STORMWATER MANAGEMENT REPORT

50 Mastrianni Place Southington, Connecticut

Prepared For Buck, LLC HEC Project #2078

May 19, 2021 Revised: August 2, 2022

Bу

Harry E. Cole & Son

876 South Main Street Plantsville, CT 06479 (860) 628-4484

> Barton N. Bovee, P.E. #13653 NOT VALID UNLESS EMBOSSED SEAL IS AFFIXED HERETO.

Table of Contents

_			Page
I.	INTR	RODUCTION	
	1.1	Objective	1
II.	EXIS	TING CONDITIONS	
	2.1	Site Location	1
	2.2	Site Description	1
III.	POST	F-DEVELOPMENT CONDITIONS	
	3.1	Post-development Facilities	2
	3.2	Detention	2
IV.	FIND	DINGS & CONCLUSIONS	2
V.	TECI	HNICAL CRITERIA & METHODOLOGY	
	5.1	Criteria	. 3
	5.2	Methodology	. 3
VI.	REFI	ERENCES	4
APPH	ENDIX		

I. INTRODUCTION

1.1 <u>Objective</u>

The intent of this report is to summarize the engineering drainage analysis and technical findings for 50 Mastrianni Place. The development team desires to present to the Town of Southington all of the pertinent site factors which have influenced the plan; thereby making a joint effort to solidify a design proposal that ensures a balance of quality, technical adequacy, and conservation. This document will demonstrate that the proposed Stormwater Management plan will comply with the Town of Southington drainage criteria, and that there will be no significant impact on downstream properties.

To achieve these objectives Harry E. Cole & Son (HEC) conducted an evaluation of regulatory criteria, existing site conditions, and the proposed development plan. Specific to this mission were the assessment of Stormwater Management opportunities, constraints, and the various competing site factors, which are important to the design and layout of the project. Elements that were most critical in developing a stormwater plan, included the following:

- **A.)** An inventory and inspection of the site soils and surficial geology, wetland/watercourses, surface drainage and runoff patterns, general forms of vegetation, wildlife, and habitat values, topography-shapes, slopes and orientation, physical constraints, surroundings.
- **B.)** Site background and history.
- C.) Zoning and land use regulations.
- **D.)** Infrastructure capacity and demands.
- E.) Off-site impacts, engineering, and construction practices.
- F.) Previous Drainage Calculations.

II. EXISTING CONDITIONS

2.1 <u>Site Location</u>

The 1.8± acre subject site is located at 50 Mastrianni Place in Southington Connecticut.

2.2 <u>Site Description</u>

The current $1.8\pm$ acre project is comprised of one existing parcel currently zoned Industrial. Originally the parcel had a mix of unimproved areas, gravel and impervious driveways and large areas for storing construction material, equipment, and landscaping materials. Town Water and Sewage mains are located in Mastrianni Place at the west side of the property. Drainage for the property is divided into two basins. Basin E1 is comprised of 1.68 acres and slopes at grades of 2-20% to the southeast and into a retention basin. Basin E2 drains easterly across the site but offsite and is not collected in the retention basin. Soils on the site have a predominate hydrologic rating of A in the eastern side of the site. The western side of the site from the road into the property, about 50 to 100 feet of the site, have a predominant rating of C. These A type soils are composed of Hartford Sandy Loam have high infiltration rates. While the C type soils are Wilbraham Silt Loam and Udorthents-Pits complex which have slow infiltration rates.

III. POST-DEVELOPMENT CONDITIONS

3.1 Proposed Facilities

The proposed plan will regrade the front of the site and construct an L shape building near the front of the property. An access drive will be provided to circle the building with parking along the front and northern side of the building, and storage areas at the back of the building. Water and sewer services will be tied in from the mains in Mastrianni Place. The existing retention basin will be enlarged to collect flows onsite and store them onsite with no release; just as the existing retention basin does.

The site overall has a lower runoff coefficient due to the amount of industrial unimproved area and gravel storage area which is being converted to grass; particularly on the south side of the building adjacent to the access drive.

Additionally, the retention basin will provide adequate water quality volume as there are no flows off-site up to the 100-year storm event.

3.2 <u>Detention</u>

Detention for the site will be provided in the form of a retention basin. Slopes for this basin are 3:1 on the sides with a 1% minimum bottom slope. This basin will receive runoff from the building roofs, the driveways, parking areas, and immediate surrounding area. Flows from the retention basin will not occur until storm events over the 100 year storm; at which point the excess volume of runoff is released into a watercourse on the neighboring property. A summary of the site flows is located in Appendix B. The summary table depicts an overall decease in runoff.

IV. FINDINGS & CONCLUSION

Overall, a slight reduction in peak flows will be achieved with the designed drainage system, and the conveyance systems will adequately convey runoff for all design storms. In summary, we believe the proposed stormwater management plan has satisfied the Town of Southington's drainage criteria and significant impacts to downstream properties should not occur.

V. TECHNICAL CRITERIA & METHODOLOGY

5.1 <u>Technical Criteria</u>

Desig	gn Element	Design Frequency
	-Detention Basin Sizing	2, 5, 10, 25, & 100 Year
5.2	Methodology -Detention Volume	<u>Design Storm</u> 24-Hour Type III from NOAA Atlas Precipitation Frequency Data Serve
	-Peak infrastructure flow	Rational Method with NOAA Atlas Precipitation Frequency Data Serve IDF tables.

