPA
Series	LEDs	Color temperature	Distribution	Voltage Mounting
DSX1 LED	Forward optics P1 P4 P7 P8 P2 P5 P8 P3 P6 P9 P9 Rotated optics P10 P12 P13 1,2	30K 3000 K 40K 4000 K 50K 5000 K	T1S Type I short (Automotive) T5VS Type V very short ³ T2S Type II short T5M Type V medium ³ T2M Type II medium T5W Type V wide ³ T3S Type III short BLC Backlight control ⁴ T3M Type III medium LCCO Left corner cutoff ⁴ T4M Type IV medium RCCO Right corner cutoff ⁴ TFTM Forward throw medium	MVOLT 5 XVOLT (277V-480V) 67.8 120 9 WBA Wall bracket 3 SPUMBA Square pole mounting 10 WBA Wall bracket 3 SPUMBA Square pole universal mounting adaptor 11 RPUMBA Round pole universal mounting adaptor 9 Shipped separately 347 9 KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) 12

DDBXD

Control options			Other	options	Finish (required)		
Shipped installed NLTAIR2 nLight AIR generation 2 enabled ¹³ PIRHN Network, high/low motion/ambient sensor ¹⁴ PER NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ PER5 Five-pin receptacle only (controls ordered separate) ^{15,16} PER7 Seven-pin receptacle only (controls ordered separate) ^{15,16} DMG 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) ¹⁷ DS Dual switching ^{18,19,20}	PIR PIRH PIR1FC3V PIRH1FC3V FAO	High/low, motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 1fc ^{20,21} Bi-level, motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fc ^{20,21} Field adjustable output ^{20,21}	HS SF DF L90 R90 HA BAA	ped installed House-side shield ²³ Single fuse (120, 277, 347V) ⁹ Double fuse (208, 240, 480V) ⁹ Left rotated optics ² Right rotated optics ² 50°C ambient operations ¹ Buy America(n) Act Compliant ped separately Bird spikes ²⁴ External glare shield	DDBXD DBLXD DNAXD DWHXD DDBTXD DBLBXD DNATXD DWHGXD	Dark bronze Black Natural aluminum White Textured dark bronze Textured black Textured natural aluminum Textured white	

Ordering Information

Accessories

Ordered and shipped separately.

DLL127F 1.5 JU Photocell - SSL twist-lock (120-277V) 25 DLL347F 1.5 CULJU Photocell - SSL twist-lock (347V) 25 DLL480F 1.5 CUL JU Photocell - SSL twist-lock (480V) 25

DSHORT SBK U Shorting cap 25

DSX1HS 30C U House-side shield for P1, P2, P3, P4 and P523 DSX1HS 40C II House-side shield for P6 and P723 House-side shield for P8, P9, P10, P11 and P12²³ DSX1HS 60C U

Square and round pole universal mounting bracket (specify finish) 26 PUMBA DDBXD U*

Mast arm mounting bracket adaptor (specify finish) 12 KMA8 DDBXD U

DSX1EGS (FINISH) U External glare shield

For more control options, visit DTL and ROAM online.

NOTES

HA not available with P4, P5, P6, P7, P9 and P13.

P10, P11, P12 or P13 and rotated optics (1,90, R90) only available together. Any Type 5 distribution with photocell, is not available with WBA. Not available with HS.

NOT available with 175.

NOTE of the rope and the voltage from 120-277V (50/60 Hz).

NOTE only suitable for use with P3, P5, P6, P7, P9 and P13.

NOTE works with any voltage between 277V and 480V.

NOTE not available with fixing (SF or DF) and not available with PIR, PIRH, PIR1FC3V, PIRH1FC3V.

9 Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF. 10 Suitable for mounting to round poles between 3.5" and 12" diameter.

11 Universal mounting brackets intended for retroit on existing, pre-drilled poles only, 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8 12 Must order fixture with SPA option. Must be ordered as a separate accessory, see Accessories information. For use with 2-3/8" diameter mast arm (not included).

3 Must be ordered with PIRRN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.

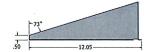
14 Must be ordered with NITAIR2. For more information on nLight Air 2 visit this link.

15 Photocoll ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included.

16 If ROAM® node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming.

17 DMG not available with PIRHN, PERS, PERS, PIR, PIRH, PIRT-GO'A or PIRH-IT-GO'A, PI

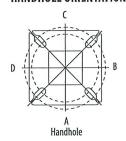
18 Provinces SUJUNIXITIE operation via (2) independent drivers. Not available with PER, PERS, PE

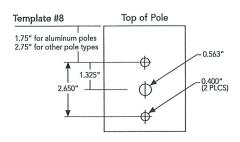

24 Must be ordered with fixture for factory pre-drilling.
25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4.

26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield





Drilling

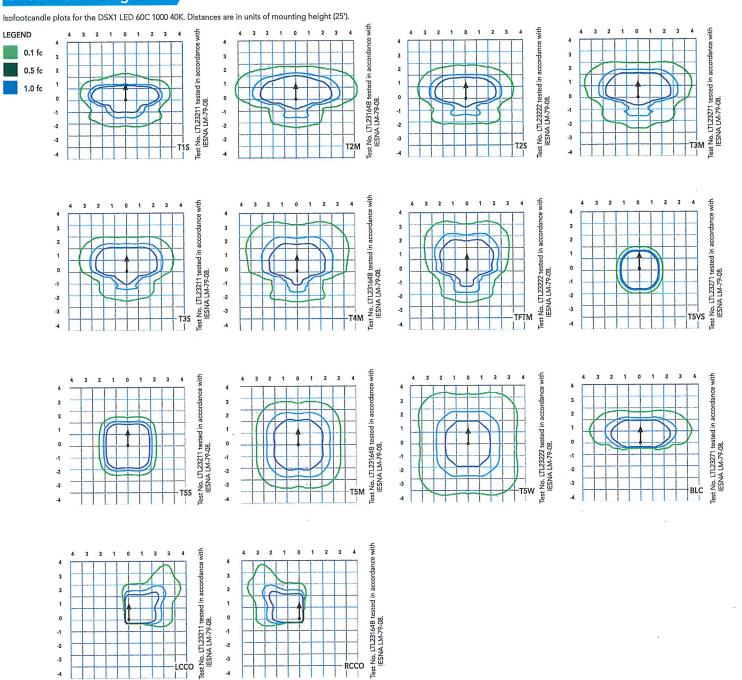
HANDHOLE ORIENTATION

Tenon Mounting Slipfitter

Tenon O.D.	Mounting	Single Unit	2 @ 180	2 @ 90	3 @ 90	3 @120	4 @ 90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-81		E _m	m I m	*	-
Mounting Option	Drilling Template	Single	2@180	2@90	3@90	3 @ 120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA


*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2 @ 90 DM29	3 @ 90 DM39	3 @ 120 DM32	4@90 DM49
Mounting Type			E.	<u>T</u>	Y	m#m
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

(p.45) (s)	Drilling Template	Minimum Acceptable Outside Pole Dimension											
SPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"						
RPA	. #8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"						
SPUMBA	#5	2-7/8"	3"	4"	4"	3.5"	4"						
RPUMBA	#5	2-7/8"	3.5"	5"	5"	3.5"	5"						

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 1 homepage.

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

Amb	ient	Lumen Multiplier
0°C	32°F	1.04
5°C	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
35℃	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLT, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

Motion Sensor Default Settings												
Option	Option Dimmed State High Level (when triggered		Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time						
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min						
*PIR1FC3V or PIRH1FC3V	R1FC3V or 3V (37%) 10		Enabled @ 1FC	5 min	3 sec	5 min						

*for use when motion sensor is used as dusk to dawn control.

Electrical Load

					Current (A)							
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480		
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12		
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16		
	Р3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22		
	P4	30	1250	125	1.06	1.06 0.60		0.46	0.37	0.27		
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29		
,	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34		
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38		
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49		
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51		
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27		
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32		
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46		
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49		

		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

Forward O	ptics																						
LED Count	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)						
LED Count	Current	Package	Watts	Туре	Lumens	B	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW				
				T1S	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130				
				T2S	6,450	2	0	2	119	6,949	2	0	2	129	7,037	2	0	2	130				
				T2M	6,483	1	0	1	120	6,984	2	0	2	129	7,073	2	0	2	131				
				T35	6,279	2	0	2	116	6,764	2	0	2	125	6,850	2	0	2	127				
				T3M T4M	6,468	1	0	2	120 117	6,967 6,816	1	0	2	129 126	7,056 6,902	1	0	2	131				
				TFTM	6,464	1	0	2	120	6,963	1	0	2	129	7,051	1	0	2	131				
30	530	P1	54W	TSVS	6,722	2	0	0	124	7,242	3	0	0	134	7,334	3	0	0	136				
				TSS	6,728	2	0	1	125	7,248	2	0	1	134	7,340	2	0	1	136				
			T5M	6,711	3	0	1	124	7,229	3	0	1	134	7,321	3	0	2	136					
				T5W	6,667	3	0	2	123	7,182	3	0	2	133	7,273	3	0	2	135				
				BLC LCCO	5,299 3,943	1	0	2	98 73	5,709 4,248	1	0	2	106 79	5,781 4,302	1	0	2	107 80				
				RCCO	3,943	1	0	2	73	4,248	1	0	2	79	4,302	1	0	2	80				
				T1S	8,249	2	0	2	118	8,886	2	0	2	127	8,999	2	0	2	129				
					T2S	8,240	2	0	2	118	8,877	2	0	2	127	8,989	2	0	2	128			
				T2M	8,283	2	0	2	118	8,923	2	0	2	127	9,036	2	0	2	129				
				T3S	8,021	2	0	2	115	8,641	2	0	2	123	8,751	2	0	2	125				
				T3M	8,263	2	0	2	118	8,901	2	0	2	127 124	9,014 8,818	2	0	2	129				
				T4M TFTM	8,083 8,257	2	0	2	115	8,708 8,896	2	0	2	127	9,008	2	0	2	129				
30	700	P2	70W	TSVS	8,588	3	0	0	123	9,252	3	0	0	132	9,369	3	0	0	134				
				TSS	8,595	3	0	1	123	9,259	3	0	1	132	9,376	3	0	1	134				
				T5M	8,573	3	0	2	122	9,236	3	0	2	132	9,353	3	0	2	134				
				T5W	8,517	3	0	2	122	9,175	4	0	2	131	9,291	4	0	2	133				
				BLC	6,770	1	0	2	97	7,293 5,427	1	0	2	104 78	7,386 5,496	1	0	2	106 79				
				LCCO RCCO	5,038 5,038	1	0	2	72	5,427	1	0	2	78	5,496	1	0	2	79				
		-	T1S	11,661	2	0	2	114	12,562	3	0	3	123	12,721	3	0	3	125					
				T2S	11,648	2	0	2	114	12,548	3	0	3	123	12,707	3	0	3	125				
				T2M	11,708	2	0	2	115	12,613	2	0	2	124	12,773	2	0	2	125				
				T3S	11,339	2	0	2	111	12,215	3	0	3	120	12,370	2	0	3	121				
				T3M T4M	11,680 11,426	2	0	3	115	12,582 12,309	2	0	3	123	12,742 12,465	2	0	3	125				
				TFTM	11,420	2	0	2	114	12,575	2	0	3	123	12,734	2	0	3	125				
30	1050	P3	102W	T5VS	12,140	3	0	1	119	13,078	3	0	1	128	13,244	3	0	1	130				
				TSS	12,150	3	0	1	119	13,089	3	0	1	128	13,254	3	0	1	130				
								T5M	12,119	4	0	2	119	13,056	4	0	2	128	13,221	4	0	2	130
										T5W BLC	12,040	1	0	3 2	118	12,970 10,310	1	0	2	127 101	13,134 10,440	1	0
				LCCO	9,570 7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76				
				RCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76				
				T1S	13,435	3	0	3	107	14,473	3	0	3	116	14,657	3	0	3	117				
				T2S	13,421	3	0	3	107	14,458	3	0	3	116	14,641	3	0	3	117				
				T2M	13,490	2	0	2	108	14,532	3	0	3	116	14,716	3	0	3	118				
				T3S T3M	13,064 13,457	3 2	0	2	105	14,074 14,497	3	0	2	113 116	14,252 14,681	2	0	2	114				
				T4M	13,457	2	0	3	105	14,497	2	0	3	113	14,362	2	0	3	115				
	1250	D4	12511	TFTM	13,449	2	0	3	108	14,488	2	0	3	116	14,672	2	0	3	117				
30	1250	P4	125W	T5VS	13,987	4	0	1	112	15,068	4	0	1	121	15,259	4	0	1	122				
				TSS	13,999	3	0	1	112	15,080	3	0	1	121	15,271	3	0	1	122				
				T5M	13,963	4	0	3	112	15,042 14,944	4	0	3	120	15,233 15,133	4	0	3	122				
				T5W BLC	13,872 11,027	1	0	2	88	11,879	1	0	2	95	12,029	1	0	2	96				
				LCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72				
				RCCO	8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72				
				T1S	14,679	3	0	3	106	15,814	3	0	3	115	16,014	3	0	3	116				
				T2S	14,664	3	0	3	106	15,797	3	0	3	114	15,997	3	0	3	116				
				T2M T3S	14,739 14,274	3	0	3	107	15,878 15,377	3	0	3	115	16,079 15,572	3	0	3	117				
				T3M	14,704	2	0	3	107	15,840	3	0	3	115	16,040	3	0	3	116				
				T4M	14,384	2	0	3	104	15,496	3	0	3	112	15,692	3	0	3	114				
20	1400	Dr	12011	TFTM	14,695	2	0	3	106	15,830	3	0	3	115	16,030	3	0	3	116				
30	1400	P5	138W	T5VS	15,283	4	0	1	111	16,464	4	0	1	119	16,672	4	0	1	121				
				TSS	15,295	3	0	1	111	16,477	4	0	1	119	16,686 16,644	4	0	2	121				
				T5M T5W	15,257 15,157	4	0	3	111	16,435 16,328	4	0	3	118	16,534	4	0	3	120				
				BLC	12,048	1	0	2	87	12,979	1	0	2	94	13,143	1	0	2	95				
				LCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71				
			RCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71					

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Op	Forward Optics																							
LED Count	Drive	Power	System	Dist.			30K K, 70 CRI)				40K (4000 K, 70 CRI)				50K (5000 K, 70 CRI)									
LED Count	Current	Package	Watts	Туре	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW					
			3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	T1S	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	_	118					
				T2S	17,635	3	0	3	108	18,998	3	0	3	117	19,238	3			118					
				T2M	17,726	3	0	3	109	19,096	3	0	3	117	19,337	3			119					
				T3S	17,167	3	0	3	105	18,493	3	0	3	113	18,727				115 118					
				T3M	17,683	3	0	3	108	19,049	3	0	3	117 114	19,290 18,871	3			116					
				T4M	17,299	3	0	3	106 108	18,635 19,038	3	0	4	117	19,279	3			118					
40	1250	P6	163W	TFTM T5VS	17,672 18,379	4	0	1	113	19,800	4	0	1	121	20,050	4		1	123					
				T5S	18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2	123					
				TSM	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123					
				TSW	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	122					
				BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	97					
				LCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72					
				RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2			72					
				T1S	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3			115					
				T2S	19,206	3	0	3	105	20,690	3	0	3	113	20,952	_			114					
				T2M	19,305	3	0	3	105	20,797	3	0	3	114	21,060				115 111					
				T3S	18,696	3	0	3	102	20,141	3	0	3	110 113	20,396 21,009				115					
				T3M	19,258	3	0	3	105	20,746 20,296	3	0	4	111	20,553		_		112					
			183W	T4M	18,840	3	0	4	105	20,734	3	0	4	113	20,996	_			115					
40	1400	P7		TFTM T5VS	19,246 20,017	4	0	1	109	21,564	4	0	1	118	21,837	_		1	119					
				T5S	20,033	4	0	2	109	21,581	4	0	2	118		4	0	2	119					
				T5M	19,983	4	0	2	109	21,527	5	0	3	118	21,799	21,799 5 0 21,656 5 0 17,214 2 0 12,809 2 0	0	3	119					
				T5W	19,852	5	0	3	108	21,386	5	0	3	117	21,656		0	3	118					
				BLC	15,780	2	0	3	86	16,999	2	0	3	93				3	94					
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69		-	_		70					
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	+			70					
			207W			T1S	22,490	3	0	3	109	24,228	3	0	3	117	24,535				119			
									T2S	22,466	3	0	4	109	24,202	3	0	4	117	24,509				118 119
											T2M	22,582	3	0	3	109	24,327	3	0	3	118	24,635 23,858		_
				T3S	21,870	3	0	4	106	23,560 24,268	3	0	4	117	24,575				119					
				T3M T4M	22,527 22,038	3	0	4	109	23,741	3	0	4	115	24,041	_	_	_	116					
				TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	119					
60	1050	P8		TSVS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	123					
				TSS	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	123					
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123					
				T5W	23,221	5	0	4	112	25,016	5	0	4	121	25,332				122					
				BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136				97					
				LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983				72					
				RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983		_		72 116					
				T1S	25,575	3	0	3	106	27,551	3	0	3	114	27,900 27,871	_			116					
				TZS	25,548	3	0	4	106	27,522	3	0	3	115	28,014	_			116					
				T2M	25,680	3	0	3	107 103	27,664 26,791	3	0	4	111	27,130		3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 4 3 0 4 4 0 1 4 0 2 5 0 3 2 0 3 2 0 3 2 0 3 3 0 3 3 0 3 3 0 4 3 0 4 4 0 1 4 0 2 5 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3	113						
				T3S T3M	24,870 25,617	3	0	4	103	27,597	3	0	4	115	27,946			D	116					
				T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339		_		113					
				TFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	_	0	4	116					
60	1250	P9	241W	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047		0	-	121					
				TSS	26,648	4	0	2	111	28,707	5	0	2	119	29,070		_		121					
				T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997				120					
				T5W	26,406	5	0	4	110	28,447	5	0	4	118	28,807				120					
				BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898		_		95					
				LCC0	15,619	2	0	4	65	16,825	2	0	4	70	17,038		-		71					
				RCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	1 2	l u	1 4	71					

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Rotated Op	Rotated Optics																													
LED Count	Drive	Power	System	Dist.			30K K, 70 CRI)			40K (4000 K, 70 CRI)					50K (5000 K, 70 CRI)															
LED Count	Current	Package	Watts	Туре	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW											
-		700170 1000		T1S	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	134											
				T2S	12,967	4	0	4	122	13,969	4	0	4	132	14,146	4	0	4	133											
				T2M	13,201	3	0	3	125	14,221	3	0	3	134	14,401	3	0	3	136											
				T3S	12,766	4	0	4	120	13,752	4	0	4	130	13,926	4	0	4	131											
				T3M	13,193	4	0	4	124	14,213	4	0	4	134	14,393	4	0		136											
				T4M	12,944	4	0	4	122	13,945	4	0	4	132 14,121 4 135 14,486 4 136 14,588 4		0		133												
	530	Date .	1001	TFTM	13,279	4	0	4	125	14,305	4	0	4		0		137													
60	530	P10	106W	T5VS	13,372	3	0	1	126	14,405	4	0	1				0		138											
				T5S	13,260	3	0	1	125	14,284	3	0	1	135	14,465	3	0		136											
				T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0		136											
				T5W	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0		135											
				BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0		112											
				LCC0	7,789	1	0	3	73	8,391	1	0	3	79	8,497	1	0		80											
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0		80											
				T1S	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0		132											
				T2S	16,461	4	0	4	120	17,733	4	0	4	129	17,957	4	0		131											
				T2M	16,758	4	0	4	122	18,053	4	0	4	132	18,281	4	0		133 129											
				T35	16,205	4	0	4	118	17,457	4	0	4	127	17,678 18,271	4	0		133											
				T3M	16,748	4	0	4	122	18,042	4	0	4	129	17,926	4	0		131											
				T4M	16,432	4	0	4	120	17,702	4	0	4	133	18,389	4	0		134											
60	60 700	P11	137W	TFTM	16,857	4	0	1	123 124	18,159 18,287	4	0	1	133	18,518	4	0		135											
				TSVS	16,975	4	0	1	123	18,133	4	0	2	132		4			134											
				T5S T5M	16,832 16,828	4	0	2	123	18,128	4	0	2	132	18,358 4			134												
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0 2 0 2 0 3 0 3 0 3	133												
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3		3 1 3 1 3	110											
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	_		79											
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	79											
					T1S	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	121										
															T2S	22,864	4	0	4	110	24,631	5	0	5	119	24,943	5	0	5	120
													T2M	23,277	4	0	4	112	25,075	4	0	4	121	25,393	4	0	4	123		
1					T3S	22,509	4	0	4	109	24,248	5	0	5	117	24,555	5	0	5	119										
				T3M	23,263	4	0	4	112	25,061	4	0	4	121	25,378	4	0	4	123											
				T4M	22,824	5	0	5	110	24,588	5	0	5	119	24,899	5	0	5	120											
			207W	TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	123											
60	1050	P12		T5VS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	124											
				TSS	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	123											
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0		123											
				T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0		122											
				BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0		101											
				LCC0	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	0		72											
				RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963	4	0		72											
				T1S	25,400	4	0	4	110	27,363	4	0	4	118	. 27,709	4	0	-	120											
				T2S	25,254	5	0	5	109	27,205	5	0	5	118	27,550	5	0		119											
				T2M	25,710	4	0	4	111	27,696	4	0	4	120	28,047	4	0		121											
				T3S	24,862	5	0	5	108	26,783	5	0	5	116	27,122	5	0	4 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	117											
				T3M	25,695	5	0	5	111	27,680	5	0	5	120	28,031	5	0		1119											
				T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0		122											
60	1250	P13	231W	TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212 28,411	5	0		123											
				T5VS	26,043	5	0	1	113	28,056	5	_				5	0		122											
				TSS	25,824	4	0	2	112	27,819	5	0	3	120	28,172 28,165	5	0		122											
	88			T5M	25,818	5	0	3	112	27,813	5	0	4	119	27,912	5	0		121											
				T5W	25,586	5	0	4	92	27,563 22,882	4	0	4	99	23,172	4	0	_	100											
				BLC	21,241	4	0	4	66	16,342	2	0	4	71	16,549	2	0	_	72											
				LCCO	15,170	5	0	5	66	16,342	5	0	. 5	71	16,527	5	1 0		72											
L				RCCO	15,150	Т э	1 0	1)	00	10,321	1 3	1 0	1)	1 /1	1 10,521	1 ,			1 12											

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED® and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-to-use CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERIS™ series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C

Specifications subject to change without notice.

