DRAINAGE REPORT

For

PROPOSED

"Industrial Development"

53 Spring Street Southington, Connecticut Hartford County

Prepared by:

BOHLER 65 LaSalle Road, Suite 401 West Hartford, CT 06107 (860) 333-8900 TEL.

Chas W. Evans Connecticut P.E. Lic. #35060

May 1, 2023 #CTA220027.00

TABLE OF CONTENTS

I.	EXECUTIVE SUMMARY	
II.	EXISTING SITE CONDITIONS	
I	Existing Site Description	.4
(Dn-Site Soil Information	. 5
I	Existing Collection and Conveyance	. 5
Ι	Existing Watersheds and Design Point Information	. 5
III	PROPOSED SITE CONDITIONS	. 6
	Proposed Development Description	
I	Proposed Development Collection and Conveyance	. 6
I	Proposed Watersheds and Design Point Information	. 6
IV	. STORMWATER MANAGEMENT STANDARDS	.7
	Pollutant Reduction	
(Groundwater Recharge Volume	. 7
I	Runoff Capture Volume	. 8
S	Stream Channel Protection	. 8
(Conveyance Protection	. 8
I	Peak Runoff Attenuation	. 9
Ι	Emergency Outlet Sizing	. 9
V.	SUMMARY	10

LIST OF TABLES

Table 1.1: Design Point Peak Runoff Rate Summary	4
Table 4.1: NOAA Rainfall Depths	9

APPENDICES

APPENDIX A: PROJECT LOCATION MAPS

- USGS MAP
- ➢ FEMA FIRMETTE

APPENDIX B: SOIL AND WETLAND INFORMATION

- NCRS CUSTOM SOIL RESOURCE REPORT
- ➢ GEOTECHNICAL REPORT
- ➢ WETLAND/WATERCOURSES REPORT

APPENDIX C: EXISTING CONDITIONS HYDROLOGIC ANALYSIS

- > EXISTING CONDITIONS DRAINAGE MAP
- > EXISTING CONDITIONS HYDROCAD COMPUTATIONS

APPENDIX D: PROPOSED CONDITIONS HYDROLOGIC ANALYSIS

- PROPOSED CONDITIONS DRAINAGE MAP
- > PROPOSED CONDITIONS HYDROCAD CALCULATIONS

APPENDIX E: STORMWATER CALCULATIONS

- > NOAA RAINFALL DATA
- > POLLUTANT REDUCTION
- > CONVEYANCE PROTECTION CALCULATIONS

APPENDIX F: STORMWATER OPERATION & MAINTENANCE PLAN

➢ O & M PLAN

I. <u>EXECUTIVE SUMMARY</u>

This report examines the changes in drainage that can be expected as the result of the proposed development at 53 Spring Street and provides calculations documenting the design of the proposed stormwater management system illustrated within the accompanying Proposed Site Plan Documents prepared by Bohler.

The stormwater management system for this site has been designed utilizing Best Management Practices (BMPs) to meet or exceed the stormwater management standards in accordance with Connecticut Department of Energy & Environmental Protection (CT DEEP) 2004 Connecticut Stormwater Quality Manual and the Southington Zoning Regulations. The proposed project will provide; pollutant reduction by providing via treatment of the water quality volume and water quality flows through primary and secondary treatment practices, conveyance protection, and peak runoff attenuation through use of stormwater ponds. The project will also provide erosion and sedimentation controls in accordance with 2002 Connecticut Guidelines for Soil Erosion and Sediment Control during the demolition and construction periods, as well as long term stabilization of the site.

A summary of the pre- and pos-development conditions peak runoff rates for the 2-, 10-, 25-, and 100-year storms can be found in **Table 1.1** below.

Peak F	low Dis	charge	in cubio	: feet pe	er secor	nd (cfs)						
		2-year			10-year			25-year			100-yea	r
	Pre-	Post-	Delta	Pre-	Post-	Delta	Pre-	Post-	Delta	Pre-	Post-	Delta
DP1	8.95	8.74	-0.21	27.55	26.48	-1.07	41.07	35.56	-5.51	63.39	46.20	-17.19
DP2	1.22	0.83	-0.39	5.22	2.67	-2.55	8.37	6.48	-1.89	13.72	10.53	-3.19
DP3	2.54	2.16	-0.38	10.45	10.21	-0.24	16.69	15.57	-1.12	27.37	26.64	-0.73

	Table 1.1: Design	Point Peak	Runoff Rate	Summarv
--	-------------------	------------	--------------------	---------

II. EXISTING SITE CONDITIONS

Existing Site Description

The site consists of approximately 59.5 acres of vacant land historically used as a dairy farm and cattle grazing. The site is located on the west side of Smoron Road, South of Spring Street, and north of I-84 in a commercial and residential area of Southington. The site is partially developed

with a vacant residential building, barn, and storage shed all located in the eastern portion of the property. The remainder of the site consists of overgrown fields to the south and west of the buildings with wooded areas at the western and northern edges of the subject property. The residential building is serviced by a private well, private septic system, and overhead electric. The residential building utilizes a traditional fireplace as a source of heat. Most of the site is considered FEMA flood hazard Zone X with some flood hazard Zone AE and Zone X with 0.2% annual chance (500-year) areas in the northwest portion of the site and outside the proposed development area.