Time of Concentration: Interpreted from topography with the aid of computer software. Based on calculations from the State of Connecticut, Department of Transportation equations for Sheet-Flow (6.C.2), Shallow Concentrated Flow (6.C.4) and Open Channel Flow (6.C.6).

Areas: Estimates from computer software (Land Desktop) and results of surveying.

REFERENCES

- 1) <u>Rules and Regulations Controlling Subdivision of Land</u>, Town of Southington, Connecticut
- 2) <u>Town of Southington Zoning Regulations</u>
- 3) <u>2004 Connecticut Stormwater Quality Manual</u>, Connecticut Department of Environmental Protection, 79 Elm Street, Hartford, Connecticut
- 4) <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, Connecticut Council on Soil and Water Conservation, 79 Elm Street, Hartford, Connecticut.
- 5) <u>2000 Drainage Manual</u>, Connecticut Department of Transportation,

APPENDICES TABLE OF CONTENTS

APPENDICES

TITLE

Α

FIGURES

- #1 Key Map
- #2 Pre-Development Watershed Area
- #3 Post-Development Watershed Area
- #4 Soil Map (4 Sheets)#5 Flood Insurance Rate Map
- #6 Natural Diversity Database Map

В	PRE AND POST DEVELOPMENT ANALYSIS
С	DETENTION DESIGN DETAILS
D	STORMWATER MANAGEMENT MAINTENANCE SCHEDULE

APPENDIX 'A'

FIGURES

Charles Charle 810 a 9 9 9 60 a 9 9 9 9 SOUTH MAIN STREET В I-2 ٩ "MASTRIANNI PLACE В I-I BURRITT STREET 雕 ٠ SIT] Ч NORTONS **R-I2** 20/25R-12 R 4 B

Ņ

KEY MAP SCALE: 1"=500'

DRAWING NAME: P:\Land Projects\2078-Buck, LLC-50 Mastrianni Place, Southington CT\Stormwater Management\Figures\2078 - Drainage - Existing Watershed Areas.dwg LAYOUT: 02 PLOT DATE: May 18, 2021 - 12:11pm OPERATOR: panico

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
5	Wilbraham silt loam, 0 to 3 percent slopes	C/D	1.1	22.7%
12	Raypol silt loam	C/D	0.5	9.0%
33A	Hartford sandy loam, 0 to 3 percent slopes	A	2.5	49.7%
109	Fluvaquents-Udifluvents complex, frequently flooded	B/D	0.1	1.9%
305	Udorthents-Pits complex, gravelly	С	0.8	16.8%
Totals for Area of Intere	st		5.1	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

of State and Federal Listed Species and Critical Habitats. Information on listed species is collected and compiled by the Natural Diversity Data Base (NDDB) from a variety of data sources . Exact locations of species have been buffered to produce the generalized locations.

This map is intended for use as a preliminary screening tool for conducting a Natural Diversity Data Base Review Request. To use the map, locate the project boundaries and any additional affected areas. If the project is within a hatched area there may be a potential conflict with a listed species. For more information, complete a Request for Natural Diversity Data Base State Listed Species Review form (DEP-APP-007), and submit it to the NDDB along with the required maps and information. More detailed instructions are provided with the request form on our website.

www.ct.gov/deep/nddbrequest

Use the CTECO Interactive Map Viewers at http://cteco.uconn.edu to more precisely search for and locate a site and to view aerial imagery with NDDB Areas.

QUESTIONS: Department of Energy and Environmental Protection (DEEP) 79 Elm St, Hartford, CT 06106 email: deep.nddbrequest@ct.gov Phone: (860) 424-3011

Connecticut Department of Energy & Environmental Protection Bureau of Natural Resources Wildlife Division

APPENDIX 'B'

PRE AND POST DEVELOPMENT ANALYSIS

		Existing	Proposed	Change in	
Design	Design	Peak Flow	Peak Flow	Peak Flow	
Point	Storm	(cfs)	(cfs)	(cfs)	
	2	0.00	0.00	0.00	< ∞ <
UF A (Eviating	5	0.00	0.00	0.00	jo de
(Existing	10	0.00	0.00	0.00	ы Бай
Folia Spillwov)	25	0.00	0.00	0.00	°S#
Spillway)	100	0.00	0.00	0.00	
ם מח	2	0.57	0.00	-0.57	റ ≥
UF D	5	0.72	0.00	-0.72	jo to
(Northeast	10	0.85	0.00	-0.85	ы В В В В В В В В В В В В В В В В В В В
Site)	25	1.03	0.00	-1.03	#2 #2
Sile)	100	1.31	0.00	-1.31	
Notoc					-

Pre and Post Development Summary Table

Notes:

1. Existing Retention Pond has no offsite flows. Proposed pond designed to retain all storm water on site.

2. Proposed site redirects offsite flows to proposed enlarged retention basin. Therefore no offsite flows are directed to DP B