WDGE2 LED

Architectural Wall Sconce Precision Refractive Optic

Specifications

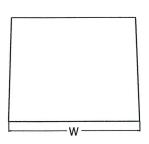
Depth (D1):

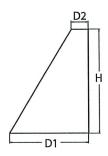
7"

Depth (D2):

1.5"

Height:


11.5"


Width:

11.5

Weight: (without options)

13.5 lbs

Catalog Number WDGE2LEDP440K80CRIT3MMVOLT

Notes

Туре

OW3

Hit the Tab key or mouse over the page to see all interactive elaments.

Introduction

The WDGE LED family is designed to meet specifier's every wall-mounted lighting need in a widely accepted shape that blends with any architecture. The clean rectilinear design comes in four sizes with lumen packages ranging from 1,200 to 25,000 lumens, providing a true site-wide solution. Embedded with nLight® AIR wireless controls, the WDGE family provides additional energy savings and code compliance.

WDGE2 with industry leading precision refractive optics provides great uniform distribution and optical control. When combined with multiple integrated emergency battery backup options, including an 18W cold temperature option, the WDGE2 becomes the ideal wall-mounted lighting solution for pedestrian scale applications in any environment.

WDGE LED Family Overview

		Constant FM 00C	C-14FM 2006		Approximate Lumens (4000K, 80CRI)								
Luminaire	Luminaire Optics	Standard EM, 0°C	Cold EM, -20°C	Sensor	PO	P1	P2	P3	P4	P5	P6		
WDGE1 LED	Visual Comfort	4W			750	1,200	2,000						
WDGE2 LED	Visual Comfort	10W	18W	Standalone / nLight		1,200	2,000	3,000	4,500	6,000			
WDGE2 LED	Precision Refractive	10W	18W	Standalone / nLight	700	1,200	2,000	3,200	4,200				
WDGE3 LED	Precision Refractive	15W	18W	Standalone / nLight		7,500	8,500	10,000	12,000				
WDGE4 LED	Precision Refractive			Standalone / nLight		12,000	16,000	18,000	20,000	22,000	25,000		

Ordering Information

EXAMPLE: WDGE2 LED P3 40K 80CRI VF MVOLT SRM DDBXD

WDGE2LED	P4	40K	80CRI	T3M	T3M						
Series	Package Color Temperature CRI			Distribution	Voltage	Mounting					
WDGE2 LED	P0 ¹ P1 ² P2 ² P3 ² P4 ²	27K 2700K 30K 3000K 40K 4000K 50K 5000K AMB³ Amber	70CRI ⁴ 80CRI LW ³ Limited Wavelength	T1S Type I Short T2M Type II Medium T3M Type III Medium T4M Type IV Medium TFTM Forward Throw Medium	MVOLT 347 ⁵ 480 ⁵	Shipped included SRM Surface mounting bracket ICW Indirect Canopy/Celling Washer bracket (dry/ damp locations only) ⁶	Shipped separately AWS 3/8inch Architectural wall spacer PBBW S urface-mounted back box (top, left, right conduit entry). Use when there is no junction box available.				

Options				Finish	
E10WH E20WC PE ⁷ DMG ⁸ BCE	Emergency battery backup, Certified in CA Title 20 MAEDBS (10W, 5°C min) Emergency battery backup, Certified in CA Title 20 MAEDBS (18W, -20°C min) Photocell, Button Type 0–10V dimming wires pulled outside fixture (for use with an external control, ordered separately) Bottom conduit entry for back box (PBBW). Total of 4 entry points.	PIR PIRH PIR1FC3V PIRH1FC3V Networked Se NLTAIR2 PIR NLTAIR2 PIRH	Bi-level (100/35%) motion sensor for 8-15' mounting heights. Intended for use on switched circuits with external dusk to dawn switching. Bi-level (100/35%) motion sensor for 15-30' mounting heights. Intended for use on switched circuits with external dusk to dawn switching Bi-level (100/35%) motion sensor for 8-15' mounting heights with photocell preprogrammed for dusk to dawn operation. Bi-level (100/35%) motion sensor for 15-30' mounting heights with photocell preprogrammed for dusk to dawn operation. Bi-script (100/35%) motion sensor for 15-30' mounting heights of busk to dawn operation. Bi-level (100/35%) motion sensor for 15-30' mounting heights. Bi-level (100/35%) motion sensor for 15-30' mounting heights. Bi-level (100/35%) motion sensor for 15-30' mounting heights. Bi-level (100/35%) motion sensor for 15-30' mounting heights.	DDBXD DBLXD DNAXD DWHXD DSSXD DDBTXD DBLBXD DNATXD DWHGXD DWHGXD DSSTXD	Dark bronze Black Natural aluminum White Sandstone Textured dark bronze Textured black Textured natural aluminum Textured white Textured sandstone

COMMERCIAL OUTDOOR

Accessories Ordered and shipped separately.

WDGEAWS DDBXD

WDGE 3/8inch Architectural Wall Spacer (specify finish)

WDGE2PBBW DDBXD U

WDGE2 surface-mounted back box (specify finish)

NOTES

- P0 option not available with sensors/controls.
- P1-P4 not available with AMB and LW.
- AMB and LW always go together.
- 70CRI only available with T3M and T4M.
- 347V and 480V not available with E10WH or E20WC.
- Not qualified for DLC. Not available with emergency battery backup or sensors/controls. PE not available in 480V or with sensors/controls.
- DMG option not available with sensors/controls.

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Performance	System	Dist. Type	27	K (2700K	, 80 C	RI)		30	K (3000K	, 80 C	RI)		40	K (4000K	, 80 C	RI)		50	K (5000K	, 80 C	RI)		Amber	(Limited	Wave	lengtl	n)
Package	Watts	Dist. Type	Lumens	LPW	В	U	G	Lumens	LPW	В	U	G	Lumens	LPW	В	U	G	Lumens	LPW	В	U	G	Lumens	LPW	В	U	G
		TIS	636	92	0	0	0	666	97	0	0	0	699	101	0	0	1	691	100	0	0	1	712	47	0	0	1
		T2M	662	96	0	0	0	693	101	0	0	0	728	106	0	0	0	719	104	0	0	0	741	48	0	0	0
PO	7W	T3M	662	96	0	0	0	693	101	0	0	0	728	106	0	0	0	719	104	0	0	0	741	48	0	0	0
		T4M	648	94	0	0	0	679	98	0	0	0	712	103	0	0	0	704	102	0	0	0	726	47	0	0	0
		TFTM	652	95	0	0	0	683	99	0	0	0	717	104	0	0	0	708	103	0	0	0	730	48	0	0	1
		T1S	1,105	99	0	0	1	1,157	104	0	0	1	1,215	109	0	0	1	1,200	107	0	0	1					
		T2M	1,150	103	0	0	1	1,204	108	0	0	1	1,264	113	0	0	1	1,249	112	0	0	1	[
P1	11W	T3M	1,150	103	0	0	1	1,205	108	0	0	1	1,265	113	0	0	1	1,250	112	0	0	1					
		T4M	1,126	101	0	0	1	1,179	106	0	0	1	1,238	111	0	0	1	1,223	110	0	0	1					
		TFTM	1,133	101	0	0	1	1,186	106	0	0	1	1,245	112	0	0	1	1,230	110	0	0	1					
		TIS	1,801	95	1	0	1	1,886	99	1	0	1	1,981	104	1	0	1	1,957	103	1	0	1.					
		T2M	1,875	99	1	0	1	1,963	103	1	0	1	2,061	109	1	0	1	2,037	107	1	0	1					
P2	19W	T3M	1,876	99	1	0	1	1,964	103	1	0	1	2,062	109	1	0	1	2,038	107	1	0	1					
		T4M	1,836	97	1	0	1	1,922	101	1	0	1	2,018	106	1	0	1	1,994	105	1	0	1]				
		TFTM	1,847	97	1	0	1	1,934	102	1	0	1	2,030	107	1	0	1	2,006	106	1	0	1]				
		T1S	2,809	87	1	0	1	2,942	92	1	0	1	3,089	96	1	0	1	3,052	95	1	0	1	1				
		T2M	2,924	91	1	0	1	3,062	95	1	0	1	3,215	100	1	0	1	3,176	99	1	0	1	1				1
P3	32W	T3M	2,925	91	1	0	1	3,063	95	1	0	1	3,216	100	1	0	1	3,177	99	1	0	1	1				- 1
		T4M	2,862	89	1	0	1	2,997	93	1	0	1	3,147	98	1	0	1	3,110	97	1	0	1	1				- 1
		TFTM	2,880	90	1	0	1	3,015	94	1	0	1	3,166	99	1	0	1	3,128	97	1	0	1	1				- 1
		T1S	3,729	80	1	0	1	3,904	84	1	0	1	4,099	88	1	0	1	4,051	87	1	0	1	1				
	ing.	T2M	3,881	83	1	0	1	4,063	87	1	0	1	4,267	91	1	0	1	4,216	90	1	0	1	1				- 1
P4	47W	ТЗМ	3,882	83	1	0	1	4,065	87	1	0	1	4,268	91	1	0	1	4,217	90	1	0	1	1				- 1
		T4M	3,799	81	1	0	1	3,978	85	1	0	1	4,177	90	1	0	1	4,127	88	1	0	1	1				
		TFTM	3,822	82	1	0	1	4,002	86	1	0	1	4,202	90	1	0	1	4,152	89	1	0	1	1				

Performance System			27K (2700K, 70 CRI)					30K (3000K, 70 CRI)				40K (4000K, 70 CRI)				50K (5000K, 70 CRI)						
Package	Watts	Dist. Type	Lumens	LPW	В	U	G	Lumens	LPW	В	U	G	Lumens	LPW	В	U	G	Lumens	LPW	В	U	G
	7111	ТЗМ	737	107	0	0	0	763	111	0	0	0	822	119	0	0	0	832	121	0	0	1
PO	7W	T4M	721	105	0	0	0	746	108	0	0	0	804	117	0	0	1	814	118	0	0	1
	44111	T3M	1,280	115	0	0	1	1,325	119	0	0	1	1,427	128	1	0	1	1,445	129	1	0	1
P1	11W	T4M	1,253	112	0	0	1	1,297	116	0	0	1	1,397	125	0	0	1	1,415	127	0	0	1
	40111	T3M	2,087	110	1	0	1	2,160	114	1	0	1	2,327	123	1	0	1	2,357	124	1	0	1
P2	19W	T4M	2,042	108	1	0	1	2,114	. 111	1	0	1	2,278	120	1	0	1	2,306	121	1	0	1
		T3M	3,254	101	1	0	1	3,369	105	1	0	1	3,629	113	1	0	1	3,675	114	1	0	1
P3	32W	T4M	3,185	99	1	0	1	3,297	103	1	0	1	3,552	111	1	0	1	3,597	112	1	0	1
		T3M	4,319	93	1	0	1	4,471	96	1	0	1	4,817	103	1	0	2	4,878	105	1	0	2
P4	47W	T4M	4,227	91	1	0	1	4,376	94	1	0	2	4,714	101	1	0	2	4,774	102	1	0	2

Electrical Load

Performance	5 W			Curre	nt (A)		
Package	System Watts	120Vac	208Vac	240Vac	277Vac	347Vac	480Vac
DO	7.0	0.061	0.042	0.04	0.039	-	1
P0	9.0					0.031	0.021
Di	11.0	0.100	0.064	0.059	0.054		-
P1	14.1		-		-	0.046	0.031
D2	19.0	0.168	0.106	0.095	0.083		
P2	22.8					0.067	0.050
D2	32.0	0.284	0.163	0.144	0.131	_	-
P3	37.1	-		-	-	0.107	0.079
D4	47.0	0.412	0.234	0.207	0.185		
P4	53.5					0.153	0.112

Lumen Output in Emergency Mode (4000K, 80 CRI, T3M)

Option	Lumens
E10WH	1,358
E20WC	2,230

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40 $^{\circ}$ C (32-104 $^{\circ}$ F).

Aml	pient	Lumen Multiplier
0°C	32°F	1.03
10°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance Factor	1.0	>0.96	>0.93	>0.87

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit the Lithonia Lighting WDGE LED homepage. Tested in accordance with IESNA LM-79 and LM-80 standards.

"P3 40K 80CRI T3M"

"P3 40K 80CRI T4M"

"P3 40K 80CRI TFTM"

Emergency Egress Options

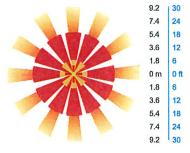
Emergency Battery Backup

The emergency battery backup is integral to the luminaire — no external housing required! This design provides reliable emergency operation while maintaining the aesthetics of the product. All emergency battery backup configurations include an independent secondary driver with an integral relay to immediately detect loss of normal power and automatically energize the luminaire. The emergency battery will power the luminaire for a minimum duration of 90 minutes (maximum duration of three hours) from the time normal power is lost and maintain a minimum of 60% of the light output at the end of 90minutes.

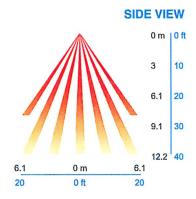
Applicable codes: NFPA 70/NEC - section 700.16, NFPA 101 Life Safety Code Section 7.9

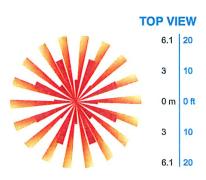
COMMERCIAL OUTDOOR

Control / Sensor Options


Motion/Ambient Sensor (PIR_, PIRH_)

Motion/Ambeint sensor (Sensor Switch MSOD) is integrated into the the luminaire. The sensor provides both Motion and Daylight based dimming of the luminaire. For motion detection, the sensor utilizes 100% Digital Passive Infrared (PIR) technology that is tuned for walking size motion while preventing false tripping from the environment. The integrated photocell enables additional energy savings during daytime periods when there is sufficient daylight. Optimize sensor coverage by either selecting PIR or PIRH option. PIR option comes with a sensor lens that is optimized to provide maximum coverage for mounting heights between 8-15ft, while PIRH is optimized for 15-40ft mounting height.


Networked Control (NLTAIR2)


nLight® AIR is a wireless lighting controls platform that allows for seamless integration of both indoor and outdoor luminaires. Five-tier security architecture, 900 MHz wireless communication and app (CLAIRITYTM Pro) based configurability combined together make nLight® AIR a secure, reliable and easy to use platform.

PIRH

Option	Dim Level	High Level (when triggered	Photocell Operation	Motion Time Delay	Ramp-down Time	Ramp-up Time
PIR or PIRH	Motion – 3V (37% of full output) Photocell – 0V (turned off)	10V (100% output)	Enabled @ 5fc	5 min	5 min	Motion - 3 sec Photocell - 45 sec
PIR1FC3V, PIRH1FC3V	Motion - 3V (37% of full output) Photocell - 0V (turned off)	10V (100% output)	Enabled @ 1fc	5 min	5 min	Motion - 3 sec Photocell - 45 sec
NLTAIR2 PIR, NLTAIR2 PIRH (out of box)	Motion - 3V (37% of full output) Photocell - 0V (turned off)	10V (100% output)	Enabled @ 5fc	7.5 min	5 min	Motion - 3 sec Photocell - 45 sec

COMMERCIAL OUTDOOR

Mounting, Options & Accessories

Motion/Ambient Sensor

D = 7"
H = 9" (Standalone controls)
11" (nLight AIR controls, 2" antenna will be pointing down behind the sensor)
W = 11.5"

AWS - 3/8inch Architectural Wall Spacer

D = 0.38"

H = 4.4"

W = 7.5"

PBBW – Surface-Mounted Back Box Use when there is no junction box available.

D = 1.75"

H = 9"

W = 11.5"

FEATURES & SPECIFICATIONS

INTENDED USE

Common architectural look, with clean rectilinear shape, of the WDGE LED was designed to blend with any type of construction, whether it be tilt-up, frame or brick. Applications include commercial offices, warehouses, hospitals, schools, malls, restaurants, and other commercial buildings.

CONSTRUCTION

The single-piece die-cast aluminum housing integrates secondary heat sinks to optimize thermal transfer from the internal light engine heat sinks and promote long life. The driver is mounted in direct contact with the casting for a low operating temperature and long life. The die-cast door frame is fully gasketed with a one-piece solid silicone gasket to keep out moisture and dust, providing an IP66 rating for the luminaire.

FINISH

Exterior painted parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Standard Super Durable colors include dark bronze, black, natural aluminum, sandstone and white. Available in textured and non-textured finishes.

OPTICS

Individually formed acrylic lenses are engineered for superior application efficiency which maximizes the light in the areas where it is most needed. The WDGE LED has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED® and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine consists of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L91/100,000 hours at 25°C). The electronic driver has a power factor of >90%, THD <20%. Luminaire comes with built in 6kV surge protection, which meets a minimum Category C low exposure (per ANSI/IEEE C62.41.2). Fixture ships standard with 0-10v dimmable driver.

INSTALLATION

A universal mounting plate with integral mounting support arms allows the fixture to hinge down for easy access while making wiring connections. The 3/8" Architectural Wall Spacer (AWS) can be used to create a floating appearance or to accommodate small imperfections in the wall surface. The ICW option can be used to mount the luminaire inverted for indirect lighting in dry and damp locations. Design can withstand up to a 1.5 G vibration load rating per ANSI C136.31.

LISTINGS

CSA certified to U.S. and Canadian standards. Luminaire is IP66 rated. PIR options are rated for wet location. Rated for -40°C minimum ambient. DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified. International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 2700K and 3000K color temperature only and SRM mounting only.

BUY AMERICAN

This product is assembled in the USA and meets the Buy America(n) government procurement requirements under FARS, DFARS and DOT. Please refer to www.acuitybrands.com/resources/buy-american for additional information.

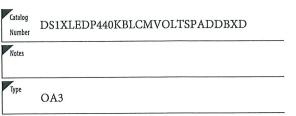
WARRANTY

5-year limited warranty. Complete warranty terms located at:
www.acuitybrands.com/support/warranty/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice.

D-Series Size 1

LED Area Luminaire



Specifications

1.01 ft² EPA: 33" Length: (83.8 cm) 13" Width: (33.0 cm) 7-1/2" Height H1: (19.0 cm) 3-1/2" Height H2: Weight 27 lbs (max): (12.2 kg)

Hit the Tab key or mouse over the page to see all Interactive elements.

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

Ordering Information EXAMPLE: DSX1 LED P7 40K T3M MVOLT SPA NLTAIR2 PIRHN DDBXD

DSX1 LED	P4	40K	BLC	MVOLT SPA
Series	LEDs	Color temperature	Distribution	Voltage Mounting
DSX1 LED	Forward optics P1 P4 ¹ P7 ¹ P2 P5 ¹ P8 P3 P6 ¹ P9 ¹ Rotated optics P10 ² P12 ² P11 ² P13 ^{1,2}	30K 3000 K 40K 4000 K 50K 5000 K	T1S Type I short (Automotive) T5VS Type V very short 3 T2S Type II short T5M Type V medium T5W Type V wide 3 T3S Type III short BLC Backlight control 4 T3M Type IV medium RCCO Right corner cutoff 4 TFTM Forward throw medium	MVOLT 5 XVOLT (277V-480V) 6.7.8 120 9 WBA Wall bracket 3 SPUMBA Square pole universal mounting adaptor 11 RPUMBA Round pole universal mounting adaptor 9 Shipped separately KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) 12

DDBXD

Control options	Other	options	Finish (required)			
Shipped installed NLTAIR2 nLight AIR generation 2 enabled ¹³ PIRHN Network, high/low motion/ambient sensor ¹⁴ PER NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ PER5 Five-pin receptacle only (controls ordered separate) ^{15,16} PER7 Seven-pin receptacle only (controls ordered separate) ^{15,16} DMG 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) ¹⁷ DS Dual switching ^{18,19,20}	PIR PIRH PIR1FC3V PIRH1FC3V FAO	High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 8–15' mounting height, ambient sensor enabled at 1fc ^{20,21} Bi-level, motion/ambient sensor, 15–30' mounting height, ambient sensor enabled at 1fc ^{20,21} Field adjustable output ^{20,21}	HS SF DF L90 R90 HA BAA	House-side shield ²³ Single fuse (120, 277, 347V) ⁹ Double fuse (208, 240, 480V) ⁹ Left rotated optics ² Right rotated optics ² 50°C ambient operations ¹ Buy America(n) Act Compliant ped separately Bird spikes ²⁴ External glare shield	DDBXD DBLXD DNAXD DWHXD DDBTXD DBLBXD DNATXD DWHGXD	Dark bronze Black Natural aluminum White Textured dark bronze Textured black Textured natural aluminum Textured white

Ordering Information

Accessories

Ordered and shipped separately

Photocell - SSL twist-lock (120-277V) 25 DLL127F 1.5 JU Photocell - SSL twist-lock (347V) 25 DLL347F 1.5 CUL JU DLL480F 1.5 CUL JU Photocell - SSL twist-lock (480V) 25

DSHORT SBK U Shorting cap 25 DSX1HS 30C U

House-side shield for P1, P2, P3, P4 and P523 DSX1HS 40C U House-side shield for P6 and P723 House-side shield for P8, P9, P10, P11 and P1223 DSX1HS 60C U Square and round pole universal mounting bracket (specify finlsh)²⁶ PUMBA DDBXD U*

Mast arm mounting bracket adaptor (specify finish) 12 KMA8 DDBXD U

DSX1EGS (FINISH) U External glare shield

For more control options, visit DTL and ROAM online.

HA not available with P4, P5, P6, P7, P9 and P13,

POL, P11, P12 P13 and rotated optics (190, R90) only available together.

Any Type 5 distribution with photocell, is not available with WBA.

Not available with HS.

Not available with HS.
 MVOLT orly suitable for use with P3, P5, P6, P7, P9 and P13.
 XVOLT only suitable for use with P3, P5, P6, P7, P9 and P13.
 XVOLT works with any voltage between 277V and 480V.
 XVOLT works with any voltage between 277V and 480V.
 XVOLT not available with fusing (SF or DP) and not available with PIR, PIRH, PIRHFC3V, PIRH1FC3V.
 Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF.
 Suitable for mounting to round poles between 3.5" and 12" diameter.
 Universal mounting bracks intended for retrotfor in existing, pre-drilled poles only. 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8
 Must order fixture with SPA option. Must be ordered as a separate accessory; see Accessories information. For use with 2-3/8" diameter mast arm (not included).
 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.

13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.

14 Must be ordered with NLTAIR2. For more information on nLight Air 2 visit this link.

15 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included.

16 If ROAM® node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming.

17 DMG not available with PIRHN, PERS, PER7, PIR, PIRH, PIRTC3V or PIRH1FC3V, FAO.

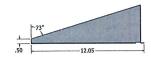
18 Provides 50/50fixture operation via (2) Independent drivers. Not available with PER, PERS, PER7, PIR or PIRH. Not available P1, P2, P3, P4 or P5.