Watershed Model Schematic

1

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. Hydrograph		Inflow				Hydrograph					
NO.	(origin)	nya(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	Rational			4.535		5.805	6.849	8.284		10.49	E1
2	Reservoir	1		0.000		0.000	0.000	0.000		0.000	Existing Pond
3	Rational			0.566		0.724	0.854	1.033		1.308	E2
5	Rational			2.348		2.998	3.534	4.265		5.400	P1
6	Reservoir	5		0.000		0.000	0.000	0.000		0.000	Proposed Pond
									<u> </u>		

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	4.535	1	7	1,905				E1
2	Reservoir	0.000	1	n/a	0	1	132.11	1,905	Existing Pond
3	Rational	0.566	1	7	238				E2
	Deficient	0.040		04	2 204				D4
5	Rational	2.340		24 n/a	0,301	5	132.15	2 817	F I Pronosed Pond
0	Reservoir	0.000		n/a		5	132.15	2,017	Proposed Polid
207	′8 - Model.gpv	v			Return P	eriod: 2 Ye	ar	Tuesday, 08	3 / 2 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	5.805	1	7	2,438				E1
2	Reservoir	0.000	1	n/a	0	1	132.33	2,438	Existing Pond
3	Rational	0.724	1	7	304				E2
5	Pational	2 008	1	24	1 318				D1
6	Reservoir	2.990		24 n/a	4,310	5	132.35	3 508	r I Pronosed Pond
207	′8 - Model.gpv	v	1	1	Return P	eriod: 5 Ye	ar	Tuesday, 08	3 / 2 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	6.849	1	7	2,876				E1
2	Reservoir	0.000	1	n/a	0	1	132.52	2,876	Existing Pond
3	Rational	0.854	1	7	359				E2
5	Potional	2 5 2 4	1	24	5 080				D1
5	Rational	0.000		24 n/a	5,069	5	132 51	4 241	F I Pronosed Pond
0		0.000		11/4		5	102.01	4,241	
207	'8 - Model.gpv	v			Return P	eriod: 10 Y	ear	Tuesday, 08	8 / 2 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	8.284	1	7	3,479				E1
2	Reservoir	0.000	1	n/a	0	1	132.77	3,479	Existing Pond
3	Rational	1.033	1	7	434				E2
	Deficient	4.005		04	0.140				D4
5	Rational	4.205		24 n/2	0,142	5		5 119	PI Proposed Pond
0	Reservoir	0.000		Ti/a		5	152.75	5,110	Proposed Polid
207	/8 - Model.gpv	v			Return P	eriod: 25 Y	ear	Tuesday, 08	3 / 2 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	10.49	1	7	4,407				E1
2	Reservoir	0.000	1	n/a	0	1	133.12	4,407	Existing Pond
3	Rational	1.308	1	7	550				E2
_		E 400							
5	Rational	5.400		24	1,115				P1
6	Reservoir	0.000	1	n/a	0	5	133.05	6,479	Proposed Pond
207	8 - Model.gpv	v			Return P	eriod: 100	Year	Tuesday, 08	3 / 2 / 2022

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)										
(Yrs)	В	D	E	(N/A)							
1	0.0000	0.0000	0.0000								
2	23.2475	3.7000	0.7135								
3	0.0000	0.0000	0.0000								
5	31.4774	4.0000	0.7287								
10	37.2329	4.0000	0.7298								
25	43.0321	3.7000	0.7191								
50	49.5765	3.8000	0.7237								
100	55.5061	3.8000	0.7239								

File name: 2078.IDF

Intensity = B / (Tc + D)^E

Return Period		Intensity Values (in/hr)													
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
2	4.97	3.59	2.88	2.43	2.12	1.89	1.71	1.57	1.45	1.36	1.27	1.20			
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
5	6.35	4.60	3.68	3.11	2.71	2.41	2.18	2.00	1.85	1.72	1.61	1.52			
10	7.49	5.43	4.34	3.66	3.19	2.84	2.57	2.35	2.18	2.03	1.90	1.79			
25	9.08	6.55	5.24	4.42	3.85	3.43	3.11	2.85	2.63	2.45	2.30	2.17			
50	10.27	7.42	5.93	5.00	4.36	3.88	3.51	3.22	2.97	2.77	2.60	2.45			
100	11.50	8.30	6.64	5.59	4.87	4.34	3.93	3.60	3.33	3.10	2.91	2.74			

Tc = time in minutes. Values may exceed 60.

: P:\Land F	Projects\2078-Buck,	LLC-50 Mastrianni Place	, Southington	CT\Stormwater	Management\De	tention\2078.pcp

	Rainfall Precipitation Table (in)											
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr				
SCS 24-hour	0.00	3.46	0.00	4.55	5.46	6.70	7.62	8.62				
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

NOAA Atlas 14, Volume 10, Version 3 Location name: Plantsville, Connecticut, USA* Latitude: 41.5709°, Longitude: -72.9004° Elevation: 148.64 ft** *source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
Duration				Average I	recurrence	interval (y	ears)					
Duration	1	2	5	10	25	50	100	200	500	1000		
5-min	0.344 (0.268-0.435)	0.414 (0.322-0.526)	0.529 (0.411-0.674)	0.626 (0.483-0.802)	0.758 (0.566-1.02)	0.858 (0.628-1.18)	0.962 (0.683-1.38)	1.08 (0.725-1.58)	1.24 (0.803-1.89)	1.37 (0.869-2.14)		
10-min	0.487 (0.379-0.617)	0.587 (0.457-0.745)	0.751 (0.582-0.957)	0.887 (0.684-1.14)	1.07 (0.802-1.44)	1.22 (0.889-1.67)	1.36 (0.967-1.95)	1.53 (1.03-2.24)	1.76 (1.14-2.69)	1.94 (1.23-3.04)		
15-min	0.573 (0.446-0.726)	0.691 (0.537-0.876)	0.884 (0.686-1.13)	1.04 (0.806-1.34)	1.26 (0.943-1.70)	1.43 (1.05-1.97)	1.60 (1.14-2.29)	1.80 (1.21-2.64)	2.07 (1.34-3.16)	2.29 (1.45-3.57)		
30-min	0.785 (0.611-0.995)	0.944 (0.734-1.20)	1.20 (0.933-1.53)	1.42 (1.10-1.82)	1.72 (1.28-2.31)	1.94 (1.42-2.67)	2.17 (1.54-3.11)	2.43 (1.64-3.58)	2.80 (1.82-4.28)	3.10 (1.96-4.85)		
60-min	0.997 (0.777-1.26)	1.20 (0.931-1.52)	1.52 (1.18-1.94)	1.79 (1.38-2.30)	2.17 (1.62-2.91)	2.45 (1.79-3.37)	2.74 (1.95-3.92)	3.07 (2.07-4.51)	3.54 (2.29-5.40)	3.92 (2.48-6.12)		
2-hr	1.31 (1.02-1.65)	1.56 (1.22-1.97)	1.98 (1.54-2.50)	2.32 (1.80-2.95)	2.79 (2.10-3.73)	3.15 (2.31-4.30)	3.52 (2.51-5.01)	3.94 (2.66-5.76)	4.54 (2.95-6.90)	5.04 (3.20-7.82)		
3-hr	1.52 (1.20-1.91)	1.81 (1.43-2.28)	2.29 (1.80-2.89)	2.69 (2.10-3.42)	3.24 (2.44-4.32)	3.65 (2.70-4.99)	4.09 (2.93-5.81)	4.58 (3.11-6.68)	5.30 (3.45-8.03)	5.89 (3.75-9.12)		
6-hr	1.93 (1.53-2.40)	2.32 (1.83-2.89)	2.95 (2.32-3.70)	3.48 (2.72-4.38)	4.20 (3.19-5.57)	4.74 (3.53-6.45)	5.32 (3.84-7.55)	5.99 (4.07-8.69)	6.99 (4.57-10.5)	7.83 (4.99-12.0)		
12-hr	2.38 (1.89-2.95)	2.90 (2.30-3.59)	3.74 (2.96-4.66)	4.44 (3.50-5.56)	5.41 (4.13-7.15)	6.12 (4.58-8.31)	6.90 (5.03-9.79)	7.83 (5.34-11.3)	9.24 (6.06-13.8)	10.5 (6.69-16.0)		
24-hr	2.79 (2.24-3.44)	3.46 (2.77-4.26)	4.55 (3.63-5.63)	5.46 (4.32-6.79)	6.70 (5.15-8.84)	7.62 (5.75-10.3)	8.62 (6.35-12.3)	9.89 (6.76-14.2)	11.9 (7.80-17.7)	13.6 (8.73-20.7)		
2-day	3.14 (2.53-3.84)	3.96 (3.19-4.85)	5.31 (4.26-6.52)	6.42 (5.12-7.94)	7.95 (6.16-10.5)	9.07 (6.91-12.3)	10.3 (7.69-14.7)	11.9 (8.20-17.1)	14.6 (9.62-21.7)	17.0 (10.9-25.7)		
3-day	3.41 (2.76-4.16)	4.32 (3.49-5.26)	5.80 (4.67-7.10)	7.03 (5.62-8.65)	8.72 (6.78-11.4)	9.94 (7.60-13.4)	11.3 (8.48-16.1)	13.1 (9.04-18.7)	16.1 (10.6-23.9)	18.8 (12.1-28.4)		
4-day	3.66 (2.97-4.45)	4.63 (3.75-5.62)	6.20 (5.00-7.57)	7.51 (6.02-9.23)	9.31 (7.26-12.2)	10.6 (8.14-14.3)	12.1 (9.07-17.2)	14.0 (9.66-19.9)	17.2 (11.4-25.4)	20.0 (12.9-30.2)		
7-day	4.36 (3.56-5.27)	5.44 (4.43-6.58)	7.20 (5.84-8.74)	8.66 (6.98-10.6)	10.7 (8.34-13.9)	12.1 (9.32-16.2)	13.8 (10.3-19.4)	15.9 (11.0-22.4)	19.3 (12.8-28.3)	22.3 (14.4-33.4)		
10-day	5.07 (4.15-6.11)	6.21 (5.07-7.48)	8.06 (6.56-9.75)	9.60 (7.76-11.7)	11.7 (9.18-15.1)	13.3 (10.2-17.6)	15.0 (11.2-20.9)	17.1 (11.9-24.1)	20.5 (13.7-30.0)	23.5 (15.3-35.1)		
20-day	7.29 (6.00-8.72)	8.49 (6.98-10.2)	10.5 (8.56-12.6)	12.1 (9.83-14.6)	14.3 (11.2-18.2)	16.0 (12.3-20.9)	17.8 (13.2-24.2)	19.9 (13.9-27.7)	22.9 (15.3-33.3)	25.5 (16.6-37.9)		
30-day	9.14 (7.55-10.9)	10.4 (8.56-12.4)	12.4 (10.2-14.8)	14.1 (11.5-16.9)	16.3 (12.9-20.6)	18.1 (13.9-23.4)	19.9 (14.7-26.7)	21.9 (15.3-30.3)	24.6 (16.5-35.6)	26.9 (17.5-39.7)		
45-day	11.4 (9.48-13.6)	12.7 (10.5-15.1)	14.8 (12.2-17.6)	16.5 (13.5-19.8)	18.9 (14.9-23.6)	20.7 (15.9-26.5)	22.5 (16.6-29.9)	24.4 (17.1-33.7)	26.8 (18.0-38.6)	28.7 (18.7-42.3)		
60-day	13.3 (11.1-15.8)	14.6 (12.2-17.3)	16.8 (13.9-20.0)	18.6 (15.2-22.2)	21.0 (16.6-26.1)	22.9 (17.6-29.1)	24.8 (18.2-32.6)	26.5 (18.7-36.5)	28.8 (19.4-41.3)	30.4 (19.9-44.7)		