19 Requires (2) separately switched circuits with isolated neutrol.

20 Reference Controls Option Default settings table on page 4.

21 Reference Motion Sensor table on page 4 to see functionality.

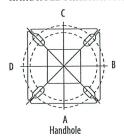
22 Not available with to other dimming controls options.

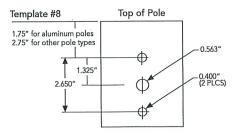

3 Not available with to other dimming controls options.

23 Not available with BLC, LCCO and RCCO distribution. Also available as a separate accessory; see Accessories information.
24 Must be ordered with fixture for factory pre-drilling.
25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4.
26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield





Drilling

HANDHOLE ORIENTATION

Tenon Mounting Slipfitter

Tenon O.D.	Mounting	Single Unit	2 @ 180	2@90	3 @ 90	3 @120	4@90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-11		L	- P-	Y	m m
Mounting Option	Drilling Template	Single	2@180	2@90	3 @ 90	3 @ 120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

© 2011-2021 Acuity Brands Lighting, Inc. All rights reserved.

*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2 @ 90 DM29	3 @ 90 DM39	3 @ 120 DM32	4@90 DM49
Mounting Type	-18		W_m	<u>T</u>	**	======================================
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

	Drilling Template	Minimum Acceptable Outside Pole Dimension											
SPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"						
RPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"						
SPUMBA	#5	2-7/8"	3"	4"	4"	3.5"	4"						
RPUMBA	#5	2-7/8"	3.5"	5"	5"	3.5"	5"						

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 1 homepage.

Isofootcandle plots for the DSX1 LED 60C 1000 40K. Distances are in units of mounting height (25'). Test No. LTL23164B tested in accordance with IESNA LM-79-08. 0 1 3 Test No. LTL23211 tested in accordance with IESNA LM-79-08. LEGEND Test No. LT.23271 tested in accordance with Test No. LTL23222 tested in accordance IESNA LM-79-08. 0.1 fc 3 3 2 0.5 fc 2 2 1 1.0 fc 0 0 -1 -1 -1 -2 -2 -2 -3 -3 -3 T2M T2S Test No. LTL23164B tested in accordance with IESNA LM-79-08. Test No. LTL23222 tested in accordance with IESNA LM-79-08. 1 3 3 0 Fest No. LTL23271 tested in accordance with IESNA LM-79-08. Test No. LTL23211 tested in accordance with IESNA LM-79-08. 2 3 2 0 1 2 0 3 3 2 2 2 1 1 0 0 0 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 T4M Test No. LTL23164B tested in accordance with IESNA LM-79-08. Test No. LTL23271 tested in accordance with IESNA LM-79-08. Test No. LTL23211 tested in accordance with IESNA LM-79-08. Test No. LTL23222 tested in accordance in ESNA LM-79-08. 3 3 2 2 1 0 0 -1 -1 -2 -2 -2 -3 -3 -3 T5W T5M Test No. LTL23164B tested in accordance with IESNA LM-79-08. 0 2 3 Test No. LTL23211 tested in accordance IESNA LM-79-08. 3 3 2 2 1 0 0 -1 -1 -2 -2 -3 -3 LCCO

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40 $^{\circ}$ C (32-104 $^{\circ}$ F).

Amb	ient	Lumen Multiplier
0°C	32°F	1.04
5℃	41°F	1.04
10°C	50°F	1.03
15°C	50°F	1.02
20°C	68°F	1.01
25°C	77°F	1.00
30°C	86°F	0.99
35℃	95°F	0.98
40°C	104°F	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

Motion Sensor Default Settings													
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time							
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min							
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min							

Electrical Load

							Curre	nt (A)		
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
	Р3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22
	P4	30	1250	125	1.06	0.60	0.52	0.46	0.37	0.27
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29
,	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	. 0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0–10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PERS or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8–15¹ mounting; PIRH for 15–30¹ mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

Forward Op	orward Optics																																			
	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)																			
LED Count	Current	Package	Watts	Туре	Lumens	(3000 B	u, /u chi)	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW																	
				T1S	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130																	
				T2S	6,450	2	0	2	119	6,949	2	0	2	129	7,037	2	0	2	130																	
				T2M	6,483	1	0	1	120	6,984	2	0	2	129	7,073	2	0	2	131 127																	
	= =			T3S T3M	6,279 6,468	1	0	2	116 120	6,764 6,967	1	0	2	125 129	6,850 7,056	1	0	2	131																	
			=	T4M	6,327	1	0	2	117	6,816	1	0	2	126	6,902	1	0	2	128																	
				TFTM	6,464	1	0	2	120	6,963	1	0	2	129	7,051	1	0	2	131																	
30	530	P1	54W	T5VS	6,722	2	0	0	124	7,242	3	0	0	134	7,334	3	0	0	136																	
				TSS	6,728	2	0	1	125	7,248	2	0	1	134	7,340	2	0	2	136																	
				T5M T5W	6,711	3	0	2	124 123	7,229 7,182	3	0	2	134 133	7,321 7,273	3	0	2	136 135																	
				BLC	6,667 5,299	1	0	1	98	5,709	1	0	2	106	5,781	1	0	2	107																	
				LCCO	3,943	1	0	2	73	4,248	1	0	2	79	4,302	1	0	2	80																	
				RCCO	3,943	1	0	2	73	4,248	1	0	2	79	4,302	1	0	2	80																	
				T1S	8,249	2	0	2	118	8,886	2	0	2	127 127	8,999 8,989	2	0	2	129 128																	
				T2S T2M	8,240 8,283	2	0	2	118	8,877 8,923	2	0	2	127	9,036	2	0	2	129																	
				T3S	8,021	2	0	2	115	8,641	2	0	2	123	8,751	2	0	2	125																	
				T3M	8,263	2	0	2	118	8,901	2	0	2	127	9,014	2	0	2	129																	
				T4M	8,083	2	0	2	115	8,708	2	0	2	124	8,818	2	0	2	126																	
30	700	P2	70W	TFTM	8,257	2	0	2	118	8,896	2	0	2	127	9,008 9,369	3	0	0	129																	
30				T5VS T5S	8,588 8,595	3	0	1	123	9,252 9,259	3	0	0	132	9,369	3	0	1	134																	
				T5M	8,573	3	0	2	122	9,236	3	0	2	132	9,353	3	0	2	134																	
				T5W	8,517	3	0	2	122	9,175	4	0	2	131	9,291	4	0	2	133																	
				BLC	6,770	1	0	2	97	7,293	1	0	2	104	7,386	1	0	2	106																	
				TCC0	5,038	1	0	2	72	5,427	1	0	2	78 78	5,496 5,496	1	0	2	79																	
				RCCO T1S	5,038 11,661	1 2	0	2	72	5,427 12,562	3	0	3	123	12,721	3	0	3	125																	
				T2S	11,648	2	0	2	114	12,548	3	0	3	123	12,707	3	0	3	125																	
				T2M	11,708	2	0	2	115	12,613	2	0	2	124	12,773	2	0	2	125																	
				T3S	11,339	2	0	2	111	12,215	3	0	3	120	12,370	3	0	3	121																	
				T3M T4M	11,680	2	0	3	115	12,582 12,309	2	0	3	123 121	12,742 12,465	2	0	3	125																	
			402111	102111	102W	102W	102W	102W	102W	102W	102W	TFTM	11,426 11,673	2	0	2	114	12,575	2	0	3	123	12,734	2	0	3	125									
30	1050	P3 1	P3	Р3								102W	102W	102W	3 102W	102W	T5VS	12,140	3	0	1	119	13,078	3	0	1	128	13,244	3	0	1	130				
																							10211	TSS	12,150	3	0	1	119	13,089	3	0	1	128	13,254	3
																																	T5M	12,119	4	0
					T5W BLC	12,040 9,570	1	0	2	118 94	12,970 10,310	1	0	2	101	10,440	1	0	2	102																
				LCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76																	
				RCCO	7,121	1	0	3	70	7,671	1	0	3	75	7,768	1	0	3	76																	
				T1S	13,435	3	0	3	107	14,473	3	0	3	116	14,657	3	0	3	117																	
				T2S	13,421	3	0	2	107	14,458 14,532	3	0	3	116	14,641 14,716	3	0	3	117																	
				T2M T3S	13,490 13,064	3	0	3	105	14,074	3	0	3	113	14,710	3	0	3	114																	
				T3M	13,457	2	0	2	108	14,497	2	0	2	116	14,681	2	0	2	117																	
				T4M	13,165	2	0	3	105	14,182	2	0	3	113	14,362	2	0	3	115																	
30	1250	P4	125W	TFTM	13,449	2	0	3	108	14,488	2	0	3	116	14,672	2	0	1	117																	
	1230			T5VS T5S	13,987 13,999	3	0	1	112	15,068 15,080	3	0	1	121	15,259 15,271	3	0	1	122																	
				T5M	13,963	4	0	2	112	15,042	4	0	2	120	15,233	4	0	2	122																	
				T5W	13,872	4	0	3	111	14,944	4	0	3	120	15,133	4	0	3	121																	
				BLC	11,027	1	0	2	88	11,879	1	0	2	95	12,029	1	0	2	96																	
				LCCO	8,205	1	0	3	66	8,839 8,839	1 1	0	3	71	8,951 8,951	1	0	3	72																	
		-	-	RCCO T1S	8,205 14,679	1 3	0	3	106	15,814	3	0	3	115	16,014	3	0	3	116																	
				T2S	14,664	3	0	3	106	15,797	3	0	3	114	15,997	3	0	3	116																	
				T2M	14,739	3	0	3	107	15,878	3	0	3	115	16,079	3	0	3	117																	
				T3S	14,274	3	0	3	103	15,377	3	0	3	111	15,572	3	0	3	113																	
				T3M T4M	14,704	2	0	3	107	15,840 15,496	3	0	3	115	16,040 15,692	3	0	3	114																	
				TFTM	14,384 14,695	2	0	3	104	15,830	3	0	3	115	16,030	3	0	3	116																	
30	1400	P5	138W	T5VS	15,283	4	0	1	111	16,464	4	0	1	119	16,672	4	0	1	121																	
				T5S	15,295	3	0	1	111	16,477	4	0	1	119	16,686	4	0	1	121																	
				T5M	15,257	4	0	2	111	16,435	4	0	2	119	16,644	4	0	3	121																	
				T5W BLC	15,157 12,048	1	0	2	110 87	16,328 12,979	1	0	2	118 94	16,534 13,143	1	0	2	95																	
				LCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71																	
				RCCO	8,965	1	0	3	65	9,657	1	0	3	70	9,780	1	0	3	71																	

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

© 2011-2021 Acuity Brands Lighting, Inc. All rights reserved.

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Op	orward Optics																																															
	Drive	Power	System	Dist.			30K K, 70 CRI)					10K K, 70 CRI)					50K K, 70 CRI)																															
LED Count	Current	Package	Watts	Туре	Lumens	B	U U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW																													
				T1S	17,654	3	0	. 3	108	19,018	3	0	3	117	19,259	3	0	3	118																													
				T2S	17,635	3	0	3	108	18,998	3	0	3	117	19,238	3	0	3	118																													
				T2M	17,726	3	0	3	109	19,096	3	0	3	117	19,337	3	0	3	119																													
				T3S	17,167	3	0	3	105	18,493	3	0	3	113	18,727	3	0	3	115																													
				T3M	17,683	3	0	3	108	19,049	3	0	3	117	19,290	3	0	3	118																													
				T4M	17,299	3	0	3	106	18,635	3	0	4	114 117	18,871 19,279	3	0	4	116 118																													
40	1250	P6	163W	TFTM	17,672	3	0	3	108	19,038	3	0	1	121	20,050	4	0	1	123																													
				TSVS	18,379	4	0	2	113 113	19,800 19,816	4	0	2	122	20,066	4	0	2	123																													
				T5S T5M	18,394 18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123																													
				T5W	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	122																													
				BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	97																													
				TCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72																													
				RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72																													
				T1S	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3	115																													
				T2S	19,206	3	0	3	105	20,690	3	0	3	113	20,952	3	0	3	114																													
				T2M	19,305	3	0	3	105	20,797	3	0	3	114	21,060	3	0	3	115 111																													
				T3S	18,696	3	0	3	102	20,141	3	0	3	110	20,396	3	0	3	115																													
				T3M	19,258	3	0	3	105	20,746	3	0	3	111	21,009 20,553	3	0	4	112																													
				T4M	18,840	3	0	4	103	20,296 20,734	3	0	4	113	20,996	3	0	4	115																													
40	1400	P7	183W	TFTM	19,246 20,017	3	0	1	103	21,564	4	0	1	118	21,837	4	0	1	119																													
				T5VS T5S	20,017	4	0	2	109	21,581	4	0	2	118	21,854	4	0	2	119																													
				T5M	19,983	4	0	2	109	21,527	5	0	3	118	21,799	5	0	3	119																													
				T5W	19,852	5	0	3	108	21,386	5	0	3	117	21,656	5	0	3	118																													
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	94																													
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70																													
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70																													
																																	T1S	22,490	3	. 0	3	109	24,228	3	0	3	117	24,535	3	0	3	119
				T2S	22,466	3	0	4	109	24,202	3	0	4	117	24,509	3	0	3	118 119																													
				T2M	22,582	3	0	3	109	24,327	3	0	3	118	24,635 23,858	3	0	4	115																													
				T3S	21,870	3	0	4	106	23,560 24,268	3	0	4	117	24,575	3	0	4	119																													
				T3M	22,527	3	0	4	109	23,741	3	0	4	115	24,041	3	0	4	116																													
				T4M TFTM	22,038 22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	119																													
60	1050	P8	207W	TSVS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	123																													
				TSS	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	123																													
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	. 3	123																													
				T5W	23,221	5	0	4	112	25,016	5	0	4	121	25,332	5	0	4	122																													
				BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	97																													
				LCC0	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72																													
				RCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	3	72 116																													
				T1S	25,575	3	0	3	106	27,551	3	0	3	114	27,900 27,871	3	0	4	116																													
				T2S	25,548	3	0	4	106 107	27,522	3	0	3	115	28,014	3	0	3	116																													
				T2M T3S	25,680 24,870	3	0	3	107	27,664 26,791	3	0	4	111	27,130	3	0	4	113																													
				T3M	25,617	3	0	4	106	27,597	3	0	4	115	27,946	3	0	4	116																													
				T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4	113																													
				TFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4	116																													
60	1250	P9	241W	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047	5	0	1	121																													
				TSS	26,648	4	0	2	111	28,707	5	0	2	119	29,070	5	0	2	121																													
				T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997	5	0	3	120																													
				T5W	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	120																													
				BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	95																													
				LCC0	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71																													
				RCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71																													

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Rotated Op	Rotated Optics																		
LED Count	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)		
LED Count	Current	Package	Watts	Туре	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW
				T1S	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	134
				T2S	12,967	4	0	4	122	13,969	4	0	4	132	14,146	4	0	4	133
				T2M	13,201	3	0	3	125	14,221	3	0	3	134	14,401	3	0	3	136
				T3S	12,766	4	0	4	120	13,752	4	0	4	130	13,926	4	0	4	131
				ТЗМ	13,193	4	0	4	124	14,213	4	0	4	134	14,393	4	0	4	136
				T4M	12,944	4	0	4	122	13,945	4	0	4	132	14,121	4	0	4	133 137
60	530	P10	106W	TFTM	13,279	4	0	4	125 126	14,305	4	0	1	135 136	14,486	4	0	1	138
				T5VS T5S	13,372 13,260	3	0	1	125	14,405 14,284	3	0	1	135	14,465	3	0	1	136
				TSM	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	136
				TSW	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	Ö	3	135
				BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	112
				LCCO	7,789	1	0	3	73	8,391	1	0	3	79	8,497	1	0	3	80
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4	80
				T1S	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0	4	132
				T2S	16,461	4	0	4	120	17,733	4	0	4	129	17,957	4	0	4	131
				T2M	16,758	4	0	4	122	18,053	4	0	4	132	18,281	4	0	4	133
				T3S	16,205	4	0	4	118	17,457	4	0	4	127	17,678	4	0	4	129 133
				T3M	16,748	4	0	4	122	18,042	4	0	4	132	18,271 17,926	4	0	4	131
				T4M	16,432	4	0	4	120	17,702 18,159	4	0	4	133	18,389	4	0	4	134
60	700	P11	137W	TFTM T5VS	16,857 16,975	4	0	1	123	18,287	4	0	1	133	18,518	4	0	1	135
				T5S	16,832	4	0	1	123	18,133	4	0	2	132	18,362	4	0	2	134
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2	134
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0	3	133
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3	110
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3	79
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	79
				T1S	22,996	4	0	4	111	24,773	4	0	4	120	25,087	4	0	4	121
11				T2S	22,864	4	0	4	110	24,631	5	0	5	119	24,943	5	0	5	120
				T2M	23,277	4	0	4	112	25,075	5	0	5	121	25,393 24,555	5	0	5	119
				T35	22,509	4	0	4	109	24,248 25,061	4	0	4	121	25,378	4	0	4	123
				T3M T4M	23,263	5	0	5	110	24,588	5	0	5	119	24,899	5	0	5	120
				TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	123
60	1050	P12	207W	T5VS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	124
				TSS	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	123
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123
				T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	122
				BLC	19,231	4	0	4	93	20,717	4	0	4	100	20,979	4	0	4	101
				LCC0	13,734	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72
		-		RCCO	13,716	4	0	4	66	14,776	4	0	4	71	14,963	4	0	4	72 120
				TIS	25,400	4	0	4	110	27,363	5	0	5	118	27,709 27,550	5	0	5	119
				T2S	25,254	5	0	5 4	109	27,205 27,696	4	0	4	120	28,047	4	0	4	121
				T2M T3S	25,710 24,862	5	0	5	108	26,783	5	0	5	116	27,122	5	0	5	117
				T3M	25,695	5	0	5	111	27,680	5	0	5	120	28,031	5	0	5	121
				T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	119
	9,000,00			TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	122
60	1250	P13	231W	T5VS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1	123
				TSS	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	122
				T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	122
				T5W	25,586	5	0	4	111	27,563	5	0	4	119	27,912	5	0	4	121
				BLC	21,241	4	0	4	92	22,882	4	0	4	99	23,172	4	0	4	100
				LCCO	15,170	2	0	4	66	16,342	2	0	4	71	16,549	2	0	4	72
				RCCO	15,150	5	0	5	66	16,321	5	0	5	71	16,527	5	0	5	72

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED® and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-to-use CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERISTM series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY

5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application.

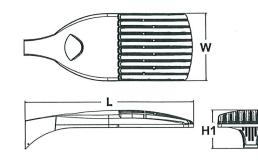
All values are design or typical values, measured under laboratory conditions at 25 °C

Specifications subject to change without notice.

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

D-Series Size 1

LED Area Luminaire



Specifications

1.01 ft² EPA: (0.09 m²) 33" Length: (83.8 cm) 13" Width: (33.0 cm) 7-1/2" Height H1: (19.0 cm) 3-1/2" Height H2: Weight 27 lbs

(max):

Catalog Number DS1XLEDP440KT4MMVOLTSPADDBXD Notes Type OA4

Introduction

Hit the Tab key or mouse over the page to see all interactive elements.

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

Ordering Information

(12.2 kg)

EXAMPLE: DSX1 LED P7 40K T3M MVOLT SPA NLTAIR2 PIRHN DDBXD

DSX1 LED	P4	40K	T4M	MVOLT SPA
Series	LEDs	Color temperature	Distribution	Voltage Mounting
DSX1 LED	Forward optics P1 P4 ¹ P7 ¹ P2 P5 ¹ P8 P3 P6 ¹ P9 ¹ Rotated optics P10 ² P12 ² P11 ² P13 ^{1,2}	30K 3000 K 40K 4000 K 50K 5000 K	T1S Type I short (Automotive) T5S Type V very short 3 T2S Type II short T5M Type V medium 3 T2M Type II medium T5W Type V wide 3 T3S Type III short BLC Backlight control 4 T3M Type IV medium LCCO Left corner cutoff 4 T4M Type IV medium RCCO Right corner cutoff 4 TFTM Forward throw medium	MVOLT 5 XVOLT (277V-480V) 6-7.8 RPA Round pole mounting 10 120 9 WBA Wall bracket 3 208 9 SPUMBA Square pole universal mounting adaptor 11 240 9 RPUMBA Round pole universal mounting adaptor 9 277 9 347 9 480 9 KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) 12

DDBXD

Control options			Other	options	Finish (required)		
Shipped installed NLTAIR2 nLight AIR generation 2 enabled ¹³ PIRHN Network, high/low motion/ambient sensor ¹⁴ PER NEMA twist-lock receptacle only (controls ordered separate) ¹⁵ PER5 Five-pin receptacle only (controls ordered separate) ^{15,16} PER7 Seven-pin receptacle only (controls ordered separate) ^{15,16} DMG 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) ¹⁷ DS Dual switching ^{18,19,20}	PIR PIRH PIR1FC3V PIRH1FC3V FAO	High/low, motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 5fc ^{20,21} High/low, motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 1fc ^{20,21} Bi-level, motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fc ^{20,21} Field adjustable output ^{20,21}	HS SF DF L90 R90 HA BAA	ped installed House-side shield ²³ Single fuse (120, 277, 347V) ⁹ Double fuse (208, 240, 480V) ⁹ Left rotated optics ² Right rotated optics ² 50°C ambient operations ¹ Buy America(n) Act Compliant ped separately Bird spikes ²⁴ External glare shield	DDBXD DBLXD DNAXD DWHXD DWHXD DDBTXD DBLBXD DNATXD DWHGXD	Dark bronze Black Natural aluminum White Textured dark bronze Textured black Textured natural aluminum Textured white	

Ordering Information

Accessories

Ordered and shipped separately.

Photocell - SSL twist-lock (120-277V) 25 DLL127F 1.5 JU DLL347F 1.5 CUL JU Photocell - SSL twist-lock (347V) 25 DLL480F 1.5 CUL JU Photocell - SSL twist-lock (480V) 25

DSHORT SBK U Shorting cap 25

DSX1HS 30C U House-side shield for P1, P2, P3, P4 and P523 DSX1HS 40C U House-side shield for P6 and P723

House-side shield for P8, P9, P10, P11 and P1223 DSX1HS 60C U Square and round pole universal mounting bracket (specify finish) 25 PUMBA DDBXD U*

Mast arm mounting bracket adaptor (specify finish) 12 KMA8 DDBXD U

DSX1EGS (FINISH) U External glare shield

For more control options, visit DTL and ROAM online.

- HA not available with P4, P5, P6, P7, P9 and P13. P10, P11, P12 or P13 and rotated optics (L90, R90) only available together.
- Any Type 5 distribution with photocell, is not available with WBA. Not available with HS.

Not available with HS.

WOLT driver operates on any line voltage from 120-277V (50/60 Hz).

XVOLT only suitable for use with P3, P5, P6, P7, P9 and P13.

XVOLT works with any voltage between 277V and 480V.

XVOLT not valiable with faing (SF or DF) and not available with PIR, PIRH, PIRTFC3V, PIRH1FC3V.

Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V. XVOLT not available with fusing (SF or DF) 10 Suitable for mounting to round poles between 3.5" and 12" diameter.

11 Universal mounting brackets intended for retrofit on existing, pre-drilled poles only, 1.5 G vibration load rating per ANCI C136.31. Only usable when pole's drill pattern is NOT Lithonia template #8

12 Must order fixture with SPA option. Must be ordered as a separate accessory, see Accessories information. For use with 2-3/8" diameter mast arm (not included) 13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.

- 13 Must be ordered with PIRHN. Sensor cover available only in dark bronze, black, white and natural aluminum colors.

 14 Must be ordered with DIAPIR. Por more information on Light. Air Zwist this link.

 15 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting cap included.

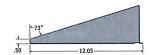
 16 If ROAM® node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Node with integral dimming.

 17 DMG not available with PIRHN, PERS, PERZ, PIR, PIRH, PIRTFC3V or PIRHHTC3V, PAD.

 18 Provides 50/50/future operation via (2) independent drivers. Not available with PER, PERS, PERZ, PIR or PIRH. Not available P1, P2, P3, P4 or P5.

 19 Requires (2) separately switched circuits with isolated neutrol.

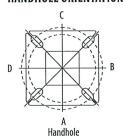
 20 Reference Controls Option Default settings table on page 4.

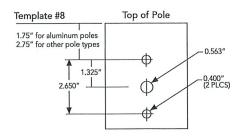

 21 Reference Motion Sensor table on page 4 to see functionality.

- 22 Not available with other dimming controls options.
 23 Not available with BLC, LCCO and RCCO distribution. Also available as a separate accessory, see Accessories information.
- 24 Must be ordered with fixture for factory pre-drilling.
 25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Control Option Table on page 4.
 26 For retrofit use only. Only usable when pole's drill pattern is NOT Lithonia template #8.

Options

EGS - External Glare Shield





Drilling

HANDHOLE ORIENTATION

Tenon Mounting Slipfitter

	3						
Tenon O.D.	Mounting	Single Unit	2 @ 180	2 @ 90	3 @ 90	3 @120	4@90
2-3/8"	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5 320	AS3-5 490
2-7/8"	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
4"	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

		-8	-	T _m	m.T.m	*	m = m
Mounting Option	Drilling Template	Single	2@180	2@90	3@90	3 @ 120	4@90
Head Location		Side B	Side B & D	Side B & C	Side B, C & D	Round Pole Only	Side A, B, C & D
Drill Nomenclature	#8	DM19AS	DM28AS	DM29AS	DM39AS	DM32AS	DM49AS

DSX1 Area Luminaire - EPA

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

© 2011-2021 Acuity Brands Lighting, Inc. All rights reserved.

*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity & Mounting Configuration	Single DM19	2 @ 180 DM28	2@90DM29	3 @ 90 DM39	3 @ 120 DM32	4 @ 90 DM49
Mounting Type	-11		E _m	,,,, ,,,,	Y	====
DSX1 LED	1.013	2.025	1.945	3.038	2.850	3.749

	Drilling Template	Minimum Acceptable Outside Pole Dimension											
SPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"						
RPA	#8	2-7/8"	2-7/8"	3.5"	3.5"	3"	3.5"						
SPUMBA	#5	2-7/8"	3"	4"	4"	3.5"	4"						
RPUMBA	#5	2-7/8"	3.5"	5"	5"	3.5"	5"						

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 1 homepage.

Isofootcandle plots for the DSX1 LED 60C 1000 40K. Distances are in units of mounting height (25'). Fest No. LTL23222 tested in accordance with IESNA LM-79-08. Test No. LTL23271 tested in accordance with IESNA LM-79-08. with LEGEND Test No. LTL23164B tested in accordance IESNA LM-79-08. Test No. LTL23211 tested in accordance v IESNA LM-79-08. 0.1 fc 3 3 3 2 2 0.5 fc 2 2 0 0 0 -1 -1 -1 -2 -2 -2 -3 -3 -3 T2M T2S Test No. LTL23164B tested in accordance with IESNA LM-79-08. Test No. LTL23222 tested in accordance with IESNA LM-79-08. 3 2 1 0 Test No. LTL23271 tested in accordance with IESNA LM-79-08. 0 1 2 3 Test No. LTL23211 tested in accordance with IESNA LM-79-08. 0 2 3 3 3 3 2 2 1 0 0 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -3 T3S Test No. LTL23164B tested in accordance with IESNA LM-79-08. 2 Test No. LTL23271 tested in accordance with IESNA LM-79-08. Test No. LTL23211 tested in accordance v IESNA LM-79-08. Test No. LTL23222 tested in accordance IESNA LM-79-08. 3 2 2 0 -1 -1 -2 -2 -2 -3 -3 -3 BLC T5M Test No. LTL23164B tested in accordance with IESNA LM-79-08. Test No. LTL23211 tested in accordance with IESNA LM-79-08. 0 2 3 3 3 2 2 1 -1 -1 -2 -2 -3 -3

LCCO

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40 $^{\circ}$ C (32-104 $^{\circ}$ F).

Amb	Ambient					
0°C	32°F	1.04				
5°C	41°F	1.04				
10°C	50°F	1.03				
15°C	50°F	1.02				
20°C	68°F	1.01				
25°C	77°F	1.00				
30°C	86°F	0.99				
35°C	95°F	0.98				
40°C	104°F	0.97				

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.96
50,000	0.92
100,000	0.85

Motion Sensor Default Settings										
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time				
PIR or PIRH	3V (37%) Output	10V (100%) Output	Enabled @ 5FC	5 min	3 sec	5 min				
*PIR1FC3V or PIRH1FC3V	3V (37%) Output	10V (100%) Output	Enabled @ 1FC	5 min	3 sec	5 min				

Electrical Load

			Current (A)							
	Performance Package	LED Count	Drive Current	Wattage	120	208	240	277	347	480
	P1	30	530	54	0.45	0.26	0.23	0.19	0.10	0.12
	P2	30	700	70	0.59	0.34	0.30	0.25	0.20	0.16
	P3	30	1050	102	0.86	0.50	0.44	0.38	0.30	0.22
	P4	30	1250	125	1.06	0.60	0.52	0.46	0.37	0.27
Forward Optics (Non-Rotated)	P5	30	1400	138	1.16	0.67	0.58	0.51	0.40	0.29
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P6	40	1250	163	1.36	0.78	0.68	0.59	0.47	0.34
	P7	40	1400	183	1.53	0.88	0.76	0.66	0.53	0.38
	P8	60	1050	207	1.74	0.98	0.87	0.76	0.64	0.49
	P9	60	1250	241	2.01	1.16	1.01	0.89	0.70	0.51
	P10	60	530	106	0.90	0.52	0.47	0.43	0.33	0.27
Rotated Optics	P11	60	700	137	1.15	0.67	0.60	0.53	0.42	0.32
(Requires L90 or R90)	P12	60	1050	207	1.74	0.99	0.87	0.76	0.60	0.46
	P13	60	1250	231	1.93	1.12	0.97	0.86	0.67	0.49

		Controls Options		
Nomenclature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the 0-10V leads
DS	Drivers wired independently for 50/50 luminaire operation	The luminaire is wired to two separate circuits, allowing for 50/50 operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell recepticle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide 0-10V dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 & 5 to dimming leads on driver, Pins 6 & 7 are capped inside luminaire
PIR or PIRH	Motion sensors with integral photocell. PIR for 8-15' mounting; PIRH for 15-30' mounting	Luminaires dim when no occupancy is detected.	Acuity Controls SBGR	Also available with PIRH1FC3V when the sensor photocell is used for dusk-to-dawn operation.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSDGR	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app.

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts Contact factory for performance data on any configurations not shown here.

Forward Op	Forward Optics																																			
	Drive	Power	System	Dist.			30K K, 70 CRI)					10K K, 70 CRI)					50K K, 70 CRI)																			
LED Count	Current	Package	Watts	Туре	Lumens	(3000 B	U U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW																	
				T1S	6,457	2	0	2	120	6,956	2	0	2	129	7,044	2	0	2	130																	
				T2S	6,450	2	0	2	119	6,949	2	0	2	129	7,037	2	0	2	130																	
				T2M	6,483	1	0	1	120	6,984	2	0	2	129 125	7,073 6,850	2	0	2	131																	
				T3S	6,279	1	0	2	116 120	6,764 6,967	2	0	2	129	7,056	1	0	2	131																	
				T3M T4M	6,468	1	0	2	117	6,816	1	0	2	126	6,902	1	0	2	128																	
				TFTM	6,464	1	0	2	120	6,963	1	0	2	129	7,051	1	0	2	131																	
30	530	P1	54W	TSVS	6,722	2	0	0	124	7,242	3	0	0	134	7,334	3	0	0	136																	
				TSS	6,728	2	0	1	125	7,248	2	0	1	134	7,340	2	0	1	136																	
				T5M	6,711	3	0	1	124	7,229	3	0	1	134	7,321	3	0	2	136 135																	
				TSW	6,667	3	0	2	123	7,182	3	0	2	133 106	7,273 5,781	3	0	2	107																	
				BLC LCCO	5,299 3,943	1	0	1 2	98 73	5,709 4,248	1	0	2	79	4,302	1	0	2	80																	
				RCCO	3,943	1	0	2	73	4,248	1	0	2	79	4,302	1	0	2	80																	
				T1S	8,249	2	0	2	118	8,886	2	0	2	127	8,999	2	0	2	129																	
				T2S	8,240	2	0	2	118	8,877	2	0	2	127	8,989	2	0	2	128																	
				T2M	8,283	2	0	2	118	8,923	2	0	2	127	9,036	2	0	2	129																	
				T3S	8,021	2	0	2	115	8,641	2	0	2	123	8,751 9,014	2	0	2	125 129																	
				T3M	8,263	2	0	2	118 115	8,901 8,708	2	0	2	127 124	8,818	2	0	2	126																	
				T4M TFTM	8,083 8,257	2	0	2	118	8,896	2	0	2	127	9,008	2	0	2	129																	
30	700	P2	70W	TSVS	8,588	3	0	0	123	9,252	3	0	0	132	9,369	3	0	0	134																	
				TSS	8,595	3	0	1	123	9,259	3	0	1	132	9,376	3	0	1	134																	
				T5M	8,573	3	0	2	122	9,236	3	0	2	132	9,353	3	0	2	134																	
				T5W	8,517	3	0	2	122	9,175	4	0	2	131	9,291	4	0	2	133 106																	
		,		BLC	6,770	1	0	2	97	7,293	1	0	2	104 78	7,386 5,496	1	0	2	79																	
				LCCO RCCO	5,038 5,038	1	0	2	72	5,427 5,427	1	0	2	78	5,496	1	0	2	79																	
		-		T1S	11,661	2	0	2	114	12,562	3	0	3	123	12,721	3	0	3	125																	
				T2S	11,648	2	0	2	114	12,548	3	0	3	123	12,707	3	0	3	125																	
				T2M	11,708	2	0	2	115	12,613	2	0	2	124	12,773	2	0	2	125																	
				T3S	11,339	2	0	2	111	12,215	3	0	3	120	12,370	3	0	3	121																	
				T3M	11,680	2	0	2	115	12,582	2	0	2	123	12,742 12,465	2	0	3	125																	
			102W	102W	102W	102W	102W	102W	T4M	11,426	2	0	2	112	12,309 12,575	2	0	3	123	12,734	2	0	3	125												
30	1050	P3							102W	102W	102W	102W	102W	102W	102W	102W	102W	102W	102W	102W	TFTM TSVS	11,673 12,140	3	0	1	119	13,078	3	0	1	128	13,244	3	0	1	130
																					10211	10211	10211	10211	10211	.02.11								TSS	12,150	3
				T5M	12,119	4	0	2	119	13,056	4	0	2	128	13,221	4	0	2	130																	
				T5W	12,040	4	0	3	118	12,970	4	0	3	127	13,134	4	0	3	129																	
				BLC	9,570	1	0	2	94	10,310	1	0	3	101 75	10,440 7,768	1	0	3	102 76																	
				LCCO RCCO	7,121	1	0	3	70	7,671 7,671	1	0	3	75	7,768	1	0	3	76																	
				T1S	13,435	3	0	3	107	14,473	3	0	3	116	14,657	3	0	3	117																	
				T2S	13,421	3	0	3	107	14,458	3	0	3	116	14,641	3	0	3	117																	
				T2M	13,490	2	0	2	108	14,532	3	0	3	116	14,716	3	0	3	118																	
				T3S	13,064	3	0	3	105	14,074	3	0	3	113	14,252	3	0	3	114																	
				T3M	13,457	2	0	2	108	14,497	2	0	3	116 113	14,681 14,362	2	0	3	117																	
				T4M TFTM	13,165 13,449	2	0	3	105	14,182	2	0	3	116	14,502	2	0	3	117																	
30	1250	P4	125W	T5VS	13,987	4	0	1	112	15,068	4	0	1	121	15,259	4	0	1	122																	
				T5S	13,999	3	0	1	112	15,080	3	0	1	121	15,271	3	0	1	122																	
				T5M	13,963	4	0	2	112	15,042	4	0	2	120	15,233	4	0	2	122																	
				T5W	13,872	4	0	3	111	14,944	4	0	3	120	15,133	1	0	2	96																	
				BLC	11,027	1	0	2	88	11,879 8,839	1	0	3	95	12,029 8,951	1	0	3	72																	
				LCCO RCCO	8,205 8,205	1	0	3	66	8,839	1	0	3	71	8,951	1	0	3	72																	
-		+	+	T1S	14,679	3	0	3	106	15,814	3	0	3	115	16,014	3	0	3	116																	
		1		T2S	14,664	3	0	3	106	15,797	3	0	3	114	15,997	3	0	3	116																	
		1		T2M	14,739	3	0	3	107	15,878	3	0	3	115	16,079	3	0	3	117																	
				T3S	14,274	3	0	3	103	15,377	3	0	3	111	15,572	3	0	3	113																	
				T3M	14,704	2	0	3	107	15,840 15,496	3	0	3	115	16,040 15,692	3	0	3	114																	
				T4M TFTM	14,384 14,695	2	0	3	104	15,490	3	0	3	115	16,030	3	0	3	116																	
30	1400	P5	138W	TSVS	15,283	4	0	1	111	16,464	4	0	1	119	16,672	4	0	1	121																	
				TSS	15,295	3	0	1	111	16,477	4	0	1	119	16,686	4	0	1	121																	
				T5M	15,257	4	0	2	111	16,435	4	0	2	119	16,644	4	0	2	121																	
				T5W	15,157	4	0	3	110	16,328	4	0	3	118	16,534	1	0	2	120 95																	
				BLC	12,048	1	0	2	65	12,979	1	0	3	70	13,143 9,780	1	0	3	71																	
				LCCO	8,965	1	0	3	65	9,657 9,657	1	0	3	70	9,780	1	0	3	71																	
				RCCO	8,965		0	3	00	7,037		U	J	70	1 2,100				1 //																	

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Optics																			
	Drive	Power	System	Dist.			30K K, 70 CRI)			40K (4000 K, 70 CRI)					50K (5000 K, 70 CRI)				
LED Count	Current	Package	Watts	Туре	Lumens	(3000 B	N, /U CNI)	G	LPW	Lumens	B	U U	G	LPW	Lumens	В	U	G	LPW
				T1S	17,654	3	0	3	108	19,018	3	0	3	117	19,259	3	0	3	118
				T2S	17,635	3	0	3	108	18,998	3	0	3	117	19,238	3	0	3	118
	_			T2M	17,726	3	0	3	109	19,096	3	0	3	117	19,337	3	0	3	119
			-	T3S	17,167	3	0	3	105	18,493	3	0	3	113	18,727	3	0	3	115
			1 4	T3M	17,683	3	0	3	108	19,049	3	0	3	117	19,290	3	0	3	118
				T4M	17,299	3	0	3	106	18,635	3	0	4	114	18,871	3	0	4	116
			4.5311/	TFTM	17,672	3	0	3	108	19,038	3	0	4	117	19,279	3	0	4	118
40	1250	P6	163W	T5VS	18,379	4	0	1	113	19,800	4	0	1	121	20,050	4	0	1	123
		1		T5S	18,394	4	0	2	113	19,816	4	0	2	122	20,066	4	0	2	123
				T5M	18,348	4	0	2	113	19,766	4	0	2	121	20,016	4	0	2	123
				T5W	18,228	5	0	3	112	19,636	5	0	3	120	19,885	5	0	3	122
		1		BLC	14,489	2	0	2	89	15,609	2	0	3	96	15,806	2	0	3	97
				LCC0	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
				RCCO	10,781	1	0	3	66	11,614	1	0	3	71	11,761	2	0	3	72
				T1S	19,227	3	0	3	105	20,712	3	0	3	113	20,975	3	0	3	115
				T2S	19,206	3	0	3	105	20,690	3	0	3	113	20,952	3	0	3	114
				T2M	19,305	3	0	3	105	20,797	3	0	3	114	21,060	3	0	3	115 111
				T3S	18,696	3	0	3	102	20,141	3	0	3	110 113	20,396 21,009	3	0	3	115
				T3M	19,258	3	0	3	105	20,746	3	0	3	1.11	20,553	3	0	4	112
				T4M	18,840	3	0	4	103	20,296 20,734	3	0	4	113	20,996	3	0	4	115
40	1400	P7	183W	TFTM	19,246	3	0	1	105	21,564	4	0	1	118	21,837	4	0	1	119
				T5VS T5S	20,017 20,033	4	0	2	109	21,581	4	0	2	118	21,854	4	0	2	119
				T5M	19,983	4	0	2	109	21,581	5	0	3	118	21,799	5	0	3	119
			1	TSW	19,852	5	0	3	108	21,386	5	0	3	117	21,656	5	0	3	118
				BLC	15,780	2	0	3	86	16,999	2	0	3	93	17,214	2	0	3	94
				LCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70
				RCCO	11,742	2	0	3	64	12,649	2	0	3	69	12,809	2	0	3	70
				T1S	22,490	3	0	3	109	24,228	3	0	3	117	24,535	3	0	3	119
				T2S	22,466	3	0	4	109	24,202	3	0	4	117	24,509	3	0	4	118
				T2M	22,582	3	0	3	109	24,327	3	0	3	118	24,635	3	0	3	119
				T3S	21,870	3	0	4	106	23,560	3	0	4	114	23,858	3	0	4	115
				T3M	22,527	3	0	4	109	24,268	3	0	4	117	24,575	3	0	4	119
				T4M	22,038	3	0	4	106	23,741	3	0	4	115	24,041	3	0	4	116
60	1050	P8	207W	TFTM	22,513	3	0	4	109	24,253	3	0	4	117	24,560	3	0	4	119
60	1050	Po	20777	T5VS	23,415	5	0	1	113	25,224	5	0	1	122	25,543	5	0	1	123
				T5S	23,434	4	0	2	113	25,244	4	0	2	122	25,564	4	0	2	123
				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123
				T5W	23,221	5	0	4	112	25,016	5	0	4	121	25,332	5	0	4	122
				BLC	18,458	2	0	3	89	19,885	2	0	3	96	20,136	2	0	3	97
				LCCO	13,735	2	0	3	66	14,796	2	0	4	71	14,983	2	0	4	72
				RCCO	13,735	2	0	3	106	14,796	3	0	3	114	14,983 27,900	3	0	3	116
				TIS	25,575	3	0	3	106	27,551 27,522	3	0	4	114	27,900	3	0	4	116
				T2S	25,548	3	0	3	106	27,664	3	0	3	115	28,014	3	0	3	116
				T2M T3S	25,680 24,870	3	0	4	107	26,791	3	0	4	111	27,130	3	0	4	113
				T3M	25,617	3	0	4	103	27,597	3	0	4	115	27,946	3	0	4	116
				T4M	25,061	3	0	4	104	26,997	3	0	4	112	27,339	3	0	4	113
				TFTM	25,602	3	0	4	106	27,580	3	0	4	114	27,929	3	0	4	116
60	1250	P9	241W	T5VS	26,626	5	0	1	110	28,684	5	0	1	119	29,047	5	0	1	121
				TSS	26,648	4	0	2	111	28,707	5	0	2	119	29,070	5	0	2	121
			1	T5M	26,581	5	0	3	110	28,635	5	0	3	119	28,997	5	0	3	120
				T5W	26,406	5	0	4	110	28,447	5	0	4	118	28,807	5	0	4	120
				BLC	20,990	2	0	3	87	22,612	2	0	3	94	22,898	2	0	3	95
1				LCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71
1				RCCO	15,619	2	0	4	65	16,825	2	0	4	70	17,038	2	0	4	71