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration											
5-min	2-day										
- 10-min	— 3-day										
- 15-min	— 4-day										
30-min	- 7-day										
- 60-min	— 10-day										
— 2-hr	— 20-day										
— 3-hr	— 30-day										
— 6-hr	— 45-day										
- 12-hr	- 60-day										
24-hr											

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Aug 2 15:52:00 2022

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration <u>National Weather Service</u> <u>National Water Center</u> 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

NOAA Atlas 14, Volume 10, Version 3 Location name: Plantsville, Connecticut, USA* Latitude: 41.5709°, Longitude: -72.9004° Elevation: 148.64 ft** *source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹											
Duration				Avera	ge recurren	ce interval (years)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	4.13 (3.22-5.22)	4.97 (3.86-6.31)	6.35 (4.93-8.09)	7.51 (5.80-9.62)	9.10 (6.79-12.2)	10.3 (7.54-14.2)	11.5 (8.20-16.5)	12.9 (8.70-19.0)	14.9 (9.64-22.7)	16.5 (10.4-25.7)	
10-min	2.92 (2.27-3.70)	3.52 (2.74-4.47)	4.51 (3.49-5.74)	5.32 (4.10-6.82)	6.44 (4.81-8.66)	7.30 (5.33-10.0)	8.18 (5.80-11.7)	9.16 (6.17-13.5)	10.5 (6.83-16.1)	11.7 (7.39-18.2)	
15-min	2.29 (1.78-2.90)	2.76 (2.15-3.50)	3.54 (2.74-4.51)	4.18 (3.22-5.36)	5.06 (3.77-6.80)	5.72 (4.18-7.87)	6.41 (4.55-9.17)	7.18 (4.84-10.6)	8.26 (5.36-12.6)	9.15 (5.79-14.3)	
30-min	1.57	1.89	2.41	2.84	3.43	3.88	4.34	4.86	5.60	6.21	
	(1.22-1.99)	(1.47-2.40)	(1.87-3.07)	(2.19-3.64)	(2.56-4.61)	(2.84-5.34)	(3.08-6.22)	(3.28-7.15)	(3.63-8.56)	(3.93-9.69)	
60-min	0.997	1.20	1.52	1.79	2.17	2.45	2.74	3.07	3.54	3.92	
	(0.777-1.26)	(0.931-1.52)	(1.18-1.94)	(1.38-2.30)	(1.62-2.91)	(1.79-3.37)	(1.95-3.92)	(2.07-4.51)	(2.29-5.40)	(2.48-6.12)	
2-hr	0.654	0.780	0.988	1.16	1.40	1.57	1.76	1.97	2.27	2.52	
	(0.512-0.824)	(0.611-0.984)	(0.770-1.25)	(0.899-1.48)	(1.05-1.86)	(1.16-2.15)	(1.26-2.51)	(1.33-2.88)	(1.48-3.45)	(1.60-3.91)	
3-hr	0.506	0.604	0.764	0.896	1.08	1.22	1.36	1.53	1.77	1.96	
	(0.398-0.635)	(0.475-0.759)	(0.598-0.963)	(0.698-1.14)	(0.814-1.44)	(0.898-1.66)	(0.976-1.94)	(1.03-2.22)	(1.15-2.67)	(1.25-3.04)	
6-hr	0.322	0.387	0.493	0.580	0.702	0.792	0.888	1.00	1.17	1.31	
	(0.255-0.401)	(0.306-0.483)	(0.388-0.617)	(0.455-0.732)	(0.532-0.931)	(0.589-1.08)	(0.642-1.26)	(0.680-1.45)	(0.763-1.76)	(0.834-2.01)	
12-hr	0.197	0.240	0.310	0.369	0.449	0.508	0.572	0.650	0.767	0.867	
	(0.157-0.245)	(0.191-0.298)	(0.246-0.386)	(0.290-0.462)	(0.343-0.593)	(0.380-0.689)	(0.417-0.812)	(0.443-0.937)	(0.503-1.15)	(0.555-1.33)	
24-hr	0.116	0.144	0.190	0.227	0.279	0.317	0.359	0.412	0.495	0.567	
	(0.093-0.143)	(0.115-0.178)	(0.151-0.235)	(0.180-0.283)	(0.215-0.368)	(0.240-0.430)	(0.265-0.511)	(0.282-0.591)	(0.325-0.737)	(0.364-0.863)	
2-day	0.065	0.083	0.111	0.134	0.166	0.189	0.215	0.249	0.304	0.353	
	(0.053-0.080)	(0.066-0.101)	(0.089-0.136)	(0.107-0.165)	(0.128-0.218)	(0.144-0.256)	(0.160-0.307)	(0.171-0.355)	(0.200-0.451)	(0.227-0.535)	
3-day	0.047	0.060	0.081	0.098	0.121	0.138	0.157	0.183	0.224	0.261	
	(0.038-0.058)	(0.048-0.073)	(0.065-0.099)	(0.078-0.120)	(0.094-0.159)	(0.106-0.187)	(0.118-0.224)	(0.126-0.260)	(0.148-0.331)	(0.168-0.394)	
4-day	0.038	0.048	0.065	0.078	0.097	0.111	0.126	0.146	0.179	0.209	
	(0.031-0.046)	(0.039-0.059)	(0.052-0.079)	(0.063-0.096)	(0.076-0.127)	(0.085-0.149)	(0.094-0.179)	(0.101-0.207)	(0.118-0.264)	(0.135-0.314)	
7-day	0.026	0.032	0.043	0.052	0.063	0.072	0.082	0.094	0.115	0.133	
	(0.021-0.031)	(0.026-0.039)	(0.035-0.052)	(0.042-0.063)	(0.050-0.082)	(0.055-0.096)	(0.061-0.115)	(0.065-0.133)	(0.076-0.168)	(0.086-0.199)	
10-day	0.021	0.026	0.034	0.040	0.049	0.055	0.062	0.071	0.086	0.098	
	(0.017-0.025)	(0.021-0.031)	(0.027-0.041)	(0.032-0.049)	(0.038-0.063)	(0.042-0.073)	(0.047-0.087)	(0.049-0.100)	(0.057-0.125)	(0.064-0.146)	
20-day	0.015	0.018	0.022	0.025	0.030	0.033	0.037	0.041	0.048	0.053	
	(0.012-0.018)	(0.015-0.021)	(0.018-0.026)	(0.020-0.030)	(0.023-0.038)	(0.026-0.043)	(0.028-0.050)	(0.029-0.058)	(0.032-0.069)	(0.035-0.079)	
30-day	0.013	0.014	0.017	0.020	0.023	0.025	0.028	0.030	0.034	0.037	
	(0.010-0.015)	(0.012-0.017)	(0.014-0.021)	(0.016-0.024)	(0.018-0.029)	(0.019-0.032)	(0.020-0.037)	(0.021-0.042)	(0.023-0.049)	(0.024-0.055)	
45-day	0.011	0.012	0.014	0.015	0.017	0.019	0.021	0.023	0.025	0.027	
	(0.009-0.013)	(0.010-0.014)	(0.011-0.016)	(0.013-0.018)	(0.014-0.022)	(0.015-0.025)	(0.015-0.028)	(0.016-0.031)	(0.017-0.036)	(0.017-0.039)	
60-day	0.009 (0.008-0.011)	0.010 (0.008-0.012)	0.012 (0.010-0.014)	0.013 (0.011-0.015)	0.015 (0.012-0.018)	0.016 (0.012-0.020)	0.017 (0.013-0.023)	0.018 (0.013-0.025)	0.020 (0.013-0.029)	0.021 (0.014-0.031)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration											
5-min	2-day										
10-min	— 3-day										
15-min	4-day										
— 30-min	- 7-day										
- 60-min	— 10-day										
- 2-hr	- 20-day										
— 3-hr	— 30-day										
— 6-hr	— 45-day										
- 12-hr	- 60-day										
24-hr											

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Aug 2 15:52:44 2022

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration <u>National Weather Service</u> <u>National Water Center</u> 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

	RATIONAL METHOD COMPOSITE RUNOFF COEFFICIENTS												
Character of Surfa	ce		Runoff Coefficient	Source	Character of S	Surface		Runoff Coefficient	Source	Project:	Project: 50 Mastrianni Place		
Asphalt, Concre	te, Roofs & Wa	iter Surface	0.95	CONN DOT Table 6-5	Forest (H	ydrologic Type A	Soil)	0.14	McCuen, 1989 Table 7-2		Southington, C	т	
Light Industrial A	Areas		0.65	CONN DOT Table 6-4	Forest (H	ydrologic Type C	Soil)	0.22	McCuen, 1989 Table 7-3	1			
Residential Sing	le Family Area		0.50	CONN DOT Table 6-4	Lawns Sar	ndy Soil (Steep 7%	»+)	0.18	McCuen, 1989 Table 7-3	Calcs By:	ВТР		
Parks & Cemeteries 0.25				CONN DOT Table 6-4	Lawns Sandy Soil (2% to 7%)			0.16	McCuen, 1989 Table 7-3	Date:	5/18/21		
Unimproved Areas			0.30	CONN DOT Table 6-4					McCuen, 1989 Table 7-3	Revised :	08/02/22		
				CONN DOT Table 6-4									
Basin ID	Basin Area (acres)	Asphalt, Concrete, Roofs & Water Surface (acres)	Light Industrial Areas (acres)	Residential Single Family Area (acres)	Parks & Cemeteries (acres)	Unimproved Areas (acres)	0 (acres)	Forest (Hydrologic Type A Soil) (acres)	Forest (Hydrologic Type C Soil) (acres)	Lawns Sandy Soil (Steep 7%+) (acres)	Lawns Sandy Soil (2% to 7%) (acres)	Composite Runoff Coefficient	
E1	1.68	0.04	1.54					,	0.10			0.63	
E2	0.20	0.01	0.19									0.66	
P1	1.80	1.00							0.10	0.14	0.56	0.60	