Page 6 of 8

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Rotated Op	Rotated Optics																		
I FD C	Drive	Power	System	Dist.			30K K, 70 CRI)					40K K, 70 CRI)					50K K, 70 CRI)		
LED Count	Current	Package	Watts	Туре	Lumens	В	U U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW
				T1S	13,042	3	0	3	123	14,050	3	0	3	133	14,228	3	0	3	134
				T2S	12,967	4	0	4	122	13,969	4	0	4	132	14,146	4	0	4	133
				T2M	13,201	3	0	3	125	14,221	3	0	3	134	14,401	3	0	3	136
				T35	12,766	4	0	4	120	13,752	4	0	4	130	13,926	4	0	4	131
				T3M	13,193	4	0	4	124	14,213	4	0	4	134	14,393	4	0	4	136
				T4M	12,944	4	0	4	122	13,945	4	0	4	132 135	14,121 14,486	4	0	4	133 137
60	530	P10	106W	TFTM	13,279	3	0	4	125 126	14,305 14,405	4	0	1	136	14,488	4	0	1	138
				T5VS T5S	13,372 13,260	3	0	1	125	14,403	3	0	1	135	14,465	3	0	1	136
				T5M	13,256	4	0	2	125	14,281	4	0	2	135	14,462	4	0	2	136
				TSW	13,137	4	0	3	124	14,153	4	0	3	134	14,332	4	0	3	135
				BLC	10,906	3	0	3	103	11,749	3	0	3	111	11,898	3	0	3	112
				LCCO	7,789	1	0	3	73	8,391	1	0	3	79	8,497	1	0	3	80
				RCCO	7,779	4	0	4	73	8,380	4	0	4	79	8,486	4	0	4	80
				T1S	16,556	3	0	3	121	17,835	3	0	3	130	18,061	4	0	4	132
				T2S	16,461	4	0	4	120	17,733	4	0	4	129	17,957	4	0	4	131
				T2M	16,758	4	0	4	122	18,053	4	0	4	132	18,281	4	0	4	133 129
				T3S	16,205	4	0	4	118	17,457	4	0	4	127	17,678 18,271	4	0	4	133
				T3M	16,748	4	0	4	122	18,042 17,702	4	0	4	129	17,926	4	0	4	131
				T4M TFTM	16,432 16,857	4	0	4	123	18,159	4	0	4	133	18,389	4	0	4	134
60	700	P11	137W	T5VS	16,975	4	0	1	124	18,287	4	0	1	133	18,518	4	0	1	135
				TSS	16,832	4	0	1	123	18,133	4	0	2	132	18,362	4	0	2	134
				T5M	16,828	4	0	2	123	18,128	4	0	2	132	18,358	4	0	2	134
				T5W	16,677	4	0	3	122	17,966	5	0	3	131	18,193	5	0	3	133
				BLC	13,845	3	0	3	101	14,915	3	0	3	109	15,103	3	0	3	110
				LCCO	9,888	1	0	3	72	10,652	2	0	3	78	10,787	2	0	3	79
				RCCO	9,875	4	0	4	72	10,638	4	0	4	78	10,773	4	0	4	79
				T1S	22,996	4	0	4	111	24,773	4	0	4	120	25,087 24,943	5	0	5	121 120
				T2S	22,864	4	0	4	110 112	24,631 25,075	5	0	5	119 121	25,393	4	0	4	123
				T2M T3S	23,277 22,509	4	0	4	109	24,248	5	0	5	117	24,555	5	0	5	119
				T3M	23,263	4	0	4	112	25,061	4	0	4	121	25,378	4	0	4	123
				T4M	22,824	5	0	5	110	24,588	5	0	5	119	24,899	5	0	5	120
				TFTM	23,414	5	0	5	113	25,223	5	0	5	122	25,543	5	0	5	123
60	1050	P12	207W	T5VS	23,579	5	0	1	114	25,401	5	0	1	123	25,722	5	0	1	124
				TSS	23,380	4	0	2	113	25,187	4	0	2	122	25,506	4	0	2	123
3.				T5M	23,374	5	0	3	113	25,181	5	0	3	122	25,499	5	0	3	123
				T5W	23,165	5	0	4	112	24,955	5	0	4	121	25,271	5	0	4	122
		1		BLC	19,231	4	0	4	93	20,717	4	0	4	100 71	20,979 14,983	2	0	4	101 72
				LCC0	13,734	2	0	3	66	14,796 14,776	2	0	4	71	14,983	4	0	4	72
		-		RCCO	13,716 25,400	4	0	4	110	27,363	4	0	4	118	27,709	4	0	4	120
				T1S T2S	25,400	5	0	5	109	27,205	5	0	5	118	27,550	5	0	5	119
				T2M	25,710	4	0	4	111	27,696	4	0	4	120	28,047	4	0	4	121
100				T3S	24,862	5	0	5	108	26,783	5	0	5	116	27,122	5	0	5	117
				T3M	25,695	5	0	5	111	27,680	5	0	5	120	28,031	5	0	5	121
				T4M	25,210	5	0	5	109	27,158	5	0	5	118	27,502	5	0	5	119
(0	1750	D12	221111	TFTM	25,861	5	0	5	112	27,860	5	0	5	121	28,212	5	0	5	122
60	1250	P13	231W	T5VS	26,043	5	0	1	113	28,056	5	0	1	121	28,411	5	0	1	123
				TSS	25,824	4	0	2	112	27,819	5	0	2	120	28,172	5	0	2	122
				T5M	25,818	5	0	3	112	27,813	5	0	3	120	28,165	5	0	3	122
				T5W	25,586	5	0	4	111	27,563	5	0	4	119 99	27,912	5	0	4	100
				BLC	21,241	2	0	4	92	22,882 16,342	2	0	4	71	16,549	2	0	4	72
				RCCO	15,170	5	0	5	66	16,342	5	0	5	71	16,527	5	0	5	72
				KCCO	15,150	1 2	1 0	1 3	1 00	10,321	1)			1 /1	IUJJEI	1 3	1 0		1 12

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.01 ft²) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 3000 K, 4000 K and 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED® and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensors with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 30 feet.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight® AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-to-use CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERIS™ series pole drilling pattern (template #8). NEMA photocontrol receptacle are also available.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.

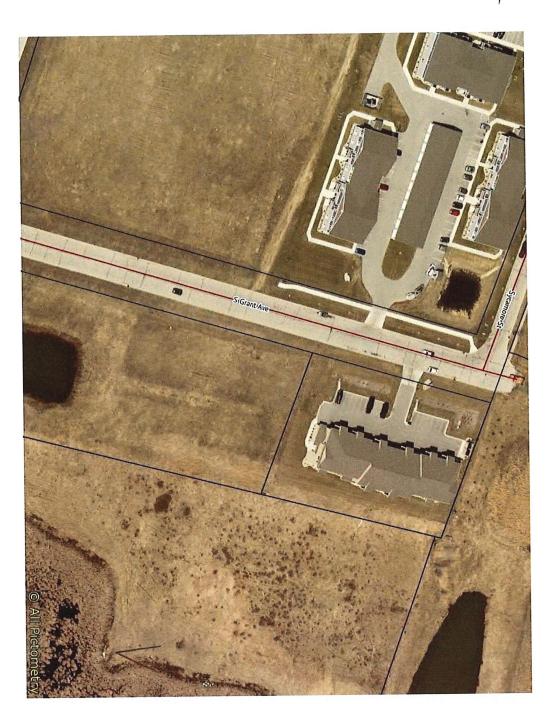
DesignLights Consortium® (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000K color temperature only.

BUY AMERICAN

Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.

WARRANTY

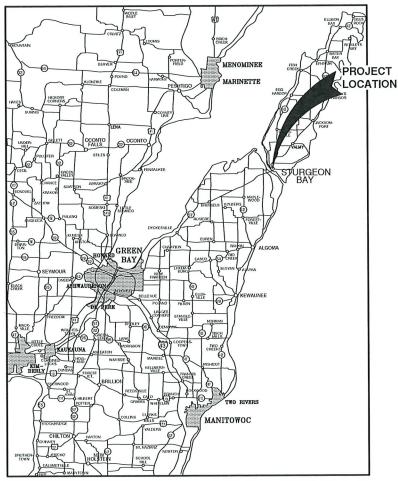

5-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions

Note: Actual performance may differ as a result of end-user environment and application.

All values are design or typical values, measured under laboratory conditions at 25 °C

Specifications subject to change without notice.

CITY OF STURGEON BAY


AESTHETIC DESIGN & SITE PLAN REVIEW BOARD APPLICATION FOR *CERTIFICATE OF APPROPRIATENESS*

Name: Micheus	STEMPSON		
Owner of Premise	es: HARBOR RIDG	if ilc	
	Description of Pre		
	ecific Item Requeste		
<u> 0/2 /2 /</u> Date		Applicant	
	Date Received: Staff Signature: Date Approved/Denied:		

MULTI-FAMILY DEVELOPMENT FOR LEXINGTON HOMES CITY OF STURGEON BAY, DOOR COUNTY, WISCONSIN

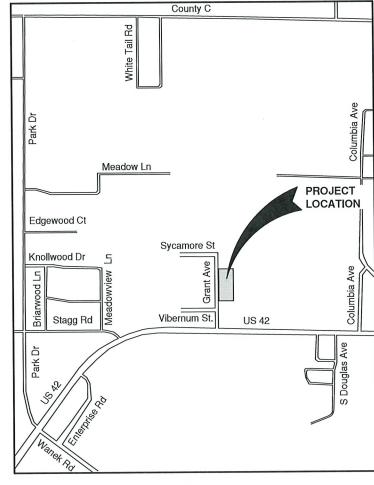
ATTENTION!

DOWNLOADED PLANS ARE NOT SCALEABLE, NEITHER THE OWNER OR THE ENGINEER SHALL BE HELD RESPONSIBLE FOR THE SCALE OR PRINT QUALITY OF DOWNLOADED PLANS. ONLY PRINTED PLANS FROM BLUE PRINT SERVICE CO., INC. SHALL BE CONSIDERED TO BE SCALEABLE PLANS.

VICINITY MAP

NOTE:

EXISTING UTILITIES SHOWN ON PLANS ARE APPROXIMATE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING EXACT LOCATIONS AND ELEVATIONS OF ALL UTILITIES, WHETHER SHOWN OR NOT, FROM THE OWNERS OF THE RESPECTIVE UTILITIES. ALL UTILITY OWNERS SHALL BE NOTHELD FOR LOCATES BY THE CONTRACTOR 72 HOURS PRIOR TO

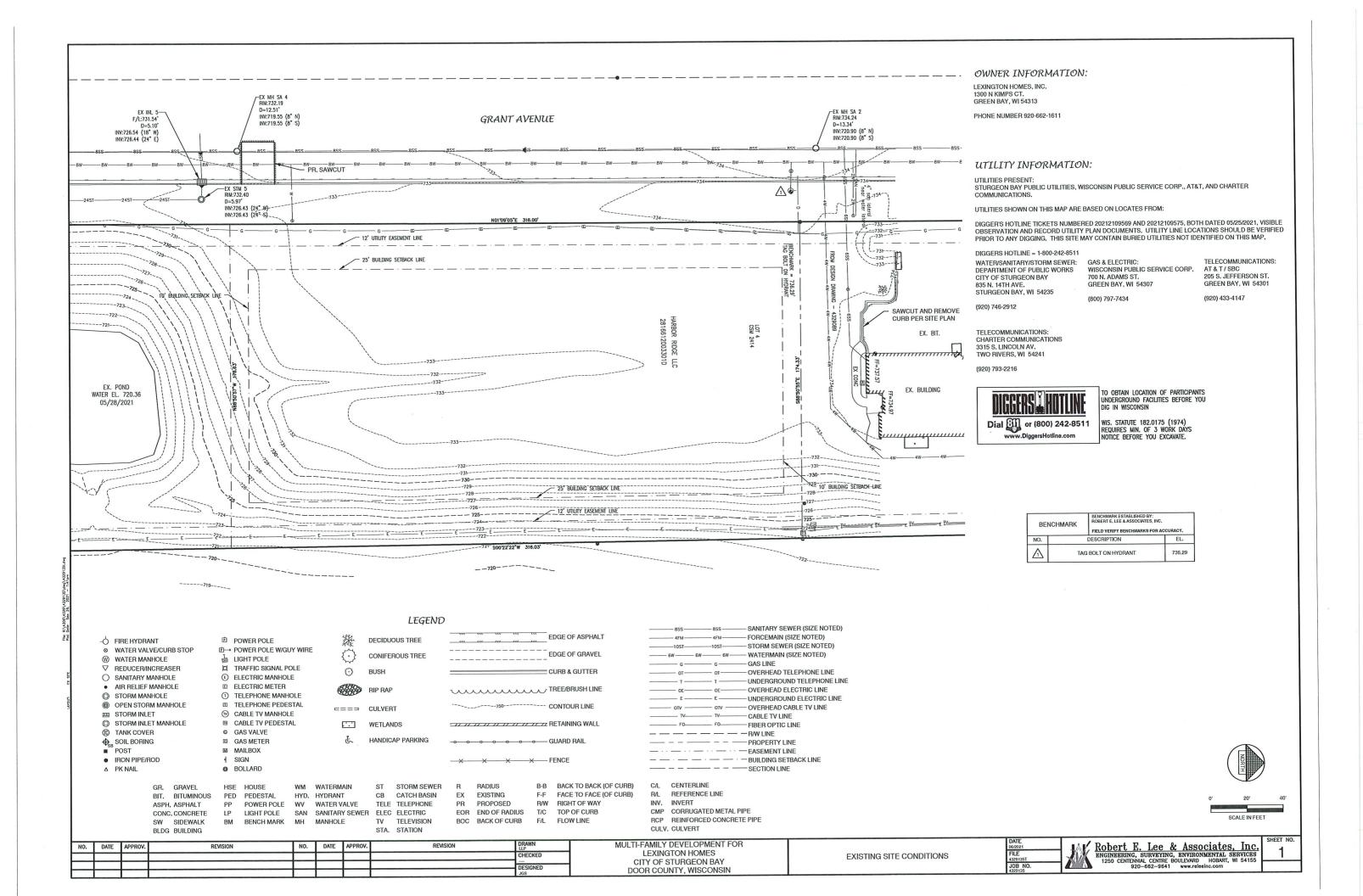

NOTE:
ALL EROSION CONTROL MEASURES SHAL
BE IN PLACE PRIOR TO CONSTRUCTION
AND SHALL CONFORM TO THE WISCONSI
DEPARTMENT OF NATURAL RESOURCES
CONSTRUCTION SITE FROSION CONTROL
AND TECHNICAL STANDARDS.

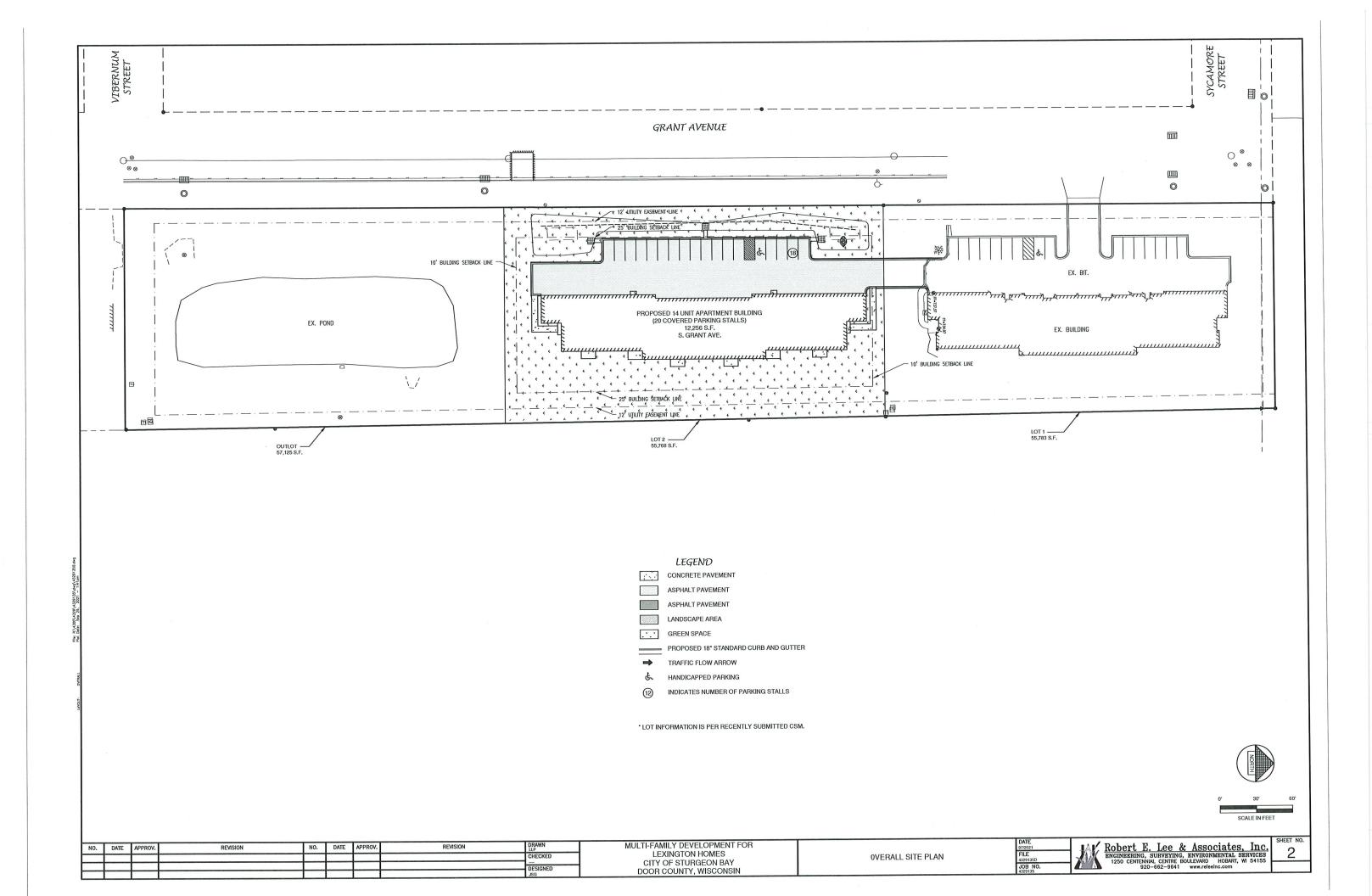
INDEX TO DRAWINGS

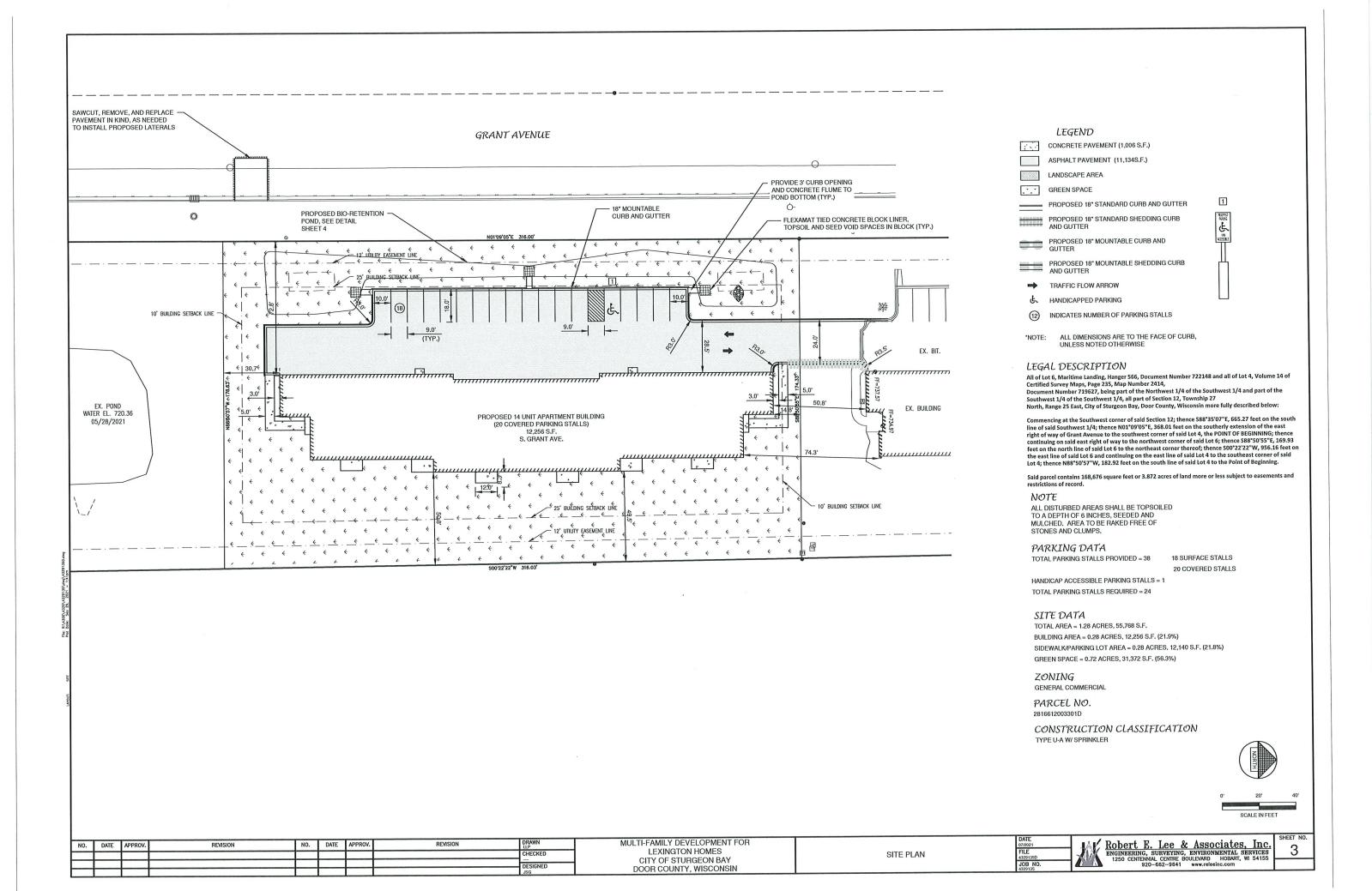
С	LOCATION MAPS AND INDEX TO DRAWINGS
1	EXISTING SITE CONDITIONS
2	OVERALL SITE PLAN
3	SITE PLAN
4	UTILITY PLAN
5	GRADING PLAN
6	EROSION CONTROL PLAN
7	MISCELLANEOUS DETAILS
8	MISCELLANEOUS DETAILS
9	EROSION CONTROL - INLET PROTECTION TYPES A, B, C AND D
10	EROSION CONTROL - INLET PROTECTION TYPE D-HR AND TYPE D
11	EROSION CONTROL - DITCH CHECK DETAILS
12	EROSION CONTROL - SHEET FLOW DETAILS
13	EROSION CONTROL - TRACKOUT CONTROL PRACTICES
L	LANDSCAPING PLAN