Note:

	TIME OF CONCENTRATION COMPUTATIONS																						
Overlan	d Flow: ((Maximu	m 150 F1	[]														Project:	50 Mastri	anni Place			
	$07(nL)^{0.8}$	<i>~</i> ~~ <i>~</i>			T _t =Travel	Time (Hr)				P ₂ = 2 Yea	r, 24-ł	nour Ranfall	(in)						Southing	ton, CT			
$T_t = \frac{1}{(P_t)}$) ^{0.5} s ^{0.4}	(IR-55 Equation	n 3_3)		n=Mannin	g's Roughn	ess (TR-55	Table 3-1)		s=slope (f	t/ft)												
(*)	2) 5	Edipatio	100)		L=FIOW Le	engtn (π)											Calcula	tions By:	BIP				
Shallow	/ Concen	trated Fl	ow.															Boy:	5/10/2021 8/2/2022				
Unpaved:	V=16.134	$5(s)^{0.5}$					T.=Travel	Time (min)										1107,	0/2/2022				
Paved: V=	=20.3284(s	0.5	(Conn DO	l Equations	6.C.4 ¢ C.	C.5)	V=Velocity	/ (ft/s)								Common	Manning r	n Values fo	or overland	flow (TR-5	5 Table 3-1)	
$T_{t} = L / 60$)V	′					s=slope (f	t/ft)								Woods	0.400	Light Une	derbrush			1	
								,							F	Pavement	0.011	(concrete	e, asphalt,	aravel. or b	are soil)		
Open C	hannel\S	wale Flo	w:													Lawns	0.410	Bermuda	Grass	, J	,		
-	$\frac{2}{2}$ $\frac{1}{2}$ (TR-55			T _t =Travel	Time (min)		V=Velocity	/ (ft/s)		a=cro	oss-section	area (ft²)		Der	nse Grass	0.240	Lovegras	s, Bluegra	ss, Buffalo	,Grama & N	lative	
$V = \frac{1.4}{2}$	$9r^3s^2$	Equation 3-	4)		n=Mannin	g's Roughne	ess	s=slope (f	t/ft)		p _w =w	etted perim	eter (ft)		Indus	strial Area	0.08	(unimpro	ved industi	rial area, es	stimated n v	alue based	on site
	n				L=Flow Le	ength (ft)		r= hydrauli	ic radius (a/	pw)								condition	s and impa	acts on ove	rland flow)		
$T_t = L / 60$)V																			Minimun	n allowabl	$e T_c = 5.0$	J0 min.
			Overland	Sheet Flow	/		S	hallow Flo	w					Swale I	Flow					Pipe Flov	N		Total
Design			L	s	Т	Paved	L	s	v	T₁		Area	Perim	s	flow)	L	Ts	Dia.	L	s	flow)	Тр	т
Point	Basin(s)	n	(ft)	(%)	(min)	(Y or N)	(ft)	(%)	(ft/s)	(min)	n	(s.f.)	(ft)	(%)	(ft/s)	(ft)	(min)	(in)	(ft)	(%)	(ft/s)	(min)	(min)
	E1	0.080	150	4.67	5.84	N	241	2.90	2.75	1.46													
				Subtotal	5.84				Subtotal	1.46						Subtotal					Subtotal	 	7 30
	E2	0.080	150	3.33	6.68	N	82	5.73	3.86	0.35						Oubtotai					Cubiotai		1.00
				Subtotal	6.68				Subtotal	0.35						Subtotal					Subtotal	<u> </u>	7.04
	P1	0.410	150	4.13	22.66	N	232	2.80	2.70	1.43												 	
				Subtotal	22.66				Subtotal	1.43						Subtotal					Subtotal		24.09
																						 	
																						L	
																						<u> </u>	
																						<u> </u>	
																						<u> </u>	
																						<u> </u>	
																							
																						 	
														<u> </u>				<u> </u>				<u> </u>	-
														L								L	

APPENDIX 'C'