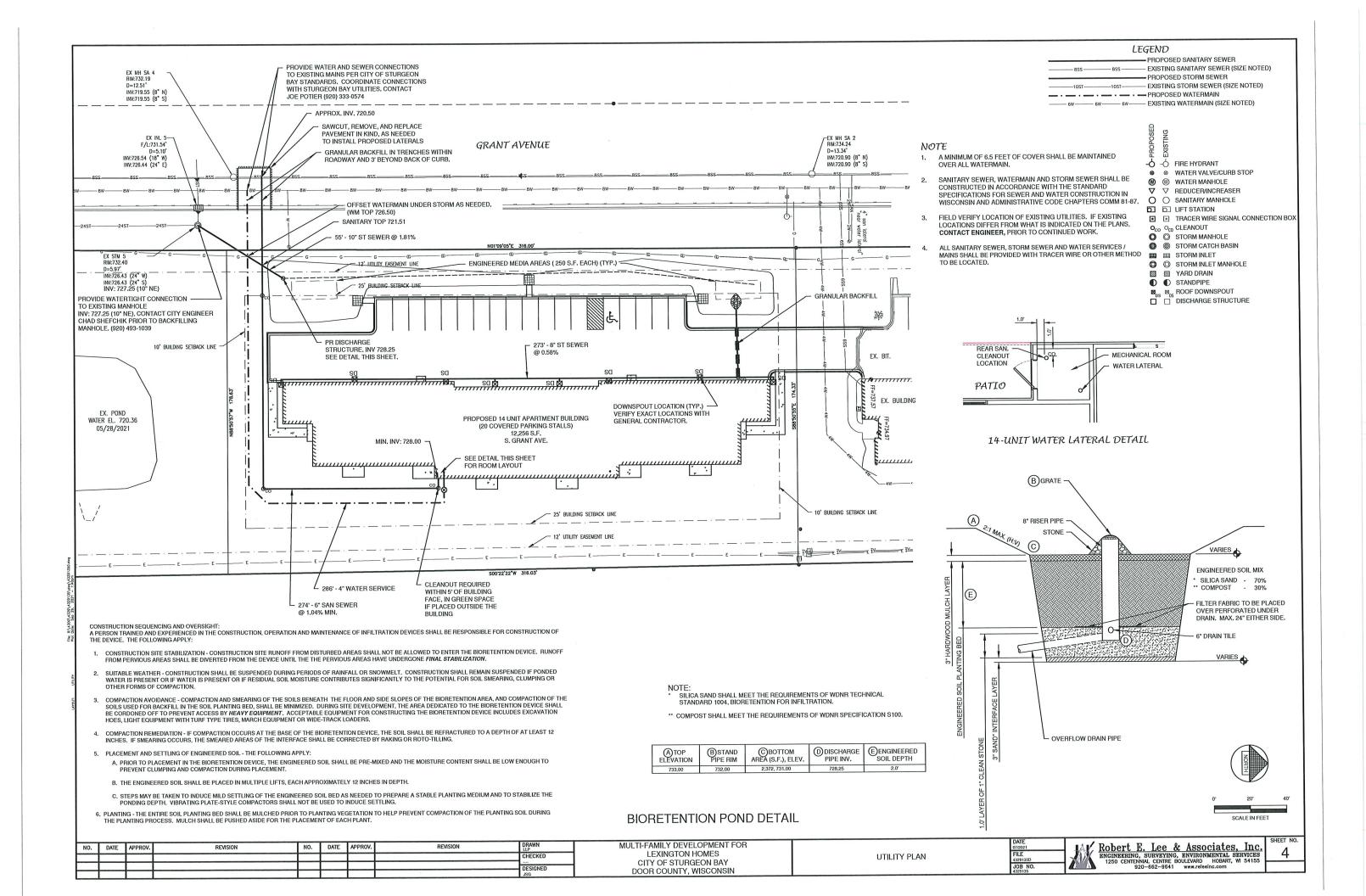
DESCRIPTION

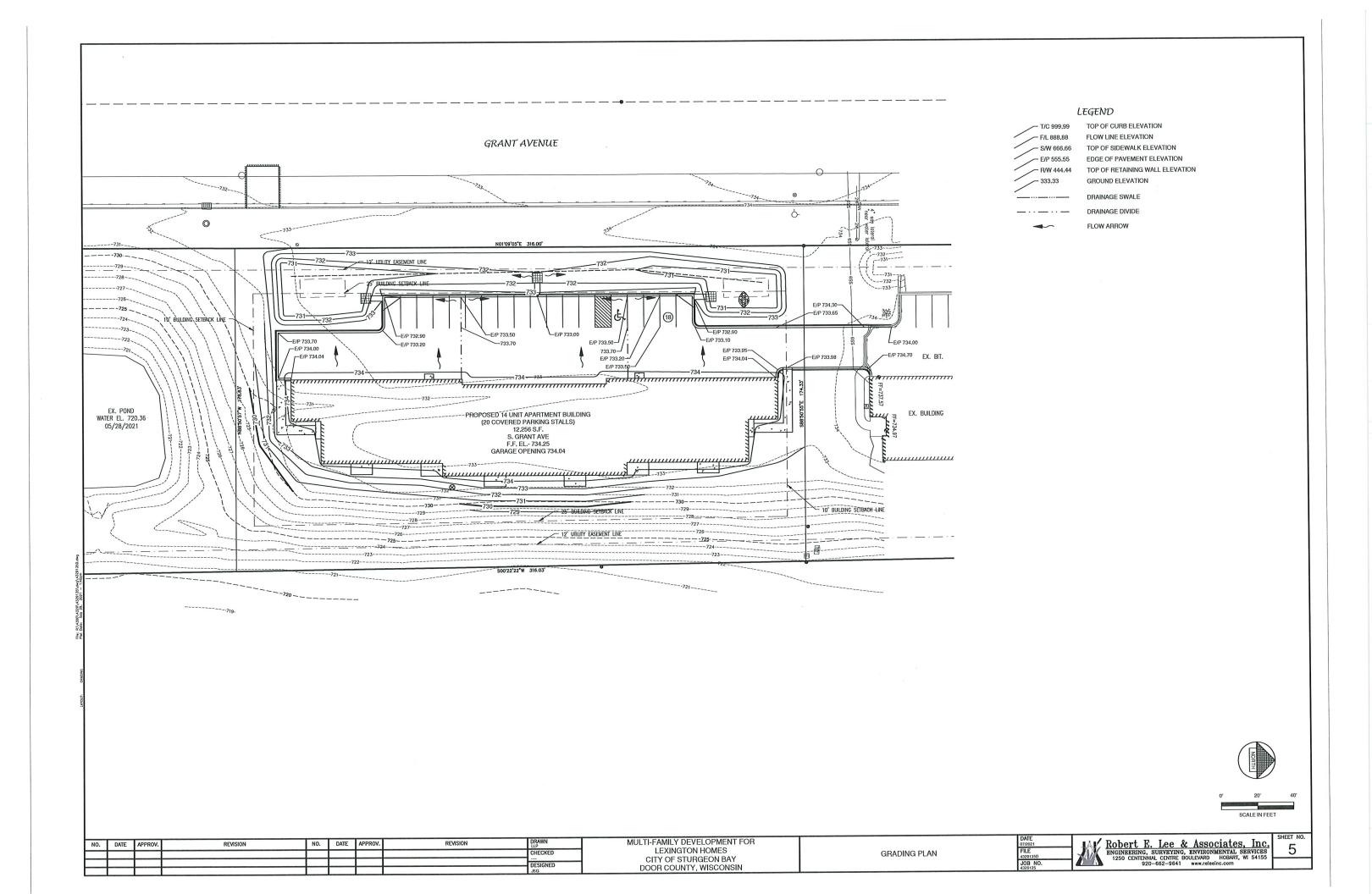
SHT. NO.

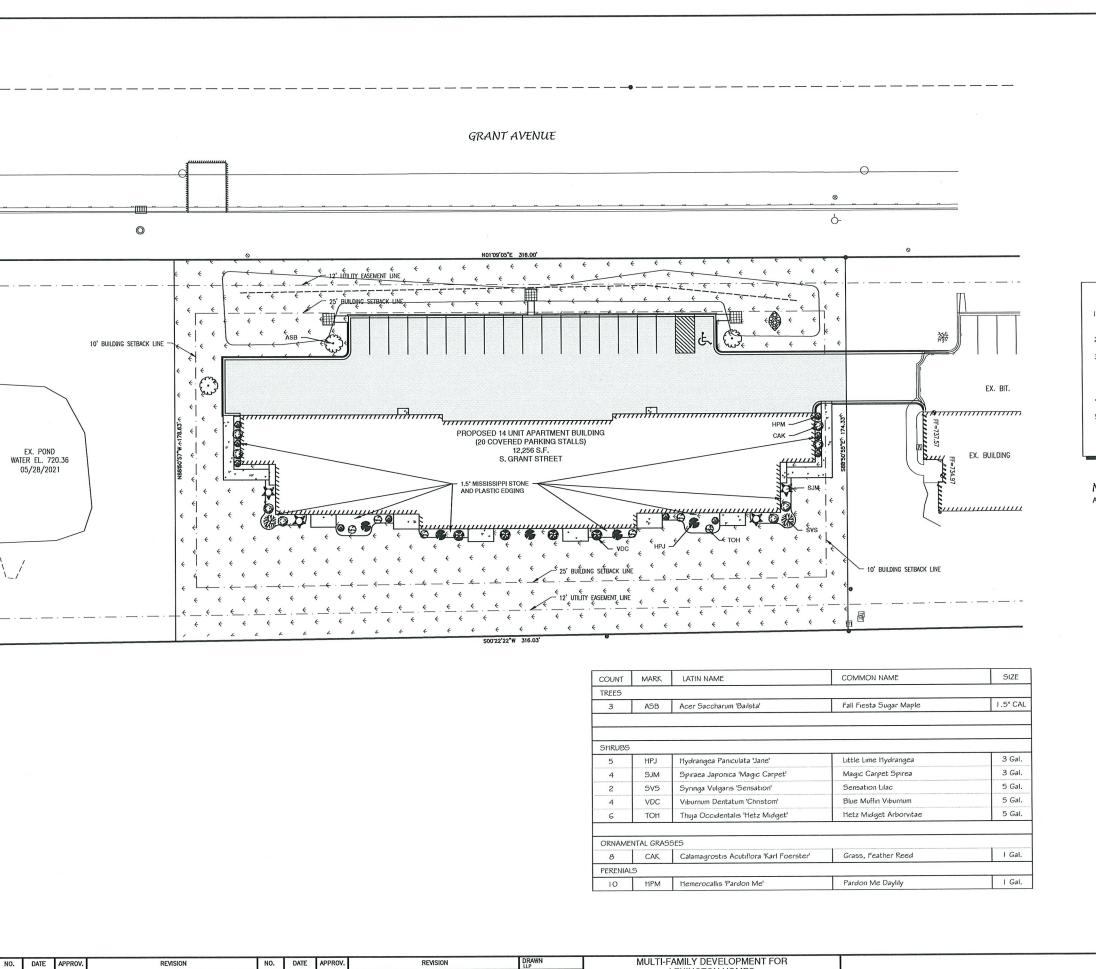


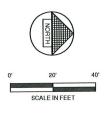

LOCATION MAP


NO.	DATE	APPROV.	REVISION	NO.	DATE	APPROV.	REVISION	DRAWN BDR	MULTI-FAN	
								CHECKED	LE)	
								DESIGNED JGS	DOOR	
						-		005	Control of the Carlot State of the Carlot Stat	




LOCATION MAPS AND INDEX TO DRAWINGS





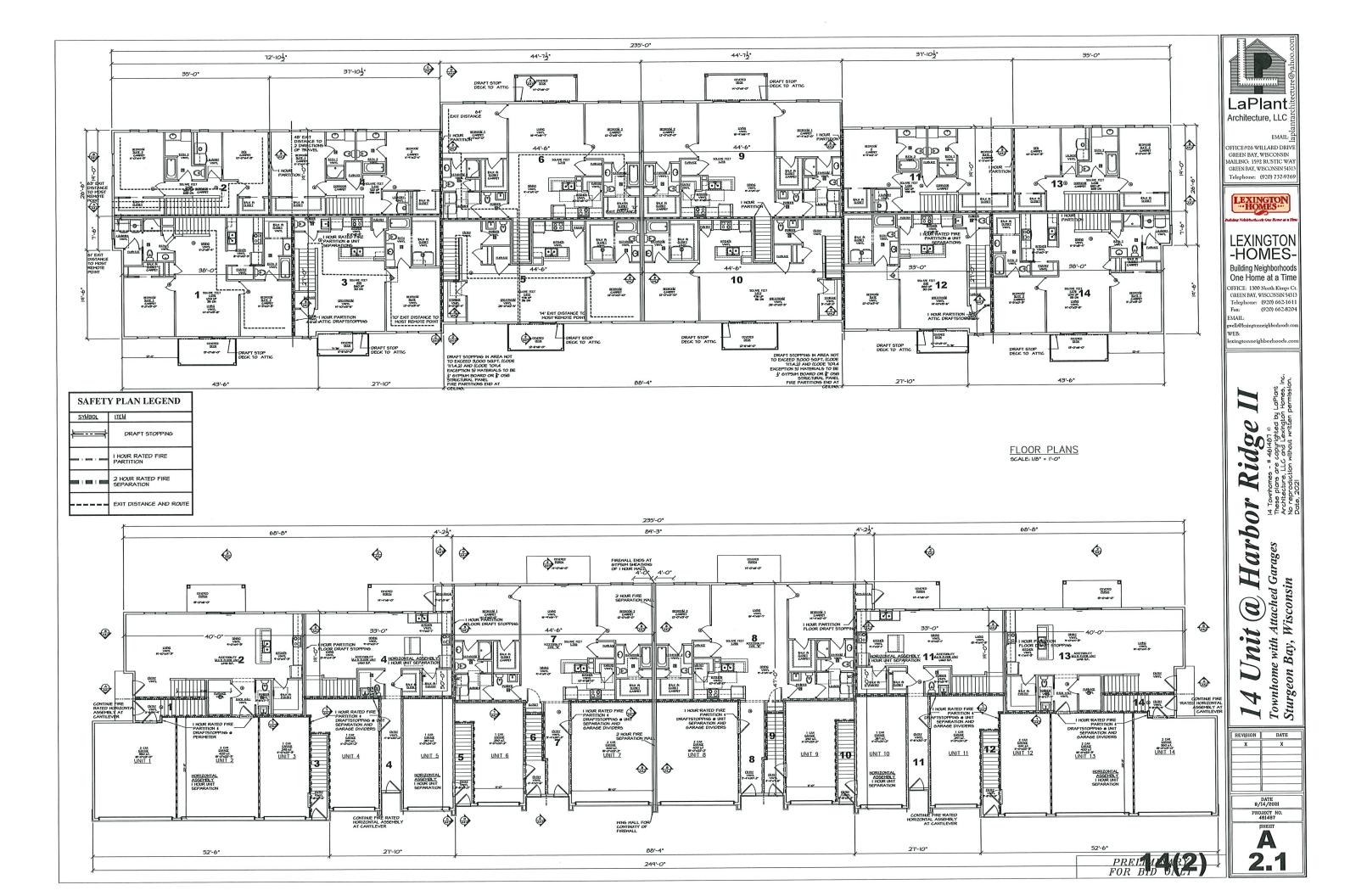
GENERAL NOTES

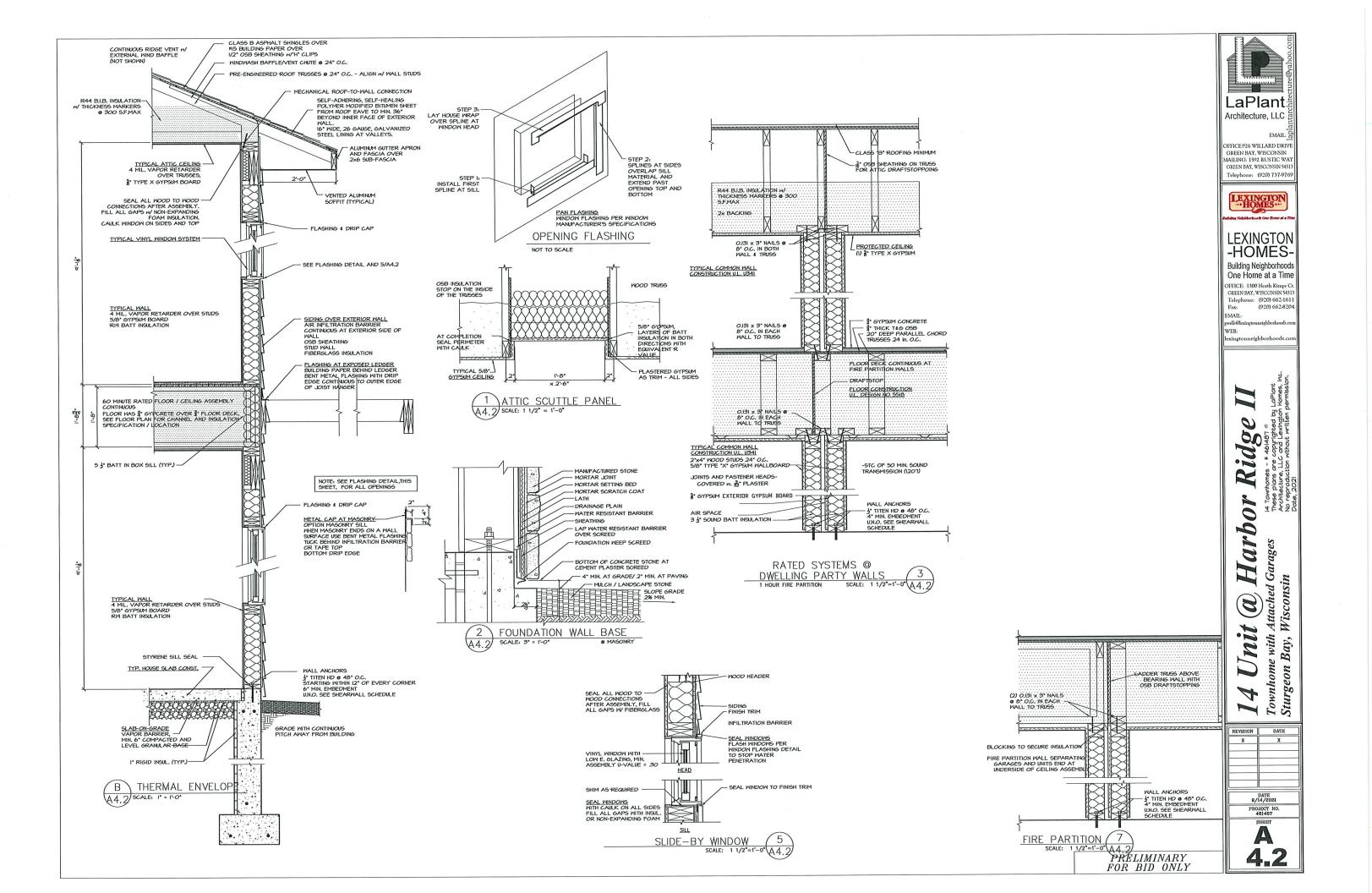
- CONTACT DIGGER'S HOTLINE 5 WORKING DAYS PRIOR TO THE START OF DEMOLITION / CONSTRUCTION.
- 2. ALL PLANTINGS SHALL MEET THE CITIES STANDARDS
- 3. ALL AREAS SHOWN AS GREEN SPACE TO BE TOPSOILED TO A DEPTH OF G INCHES. RAKE FREE OF STONES AND CLUMPS. ALL AREAS NOT SHOWN WITH LANDSCAPE BEDS TO BE SEEDED AND MULCHED FOR LAWN. MULCH SHALL BE HELD IN PLACE BY CRIMPING OR BY USE OF A TACKIPIER.
- 4. ALL TREES TO BE STAKED WITH A MINIMUM OF 3 STAKES.
- COORDINATE LANDSCAPE WORK WITH ALL TRADES (EXAMPLE: GAS, ELECTRIC, CABLE AND TELEPHONE.).