DETENTION DESIGN

Pontdº No. 1 - Existing Pond

Pond^oNo. 3 - Proposed Pond

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 1 - Existing Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 131.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	131.00	1,318	0	0	
1.00	132.00	2,012	1,653	1,653	
2.00	133.00	2,743	2,368	4,020	
3.00	134.00	3,566	3,145	7,166	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	16.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	133.30
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	2.60
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			Broad
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 3 - Proposed Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 131.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	131.00	1,318	0	0	
1.00	132.00	3,230	2,203	2,203	
2.00	133.00	4,769	3,974	6,177	
3.00	134.00	7,022	5,859	12,036	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	16.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	133.30
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	2.60
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			Broad
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage Storage Project: Basin Descri	e 2078 ption: Exis	3 sting Pond				
Contour Elevation	Contour Area (sq. ft)	Depth (ft)	Incremental Volume Avg. End (cu. ft)	Cumulative Volume Avg. End (cu. ft)	Incremental Volume Conic (cu. ft)	Cumulative Volume Conic (cu. ft)
131.00 132.00 133.00 134.00	1,318.13 2,012.00 2,743.05 3,565.86	N/A 1.00 1.00 1.00	N/A 1665 2378 3154	0 1665 4043 7197	N/A 1653 2368 3145	0 1653 4021 7166

Stage Storage			
Project:		2078 - Buck	
Basin Descripti	on:	Proposed Expanded Pond	
Contour	Contour	Depth	Incremental
Elevation	Area	(ft)	Volume

Contour Elevation	Contour Area (sq. ft)	Depth (ft)	Incremental Volume Avg. End (cu. ft)	Cumulative Volume Avg. End (cu. ft)	Incremental Volume Conic (cu. ft)	Cumulative Volume Conic (cu.ft)
131.00	1,318.13	N/A	N/A	0	N/A	0
132.00	3,229.50	1.00	2274	2274	2204	2204
133.00	4,769.18	1.00	3999	6273	3974	6178
134.00	7,022.34	1.00	5896	12169	5860	12038

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 08 / 2 / 2022

Hyd. No. 1

E1

Hydrograph type	= Rational	Peak discharge	= 10.49 cfs
Storm frequency	= 100 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 4,407 cuft
Drainage area	= 1.680 ac	Runoff coeff.	= 0.63
Intensity	= 9.913 in/hr	Tc by User	= 7.00 min
IDF Curve	= 2078.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Existing Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 1 - E1	Max. Elevation	= 133.12 ft
Reservoir name	= Existing Pond	Max. Storage	= 4,407 cuft

Storage Indication method used.

Tuesday, 08 / 2 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 08 / 2 / 2022

Hyd. No. 3

E2

Hydrograph type	= Rational	Peak discharge	= 1.308 cfs
Storm frequency	= 100 yrs	Time to peak	= 7 min
Time interval	= 1 min	Hyd. volume	= 550 cuft
Drainage area	= 0.200 ac	Runoff coeff.	= 0.66
Intensity	= 9.913 in/hr	Tc by User	= 7.00 min
IDF Curve	= 2078.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 08 / 2 / 2022

Hyd. No. 5

P1

Hydrograph type	= Rational	Peak discharge	= 5.400 cfs
Storm frequency	= 100 yrs	Time to peak	= 24 min
Time interval	= 1 min	Hyd. volume	= 7,775 cuft
Drainage area	= 1.800 ac	Runoff coeff.	= 0.6
Intensity	= 5.000 in/hr	Tc by User	= 24.00 min
IDF Curve	= 2078.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

Proposed Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 5 - P1	Max. Elevation	= 133.20 ft
Reservoir name	= Proposed Pond	Max. Storage	= 7,775 cuft

Storage Indication method used.

Tuesday, 08 / 2 / 2022

APPENDIX "D'

STORMWATER MANAGEMENT MAINTENANCE SCHEDULE

STORMWATER MANAGEMENT MAINTENANCE SCHEDULE SOUTHINGTON, CONNECTICUT

The following are the required maintenance and monitoring procedures:

<u>Riprap and Discharge Aprons</u> - Shall be cleared of all sediment deposits and invasive plant species and are to be inspected for rip-rap damage and deterioration. These procedures to be conducted yearly between May I and before September 15.

<u>Emergency Spillway</u> - Shall be cleared of all sediment deposits and invasive plant species and are to be inspected for riprap damage and deterioration. These procedures to be conducted yearly between May 1 and September 15. Repairs shall be executed immediately.

<u>Catch Basins</u> - All basin rim areas and sumps shall be cleaned of all sediment, trash and debris. These procedures to be conducted yearly anytime after May I and before September 15.

<u>Swales</u> - all swales be cleared of all sediment deposits, invasive plant species and debris. Any erosion shall be repaired. These procedures to be conducted annually. Swales shall be inspected two times a year and after significant rainfall events. Additional maintenance, beyond schedule maintenance, may be required based upon inspections.

<u>Detention Basin</u> - Basin shall be cleared of all sediment deposits, invasive plant species and debris. These procedures to be conducted yearly between May 1 and September 15. Basin shall be inspected two times a year and after significant rainfall events. Additional maintenance, beyond scheduled maintenance, may be required based upon inspections.

<u>Slopes</u> - Slope erosion control blankets and vegetation shall be inspected twice a year and after significant rainfall events. Additional maintenance, beyond schedule maintenance, may be required based upon inspections. Any rills or channeling shall be repaired immediately

<u>Parking Lot\Drive Sweeping</u> - Use mechanical sweeping on paved areas where dust and fine materials accumulate. These procedures to be conducted yearly anytime after May I and before September 15. All sediment deposits, trash and debris shall be removed to a location off-site and disposed of in an environmentally acceptable manner.

All sediment deposits, trash and debris shall be removed to a location off-site and disposed of in an environmentally acceptable manner.