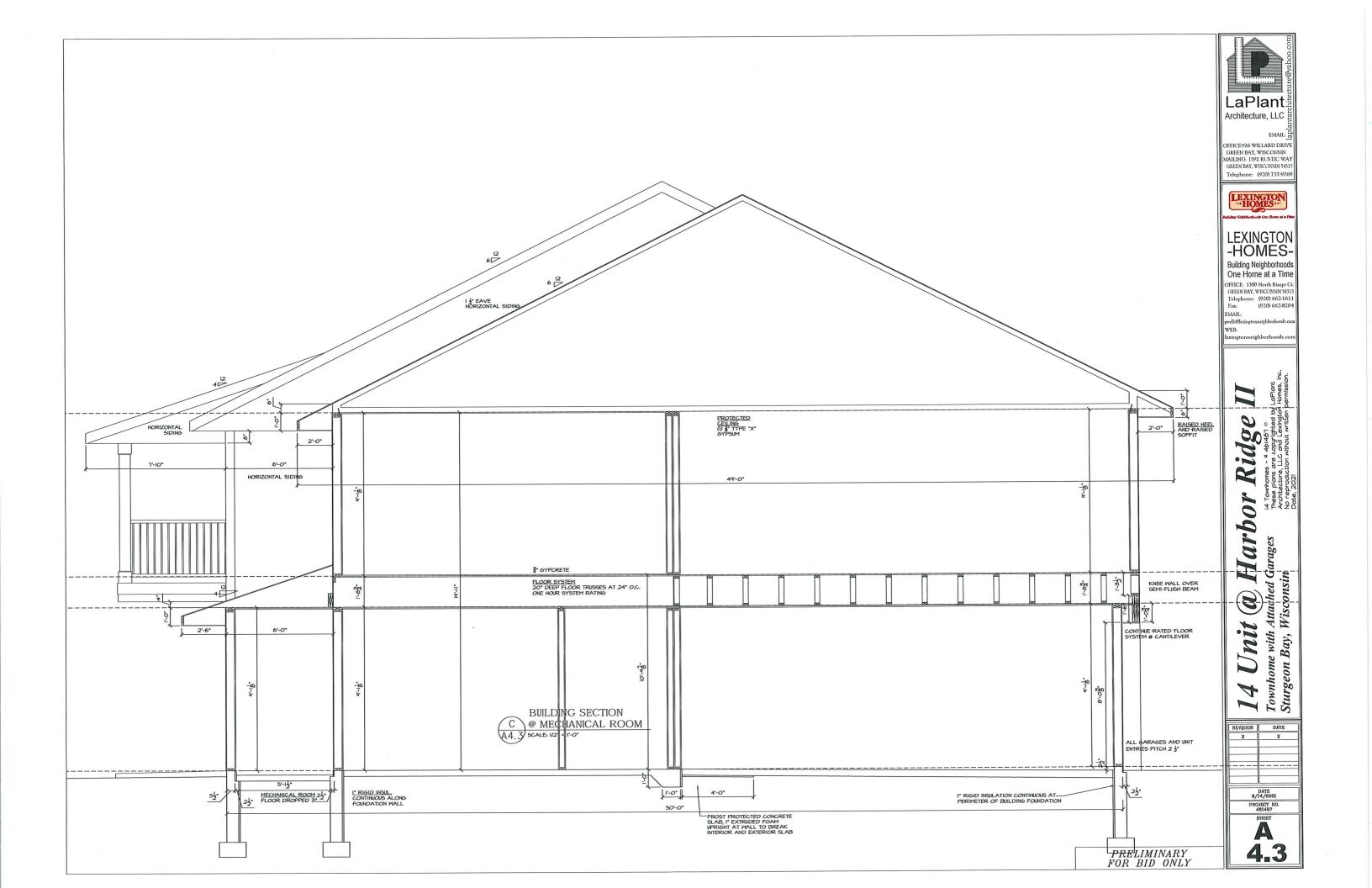
NOTE

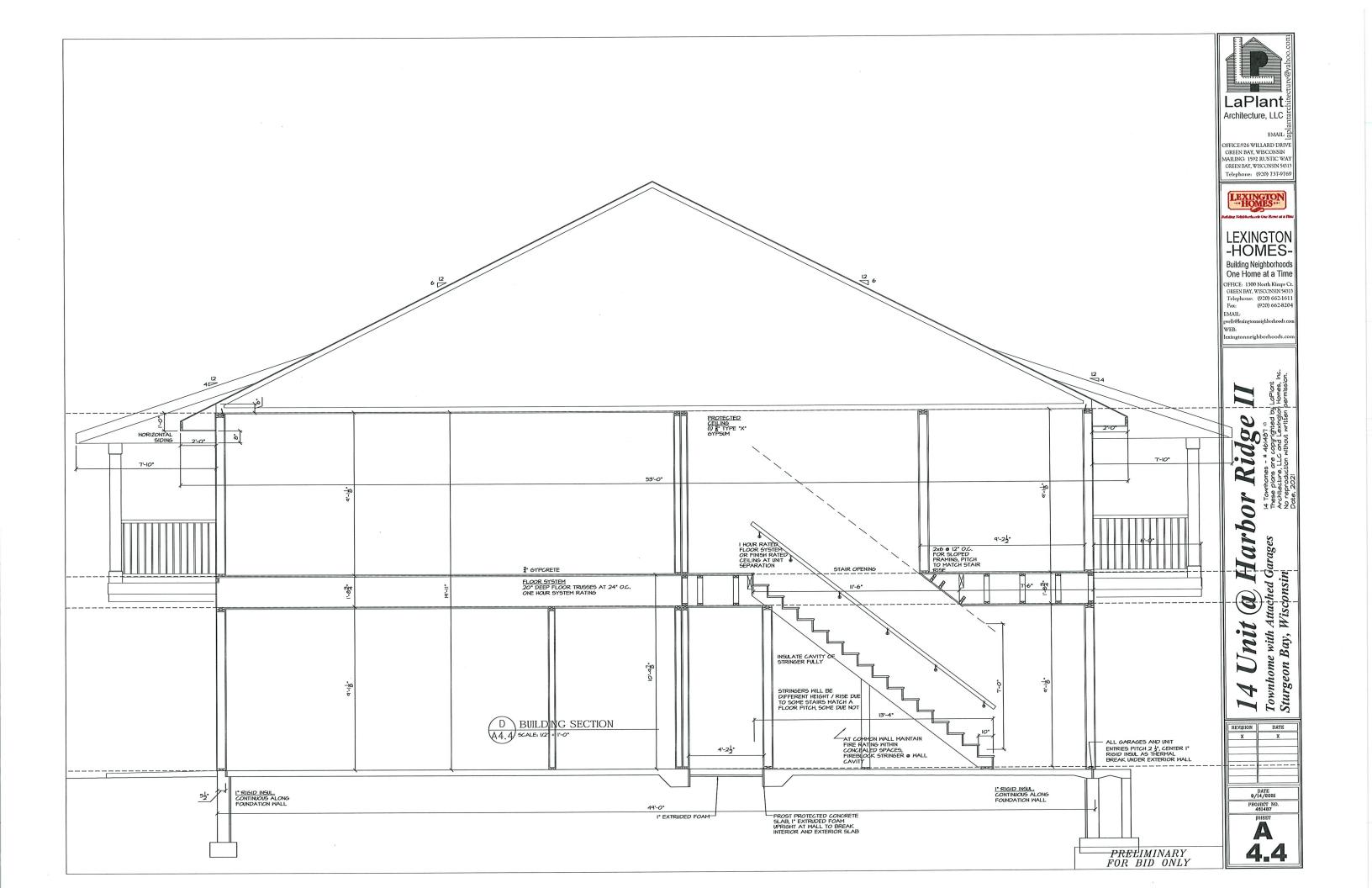
ADDITIONAL INTERNAL TREES BY LANDSCAPER, COORDINATE WITH OWNER

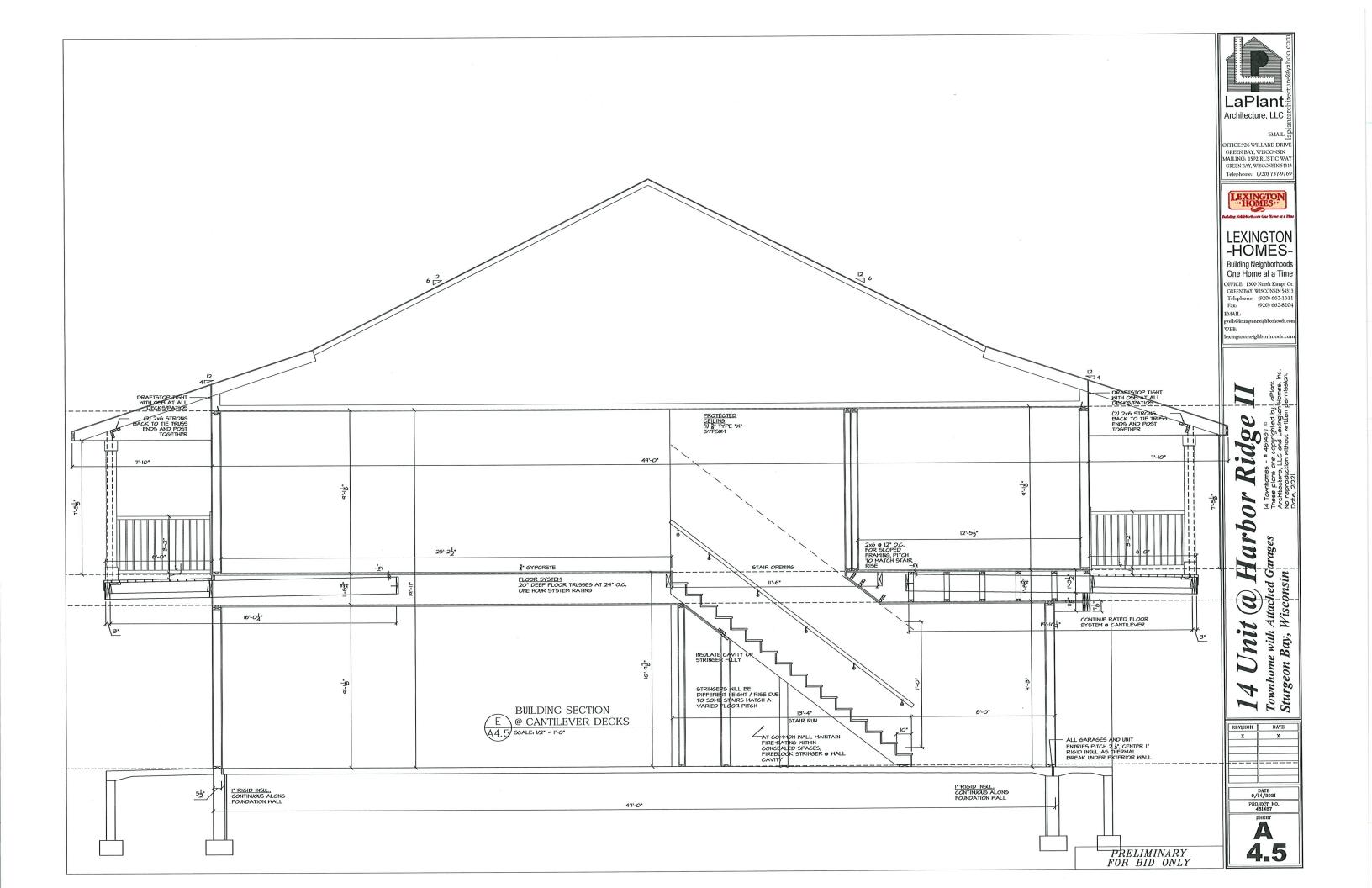
NO.	DATE	APPROV.	REVISION	NO.	DATE	APPROV.	REVISION	DRAWN LLP
								CHECKED
								DESIGNED
								JSG


MULTI-FAMILY DEVELOPMENT FOR LEXINGTON HOMES CITY OF STURGEON BAY DOOR COUNTY, WISCONSIN LANDSCAPING PLAN


Robert E. Lee & Associates, Inc. ENGINEERING, SURVEYING, ENVIRONMENTAL SERVICES 1250 CENTENNAL CENTRE BOLLEVARD HOBATT, WI 54155 920-652-9641 www.releginc.com


SHEET NO





3. Floor Dead Load = 20 psf

4. Floor Live Load

Units=40 psf = 40 psf
Public Rooms and Corridors = 100 psf

5. Roof Dead Load

Snow Load: Ground snow Pg = 50 psf
Ce = 10 Ct = 1.1 Cs = 1.0
Snow load Pf = PgkC7CiskCexCtxCs = 39 psf (Typ)
Ce = 10 Ct = 1.2 Cs = 1.0
Snow load Pf = PgkC7CiskCexCtxCs = 41 psf (Canopy)

= 18 osf

Unbalanced Snow Load as per Visconsin Comm 62.1608 = 50 psf

nic requirements
Class = D
= .053
SDI = .051
Seisnic Design Category = A
ici: Base Shear = 5300 lbs
ici: analysis procedure = Minimum

. Wind Loads (Sinplified Method)
Wind Speed = 90 MPH
Exposure Category = C

B. SPECIFIED MATERIAL STRENGTHS

| Found-in-place Concrete, f'c | Slab-on-grade | Slab-on-grade | Valls / piers | 4000 psi ii 28 days i' stone | Valls / piers | 4000 psi ii 28 days i's stone | Valls / piers | 4000 psi ii 28 days ii's stone | Valls / piers / piers | Valls / piers Reinforcing Steel
Velded Vire Fabric
Structural Steel (UNI)
Steel Tubing
Miscellaneous
Bolts for Structural Conn
Anchor Bolts nections ASTM A325, Type N ASTM AF1554-36 Anchor Bolts ASTM AF1534-36 Masonry Grout, f'c 2500 psi @ 28 days Masonry Running Bond, f'n 135 psi Allohable Soil Bearing Pressure 2000 psf Vetding Litectrades 3000 E70

C. FOUNDATIONS

1. If there is a question regarding the soils, a Geotechnical Engineer, heer, hired by the owner, shall inspect each footing excayation

and
shall confirm that the actual soil conditions neet or
exceed
the design pressure.
Renove all topsoil and other soils containing organics fron
beneath floor slabs and foundations. Proof roll exposed
sub grades under direction of the Geotechnical Engineer.
Renove all soft or loose soils detected by proof rolling

replace with specified fill on a unit price basis.

Provide a minimum of 4'-0' of soil cover above the bottom

footings exposed to the Weather or unheated spaces.

4. Provide sufficient temporary protection to prevent all

exposed footing sub grades from freezing and all footings with less than
4'-0' of soil cover from heaving. Do not place concrete

backfill over frozen soil. The Contractor shall slope the botton of the excavation

tenporary sump pit to keep accumulated groundkater and surface runoff akay from the foundation bearing stratum.

runp groundiater out of the excavation before placing backfil. Do not Do not alloy the fater to stand in the excavation and soften the solls at or beloy bearing level.

6. The sidefalls of all excavations shall be properly sloped,

sheeted and braced in accordance with DSHA regulations and other procedures to provide safe working conditions. The responsibility for safe yorking conditions is solely that of the Contractor.

7. Center all wall footings on walls unless noted otherwise.

n footings and piers on columns unless otherwise noted. B. Backfill #alls #ith even lifts on alternate sides to prevent

excessive
horizontal load on Malls.

9. When excavating adjacent to an existing structure, use

shoring as required to prevent undernining of the existing foundations.

10. When backfilling kalls, naintain adequate shoring until

supporting elements are powed and cured.

11. No holes, trenches or other disturbances of the soil beloif footings, other than shoin on structural plans, fill be alloided

other than snown un an action within the yolune described by lines sloping downhard at 45 degrees

the horizontal from the bottom edges of of the footings. Specified compacted granular fill shall be well graded pit specimen Computers of the sound of the sound and gravel mixture with no more than 8% passing a No. 200 sieve. Fill shall be free of shale, clay, friable naterial

and debris.
Conpact fill to 95% Modified Proctor under footings and

D. CONCRETE

Proportioning of naterials shall be in accordance with ACI 11.1- Latest 'Reconnended Practice for Selecting for Heavyweight and Mass Concrete." Maximum

aggregate size shall be 1-1/2" for footings, 3/4" for slabs, #alls and columns and 3/8° for toppings. Minimum cement content for floors shall be 5-1/2 bags of cenent per cubic yard. Maximum r-cement ratio 0.45. Proportion concrete mixes for a 3' to 4'

Provide an approved Air Entraining Admixture conforming ASTN C260 and ACI 318-89 table 4.4.1 for all concrete exposed to freeze that conditions.

All concrete nixes may contain an approved non-chloride Vater
Reducing Admixture in accordance #ith ASTN C494, Type A. Reducing nanature and the state of the state

Provide no approved pos-chloride pos-corrosive Accelerator conforming to ASTM C494, Type C or E for all concrete flatkori flatyork poured at an anbient tenperature of less than 50 degrees F. Provide an approved Vater-Reducing Retarding Admixture conforming to ASTM 6494, Type D For all concrete flatfork
powred at an ambient temperature of 80 degrees F or
higher.

Where nore than one admixture is used in a concrete provide substantiating data that indicates that these adnixtures adnixtures
are compatible tithout producing detrinental or unpredictable orpreax cable results. Use admixtures from one nanufacturer only provide the

provide the proper admixture quantities based upon total cenentitious naterials in accordance with the nanufacturer's reconnendations to achieve the desired results for

specific site
conditions and concrete naterials. Maximum gater soluble
chloride ion concentrations in hardened concrete at an
age of 20 :0 s contributed from all ingredients including #ater, regates, cenentitious naterials and adrixtures shall

exceed 0.10 percent. Subnit t#o copies of proposed nix designs to the ctural Engineer. Provide sufficient tine in the construction schedule to Provide sufficient said and allow a minimum of five full working days of review period in the Engineer's office.

ice. Firm, hired and paid for by the Contractor concrete testing
a. Four standard cylinders for each 50 cubic yards square feet of wall or slab or fraction thereof

ur each nix

design placed in any one day. Test one cylinder at 7 days and at 7 days and one at 14 days for information and the other the at 28 days for acceptance. Comply hith ASTM C172-21,

C39-72.
b. Slunp test for each pour. Comply with ASTM C143-78. CI43-78.

c. Air content test for each corresponding set of cylinders.

d. The contractor shall pay for all additional testing required for

concrete suspected of non compliance.

4. Convey concrete to point of use and deposit continuousl in level layers to prevent separation of grout and aggregate. Work the concrete e roughly around reinforcement, embedded fixtures, and ners of forms. Do not deposit concrete in free

conners of forms. Do not sepais committee. Proceed standing dater, loose dirt, rubbish or other foreign natter. Proceed with concreting at such a rate that the concrete is plastic at all lines and flois readily such as the spaces betieven the bars. Do not retemper concrete. Use

concrete. Use an approved nethod of vibration. 5. Use 'Confilm' by Master Builders or equal on all flat*ork nstructed
#ithout protection of #alls and roof.
Protect all concrete and grout from premature drying,

essively hot or cold tenperature, and nechanical injury. Maintain

rete and growt with minimum noisture loss at relatively constant temperature for the required curing period. When the nean daily antient tenperature is less than 40 degrees F, provide temporary heat, insulating blankets, etc. So as to maintain the neat, insulating bildness, etc. 30 as to hainten the temperature off and grout at a ninimum of 50 degrees F for 7 days.

7. Cure concrete and grout such that the noximum noisture

loss does not exceed 0.55 kg/n2 in 72 hours when tested in

accordance with
ASTN C156-80. Approved nethods include approved curing
compounds or soaking with water and covering with polyethylene sheets. Water cure slabs to receive toppings, grout

flooring or other special coatings.

8. Seal all exterior concrete fith Master Builders 'GP' after the full curing

period.

9. Provide saycut control joints in each direction for all slabs on grade.
Control joint spacing shall not exceed 24'-0' nor 36
times the slab
thickness unless other lise shake. Control joint spacing shall not be less than 2/3 nor more than 1-1/2 times the spacing

of the slab in the other direction.

10. Carefully examine architectural, nechanical, electrical and equipment
drawings before each concrete pour to include all
cast-in items,
anchorage devices, block outs, sleeves, depressions, and

other
special requirements.

11. Conduit and pipes enbedded in concrete shall conform to
ACI 318-89
Section 6.3.

E. MASONRY
I motion Concrete block nasonry units shall conform to ASIM C90,
Grant 1500 psi
2. Use Type "M mortan for belok grade nasonry. Use Type "M" or "S"
nortan for above grade load bearing kalls, shear kalls and

exterior falls. Use Type 'N' nortar for interior non-load bearing falls and partitions.
3. Grout for bond beans and vertical cores shall have a ninnum conpressive strength of 2500 psi 8 28 days.
4. Mosonry kalls shall be adequately braced during construction to

esist
backfil and \$ind forces.
Fil nasonry solid \$ith grout full height belog all lintel bearings.
Fil nasonry cores \$ith grout at locations \$hich require enhedded o
filled—in anchors or bolts.
Provide horizontal ladder type \$ire reinforcing \$2 16° o.c. Masonry

reinforcement and brick shelf angles shall be discontinuous at

ertical Control joints and expansion joints. Lap spike all reinforcing bars in nasonry 48 bar dianeters. All vertical reinforcenent shall be dokeled to the foundation and

extend 6' into the bond bean at the top of the Hall.

10. Where one reinforcing bar is placed in a single core, it shall be

bar spacers to rigidly hold vertical reinforcement in place.
Fill block cores at vertical reinforcing steel with grout, rodded or place.

Hasonry shall be laid to a maximum height of 4'-0' before place

grout.

13. Construct all non-load bearing masonry #alls 1' clear of structu bers and deck. Pack yold #ith fiberglass insulation. Provide an 8' deep continuous bond beam at all floors and roofs.

#4's in bond beam. F. REINFORCING STEEL

Submit one reproducible copy, if needed, of each shop draging to Engineer for approval. Provide sufficient time in construction to allow a minimum of five full working days of review period in

Engineer's office.
Provide bolsters, chairs, doi:el blocks, standees and #4 support

as required to support specified reinforcement at spacings not to ed 4'-0' in either direction. Tie securely together to hold steel in

position.

3. Velding of reinforcement is not permitted. Field bending of reinforcement is not permitted.

Concrete cover for reinforcing steel, unless otherwise shown, shall be as follows:

3. clear fron botton & sides, 2. clear fron to the contings.

Valls

1½' clear from each side

Beans, Columns

1½' clear to stirrups or ties & piers

Structural Slabs I' clear from top & sides, ¾' clear from Slab-On-Grade 1/2 slab thickness from top, but not less

the 3/2 however a state of the trees of trees of the trees of the trees of the trees of trees of trees of the trees of t

6° Slab 3# per cubic Yard Forta Ferro, or approved equal reinforcing bars shall be fabricated in accordance with ACI and ACI Detailing Manual SP-66. Provide "standard hooks" unless er#ise noted. Specified bar length does not include length of hook. Place

and of and of the second of concrete, unless otherwise noted. Isan 2' clear from edge of concrete, unless otherwise noted. All lops shall be Class 'B', unless noted otherwise. Use 'top 'iap lengths' of the plants' of

all nortesting was a large of 14' deep.

Mechanical couplers capable of developing the full tensile capacity of the bars
nay be used at any lap location.

9. Corner bars shall be provided at all kall corners and intersections.

10. Plain yeld give fabric shall be lapped and / or anchored to develop fy per ACI
318.

22. Velding of reinfarcing is not permitted.

1. All post installed anchors must conform to ACI Appendix D quirenents.
All expansion bolts fastened to nasonry shall be zinc plated eve type in e in Nance with Federal Specification FF-S-325, Group II, Type 3,

w.w.mance with rederal Specification FFS-325, Group II, Type 3, Class 3.

3. All adhesive anchors shall be SIMPSDN 'ET-HP' -or- equal.

4. All anchor boits shall conforn to ASTM F 1534-36 unless noted other/sise. Provide standard nut and kasher tacked in place on enbedded end. At gravity only connections, L-Shaped rods are acceptable. Enbednent shall not exceed footing thickness ninus 3 inches. Hook length shall be 4 rod daneters. Enbednent shall be 4 rod daneters. Enbednent shall be 4 rod daneters only on the control botts and the control bott

H. DIMENSION LUMBER

1. Dinension lumber to be Spruce-Pine-Fir No.1/No.2 or D-F-L / No. 2 or better for

is & headers.

Use Spruce-Pine-Fir No.1/No.2 grade for Mall studs & ins. Unless noted otherMise on the plans will renter sizes given on plan are nominal disensions. All beans & joists not bearing on supporting nenbers be Franced "Simpson" joist hongers or equal. Use type required loading.

arpson' joist hangers or equal. Use type required for loading.

1. All foundation plates, sills & sleepers on concrete sibb. The plate is the plate

Monufacture.

B. Bott hotes in sood shall be drilled Mr naxious oversize, today for some oversize, today for some of the sound of the s

to place. de *ahers under all nuts and heads of bolts and

9. Provide Ashers under all nuts and neads or boits and screek.

10. All their Francia shall be accurately cut, notched, or over cut is pernitted for notches or daps. Members shall fit tight and true.

Exanne nembers for detrinental danage before installation, and sold experimental defects at considering the shall be used as the tenjalete for boring holes.

11. Wherever neccessary to cut or drill treated lumber, treat the cut or bored heavy coats of the same preservative as used in the 15 hasing repertuition shall conform

original treatnent.
12. Besign, fabrication, and construction shall conform
to the 'National Design
Specification for Wood Construction' current edition
as recomended by the
American Forest & Paper Association.

K. ROOF TRUSSES

Submit one reproducible copy, if needed, of each shop drawing to the Engineer for approval. Provide sufficient time in construction schedule to allow a rightwo of five full spirking days of review period in the

to allog a minimum of five full parking days of review period in the Engineer's office.

2. Irusses, jack rafters and valley rafters shall be designed to neet all loading and spans as indicated on the plans.

3. Irusses and rafters shall be designed and certified by a Registered

Engineer.

4. Supplier shall be responsible for all bracing and/or bridging required for the design of the truss nerhoers.

5. Contractor shall be responsible for bracing and/or bridging required during contaction.

5. Contractor shall be responsible for bracing and/or bridging required during construction.

6. All connector plates shall be nade of Grade "A" galvanized steel, ninhun 20 gage per latest TPI Specifications.

7. All connection hardware shall be designed & furnished by the truss supplier unless noted otheries on the plane.

8. Scissors trusses shall be designed such that horizontal live load deflections do not exceed "A". Valls are not designed to resist a horizontal truss eaction. 9. Submit Structural Component Plans to Department of Commerce for

L. ROOF AND WALL SHEATHING

All Specified sheathing shall conforn to American Plygood Association (APA) Desing Specification, Latest Edition. Sheathing Shall Be Continuous Over 3-Spans Minimum.

3-Spans Minimum.
2. Wall sheathing shall be \$\frac{1}{4}\$' ISSB 24/16 rated, ninimum. Vall sheathing to be fastered to supporting nembers with 8d common nais \$\frac{1}{4}\$ 6' IDC. at panel and 12' IDC. at internediate supports, unless noted other like.

3. Roof sheathing shall be 1/2' IDSB 24/16 rated, minimum, set, sheathing to be fastered to supporting nembers with 8d common mains. \$\frac{1}{4}\$ 4' IDC at panel edges and \$\frac{1}{4}\$' IDC. at internediate supporting, unless noted other/sise.

M. BRICK VENEER TIE REQUIREMENTS

Veneer ties with wire size (VZB or A dianeter) spaced 16° DC. Vertically and 24° DC. horizontally. Additional ties along openings greater than 24° are required to be located within 12° of opening and spaced 36° (max) aroun opening perineter. (Hohnann & Barnard VBT-VEE-BNA Tie with DV10-HS anchor plate or equal)

RICE

ENGINEERING

Phone (920) 845-1042 105 School Creek Trail Fax (920) 845-1048 Luxembura, WI 54217 Email: rice@rice-inc.com

LaPlant Architecture, LLC

OFFICE.926 WILLARD DRIVI GREEN BAY, WISCONSIN MAILING, 1507 PLISTIC WAY GREEN BAY, WISCONSIN 543 Telephone: (920) 737-976

EMAIL:

LEXINGTON -HOMES

Building Neighborhoods One Home at a Time OFFICE: 1300 North Kimps C GREEN BAY, WISCONSIN 543 Telephone: (920) 662-161

(920) 662-820 xell:@lexi

WEB: eighborhoods.

0 idg

Z 0

SHOULDER KING STUDS NOTES

1

0 sage. 8 Gar Wisconsin B it with Bay, N

Sturgeon REVISION DATE

DATE 9/14/2021

S

WOOD COLUMN SCHEDULE BOTTOM CONNECTION NOTES MARK COLUMN TOP CONNECTION (4) 0.131"x3.25" NAILS @ EACH PLY (5) 2 x 6 SPF # 142 (4) 0,131"x3.25" NAILS . EACH PLY C-2 6 x 6 CEDAR OR BETTER SIMPSON LCE SIMPSON ABU66Z (4) 0.131"x3.25" NAJLS @ EACH PLY (4) 2 x 6 SPF # 182 (4) 0.131 x3.25 NAILS @ EACH PLY C-3 (4) OJ3I'x3.25' NAILS @ EACH PLY C-4 (2) 2 x 6 SPF # 142 (4) O.131"x3.25" NAILS @ EACH PLY

NOTES:

I. USE AT GIRDER TRUSS BEARING

TYPICAL HEADER NOTES:

INSTALL CONNECTORS TO MANUFACTURES SPECIFICATION
OF SQUASH BLOCKING BETWEEN FLOOR TRUES SPACE.

SHEAR WALL SCHEDULE						
MARK		PANEL ANCHORAGE	HOLD DOWN		MIN, HOLD DOWN BOLT	INTERMEDIATE BOLT SPACING
5-1	%" APA RATED OSB OR %" (min) APA	8d (0.191°) COMMON NAILS @ 6° O.C., AT PANEL EDGES, 12° O.C., AT INTERMEDIATE SUPPORTS	NOT REGURED	3.	NA	(2) O.131"x3.25" NAIL5 0 16" O.C. MAX
5-2	1/4" APA RATED OSB OR %" (min) APA RATED PLYMOOD (ONE SIDE)	8d (0.131*) COMMON NAILS 6 4* O.C. AT PANEL EDGES, 12* O.C. AT INTERMEDIATE SUPPORTS	SIMPSON DTTZ WITH (18) IOD NAILS OR PASI STRAP WITH (10) IOD NAILS	э.	1/2*	5/8" ¢ BOLTS • 48" O.C.
5-3	5/8° GYPSUM WALLBOARD - DRYWALL (ONE SIDE)	I4 GAGE x I-5/0" STAPLES © 4" O.C. AT PANEL EDGES, 4" O.C. AT INTERMEDIATE SUPPORTS	SIMPSON DITZ WITH (IB) IOG NAILS OR PASI STRAP WITH (IO) IOG NAILS	3.	V2·	1/2" @ BOLTS @ 48" O.C.
5-4	5/8" GYPSUM WALLBOARD - DRYWALL (ONE SIDE)	No. 6 TYPE 5 OR W I-I/4" LONG DRYWALL SCREWS 0 4" O.C. AT PANEL EDGES, 12" O.C. AT INTERMEDIATE SUPPORTS	NOT REQUIRED	3.	NA.	1/2" φ BOLTS σ 48" O.C.
5-5	1/4" APA RATED OSB OR %" (min) APA RATED PLYWOOD (ONE SIDE)	Bd (0,131°) COMMON NAILS @ 6° O.C. AT PANEL EDGES, 12° O.C. AT INTERMEDIATE SUPPORTS	SIMPSON MSTA-49 STRAP	3.	NA	(2) 0.131"x3.25" NAILS • 12" 06. MAX
	(K. APKATED CSB OR % (min) APA &d (0.13") COMPON MAILS & 4" OC. AT PANEL PATED PLAYMOOD (DNE SIDE) TO STPSUM MALLBOARD - DRTYMLL ONE SIDE) NOE SIDE) AT OC. AT PANEL EDGES, 12" OC. AT INTERMEDIATE SUPPORTS ONE SIDE)		SIMPSON HTT5KT WITH (26) SDS #10x2-1/2	ъ.	5/8*	5/8° @ BOLTS @ 24° O.C.
5-7	5/8" GYPSUM WALLBOARD - DRYWALL (ONE SIDE)	I4 GAGE x I-5/8" STAPLES @ 4" O.C. AT PANEL EDGES, 4" O.C. AT INTERMEDIATE SUPPORTS	SIMPSON MSTA-49 STRAP	3.	NA	1/2" @ BOLTS @ 48" O.C.
5-8	5/8" GYPSUM WALLBOARD - DRYWALL (ONE SIDE)	I4 GAGE x I-5/8" STAPLES @ 4" O.C. AT PANEL EDGES, 4" O.C. AT INTERMEDIATE SUPPORTS	NOT REQUIRED	3.	NA	1/2" @ BOLTS @ 48" O.C.
5-4	5/8" GYPSIM WALLBOARD - DRYWALL (EACH SIDE)	14 GAGE x 1-5/8" STAPLES • 4" O.C. AT PANEL EDGES, 4" O.C. AT INTERMEDIATE SUPPORTS	SIMPSON DTTZ MITH (18) IOG NAILS OR PASI STRAP MITH (10) IOG NAILS	5.	V2*	1/2" \$ BOLTS \$ 48" O.C.
5-10	%" APA RATED OSB OR %" (mlv) APA RATED PLYWOOD (ONE SIDE)	6d (0.131°) COMMON NAILS 6 6° O.C. AT PANEL EDGES, 12° O.C. AT INTERMEDIATE SUPPORTS	NOT REGURED	3.	NA	1/2" \$ BOLTS \$ 48" O.C.

NOTES:

I. 16d NAILS THROUGH PLATE AND FLOOR SHEATHING

2. STANDARD CUT WASHERS PERMITTED AT ANCHOR BOLTS

TYPICAL SHEAR WALL NOTES:

FOR SHEAR WALL SCHEDULE SEE SHEET SIQ. SEE TYPICAL SHEAR WALL ELEVATION AND LOCATIONS ON PLANS.

ALL SHEAR WALLS STITUTION OR STYPEM SHEATHING SHALL HAVE BLOCKING ON ALL EDGES INLESS HOTED OTHERWISE IN SHEATHING DESIGNATION.

HONDINDIAL PRICES OF WOOD STRUCTURAL PAREL SHALL BE NOT LESS THAN 2"-O" IN LEAST DIMENSION NOR 8"-O" IN AREA

RE-TIGHTEN BOLTS DEFORE CLOSING

LOCATE ALL SHEAR WALL PANEL JOINTS ON CENTERLINE OF BLOCKING OR STUDS.

PROVIDE MIN 0.224/3-33 WASHER HODRE EACH NIT

IF PANEL EDGE MAILING IS GREATER THAN 3" A SINSLE 2X STUD OR BLOCKING MEMBER IS PERMITTED.

ALIGN TRISSES AND STUDS IN ALL CASES, INLESS NOTED OTHERWISE.

PROVIDE BUCKING AND STUDS IN ALL LOASES, INLESS NOTED OTHERWISE.

PROVIDE FURRING OR BACKING OF THICKINESS ARE POSTED TO HINITIAN A COMPON WALL PLANE AT ALL MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES PHICH ARE ONLY PARTIALLY SHATHER WITH MOD STUD WALL SURFACES OFFEN PROPER OVERALL WALL THICKNESS.

ACKNOWLED STUDY OF THE SURFACE WASHINGTON ON ONLY OF THE PAPER OVERALL WALL THICKNESS.

ACKNOWLED STUDY OF THE SURFACE WASHINGTON ON ONLY OF THE PAPER OFFEN OFFEN AND OTHER APPROVED COATING, FORDOW ONLY OFFEN SHATH ODD STUDY SHALL BUCKERS, UTILS, COMPONING THE SHEET BLOCKERS HAND OLD STUDY SHATE ON OTHER APPROVED COATING, FORDOW ONLY OFFEN SHALL BUCKERS, UNLESS HOUSE OTHERWISE.

O INDICATES STRAP OR HOLD-DOWN AT SHEAR WALL ENDS

1.2 (3) 2 x 12 5. PINE # I (TREATED) 2 ROYS 0.131"x3" NAILS . 12" O.C. (3) 2 x 12 5, PINE # 1 (TREATED) 2 ROYS 0.131"x3" NAILS . 12" O.C. 1, 2 H-4 (3) 2 × 10 SPF # 1¢2 OR DFL # 2 2 ROYS 0.131"x3" 0 12" O.C EACH SIDE. H-5 2 ROVE 0.131"x3" NAILS . 12" O.C. H-6 (2) 2 x 12 DFL # 2 2 3 H-7 (3) 2 x 12 DFL # 2 2 ROWS OJBI'X3" @ 12" O.C EACH SIDE. 2-3-2 2 H-B (3) 2 x 10 DFL # 2 2'RONG OJBI'X3' @ 12' OK EACH SIDE. 2-3-2 2 3 н-9 (2) 2 x 10 SPF # 142 OR DFL # 2 2 POWS O ISI'VS' & 12" OC FACH SIDE. 2 2 2 RONS 0.131"x3" NAILS . 12" O.C. 2 (3) 2 x 10 SPF # 1\$2 OR DFL # 2 2 2 ROYS 0.131"x3.25" @ 12" O.C EACH SIDE. 2-4-2 3 (3) 2 x 12 DFL # 2 2 H-12 (3) I 3/4*x20* I.9E, 2,600 Fb LVL 2 ROYS 0.131"x3.25" 0 12" OC EACH SIDE. 5-1/2*x16* 2.1E, 3000Fb GLULAM H-13 2 ROWS 0.131"x3.25" @ 12" O.C EACH SIDE. H-14 (4) 1 3/4"x20" I.AE, 2,600 Fb LVL 2 RONS 0.131'x3.25" 0 12" OC EACH SIDE. H-15 (3) 1 3/4*x16* 1.9E, 2600 Fb LVL 2 RONG 0.131"x3.25" @ 12" O.C EACH SIDE. H-16 (2) | 3/4"x||-1/4" | 19E, 2600 Fb LVL 2 H-17 (3) 1 3/4*x11-7/6* 1.9E, 2600 Fb LVL 2 ROWS (131'x3.25' a 12' O.C EACH SIDE. 2 2 H-18 (2) I 3/4*x9-1/4* I.9E, 2,600 Fb LVL 2'ROWS 5" TRUESLOK SCREWS @ 12" O.C. 2 1 H-I9 (2) 2 x IO SPF # 182 OR DFL # 2 2 RONS 0.131"x3" NAILS . 12" O.C. 2 ROYS 0.131'x3.25" . 12" OL EACH SIDE H-20 (2) I 3/4*x4-I/4* I.9E, 2,600 Fb LVL H-21 (3) 2 x 10 SPF # 142 OR DFL # 2 2 ROYS 0.131'x3.25' @ 12' O.C EACH SIDE. H-22 (2) | 3/4*x9-1/4* | 19E, 2600 Fb LVL 2 ROYS 0.131*x3.25* 0 12* 0.6 EACH SIDE.

HEADER SCHEDULE

MULTI-MEMBER CONNECTIONS

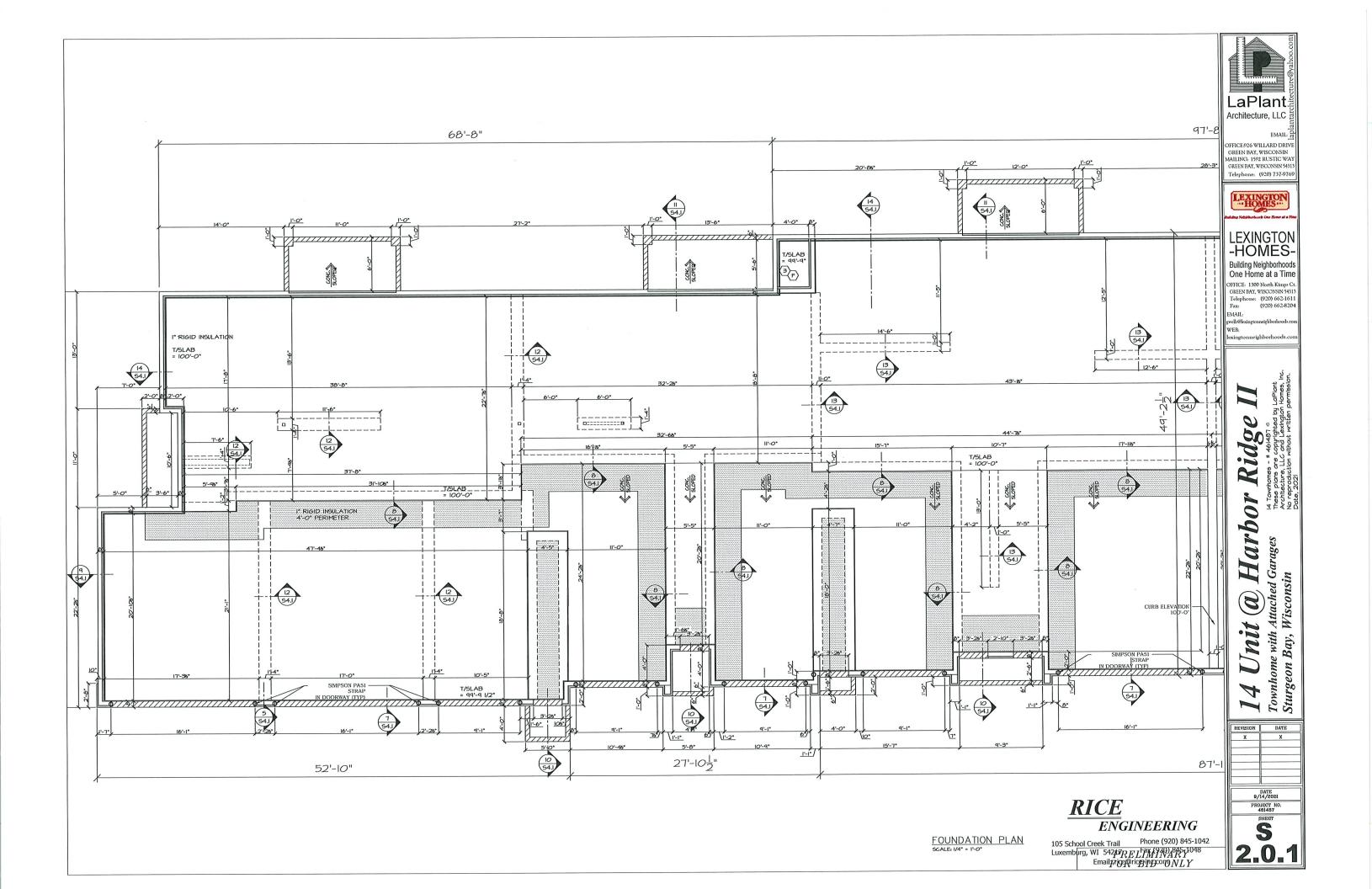
2 ROWS 0.131"x3" NAILS @ 12" 0.0

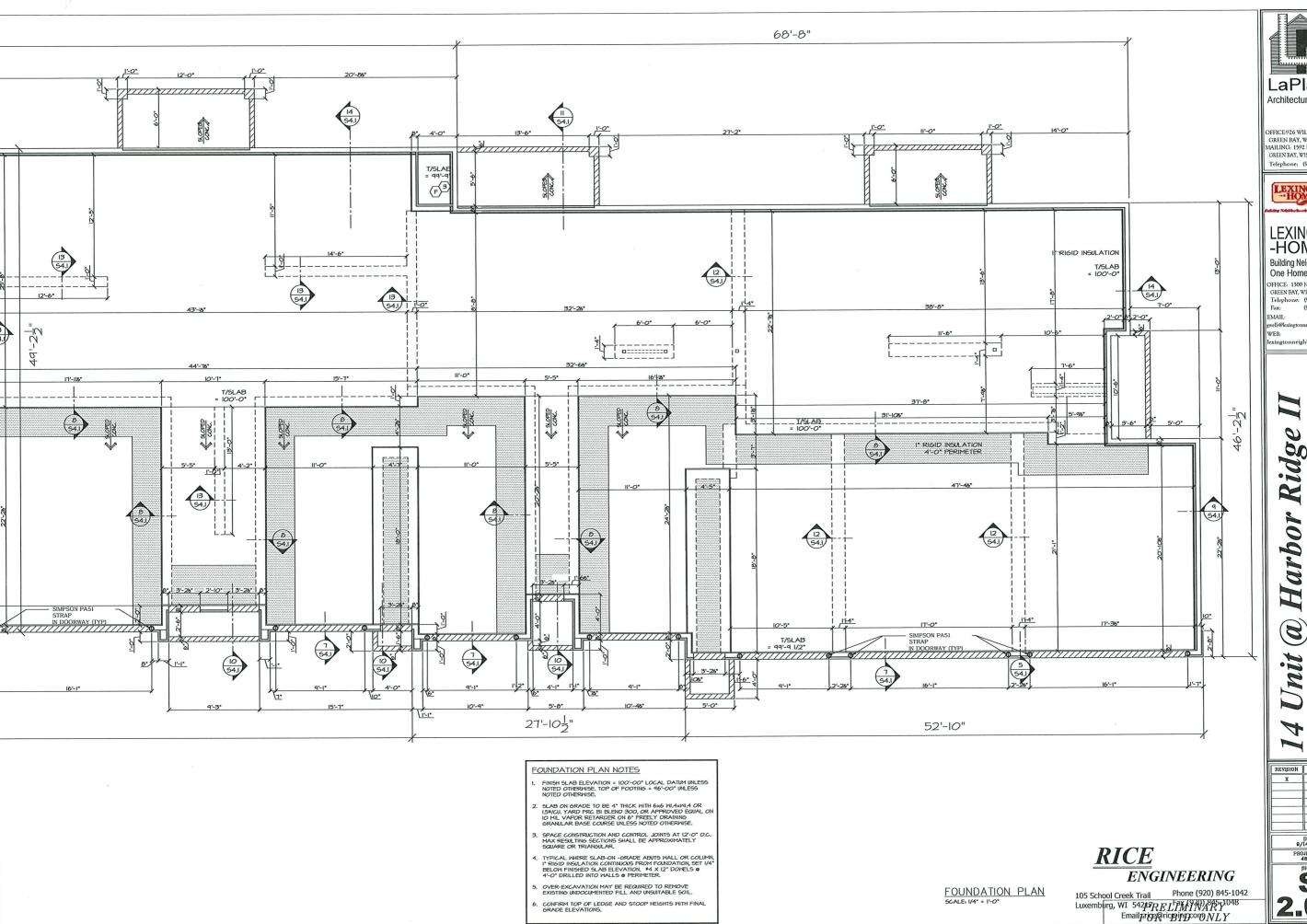
2 ROYS 0.131"x3" NAILS . 12" O.C.

NOTES:
1. SEE PLAN DETAILS FOR MORE INFORMATION.
2. STRONG-BACKS BEAR ON WALL AND TRUSSES. TRUSS DESIGNER TO DESIGN FLOOR TRUSSES FOR STRONG-BACK REACTIONS.

(2) 2 × 10 SPF # 162 OR DFL # 2

(2) 2 x 12 5. PINE # 1 (TREATED)


3. CONTINUOUS HEADER
4. AT WALL BEARING PROVIDE 2-PLY STUD BEARING, AT POST BEARING REFER TO COLUMN DESIGNATIONS ON PLANS.
5. MULTIPLE KING STUDS NOT REQUIRED AT BEAMS SUPPORTING WALL WITHOUT OUT OF


PLANE LOADING
6. SEE PLANS FOR SUPPORT CALL-OUTS
1. AT BEAM TO BEAM BEARING, USE (2) SIMPSON HTSQ2OZKT VERTICALLY AND A35
HORIZONTALLY TO CONNECT BEAMS, ALTERNATE TO BE APPROVED BY ENGINEER OF

TYPICAL HEADER NOTES:

AT WALLS FRAMING PERPENDICULARLY INTO WALLS, USE NUMBER OF STUDS EQUAL TO THE NUMBER OF PLIES OF

AT WALLS FRAMING PERPENDICULARLY INTO WALLS, USE RAPIERS OF SILOZO ALO. IN THE MOST HALLS WITH AND AND LIKEN OF FILES OF MACE 2 BEARING STUDS AND LIKEN STID. AT OPENINGS IN INTERIOR MALLS INTROJUCT SCHEDULED HEADERS PROVIDE 2 BEARING STUDS AND (\$\frac{1}{2}\)+1) THE MARBER OF INTES SILOZO AND (\$\frac{1}{2}\)+1) THE MARBER OF INTES SILOZO AND (\$\frac{1}{2}\)+1) THE MARBER OF INTES SILOZO SILOZO AND LIKEN STUDS AND (\$\frac{1}{2}\)+1) THE MARBER OF INTES SILOZO AND LIKEN STUDS AND LIKEN SILOZO AND FOR BID ONLY

Architecture, LLC

OFFICE.926 WILLARD DRIVE GREEN BAY, WISCONSIN MAILING: 1592 RUSTIC WAY GREEN BAY, WISCONSIN 5431 Telephone: (920) 737-976

LEXINGTON -HOMES

Building Neighborhoods One Home at a Time OFFICE: 1300 North Kimps Ct

GREEN BAY, WISCONSIN 54313 Telephone: (920) 662-1611 (920) 662-8204

Ridge

ownhome with Attached Garages turgeon Bay, Wisconsin

	T. S.
REVISION	DATE
х	X
9/1	DATE 4/2021
PRO.	JECT NO.

БНЕЕТ