On-Site Soil Information

The site includes soils classified by the Natural Resource Conservation Service (NRCS) as Hydrologic Soil Group (HSG) "B", "C" and "D". Wetlands were delineated by Soil Resource Consultants and field verified by SLR Consulting in March 2023. A geotechnical investigation was completed by Whitestone in June 2022. Refer to **Appendix B** for additional information.

Existing Collection and Conveyance

There is no existing drainage infrastructure on site.

Existing Watersheds and Design Point Information

The site is located within two Local drainage basins numbered 5200-00 and 5200-04, of which both drain to the Quinnipiac River (Q River). Most of the site is in 5200-04 which drains Northerly and westerly from a ridgeline along I-84 toward the wetlands and under Spring street to the Q River. The remainder of the site drains Northerly and Easterly from the same ridgeline to a roadside swale of Smoron Drive that has a series of culverts draining to the Q River. The site was analyzed at three (3) design points to analyze pre-development condition flow rates. DP-1 representing the area in Local Basin 5200-00 to Smoron Drive and the Q River; DP-2 representing the area in Local basin 5200-04 to the wetlands to Spring Street and the Q River. Pre-development land use coverages within the analysis area include areas of pavement, rooftop, meadow, and woods (good).

Refer to **Table 1.1**, for the calculated pre-development conditions peak rates of runoff. For additional hydrologic information and graphical representation of the existing drainage areas, refer to **Appendix C** and the Drainage Area Maps in the appendices of this report.

III. PROPOSED SITE CONDITIONS

Proposed Development Description

The proposed project consists of the construction of a new industrial use building and includes associated paved parking areas, landscaping, utilities, and stormwater management features. The site will be served by public sewer and water. The project will also provide erosion and sedimentation controls during the demolition and construction periods, as well as long term stabilization of the site. In addition, a Stormwater Operation and Maintenance (O&M) Plan, attached in **Appendix F**, has been developed which includes scheduled maintenance and periodic inspections of stormwater management structures.

Proposed Development Collection and Conveyance

The site has been designed mainly with a conventional drainage system and a dry bioswale along the access drive. Catch basins will capture and convey stormwater runoff, via an underground pipe system, to stormwater ponds. All roof runoff will be directed to stormwater ponds as well. Pretreatment of stormwater runoff will be provided by sediment forebays before entering the ponds and a proprietary treatment device near the entrance drive before discharging to the existing roadside swale at Smoron Drive.

Proposed Watersheds and Design Point Information

The project has been designed to maintain existing drainage watersheds to the greatest extent possible, with the same design points described in **Section II** above. The site was subdivided into six (6) separate sub watersheds for the post-development conditions. Post-development land use coverages within the analysis area include areas of pavement, rooftop, meadow, woods (good), and open space (good).

Refer to **Table 1.1** for the calculated post-development conditions peak rates of runoff. For additional hydrologic information and graphical representation of the proposed drainage areas, refer to **Appendix D** and the Drainage Area Maps in the appendices of this report.

IV. STORMWATER MANAGEMENT STANDARDS

In accordance with the 2004 Connecticut Stormwater Quality Manual and the Southington Zoning Regulations, the following stormwater management standards are provided.

Pollutant Reduction

The pollutant reduction criterion is designed to improve the water quality of stormwater discharges by treating a prescribed water quality volume (WQV) or associated peak flow, referred to as the water quality flow (WQF). The water quality volume (WQV) is the amount of stormwater runoff from any given storm that should be captured and treated in order to remove most stormwater pollutants on an average annual basis. The recommended WQV, which results in the capture and treatment of the entire runoff volume for 90 percent of the average annual storm events, is equivalent to the runoff associated with the first one-inch of rainfall. 80 percent TSS removal is achieved when WQV is provided in a primary stormwater treatment practice and/or when an alternate stormwater treatment practice demonstrates the ability to treat the WQV or WQF and meets the 80 percent TSS and float-ables criteria. Pollutant reduction is met by providing the WQV in the stormwater ponds and bioswale and meeting the WQF prior to discharging to the existing roadside swale at Smoron Drive. As calculated, the WQV required for this development is **51,392 cf**, whereas **54,198** is provided in our design. Refer to **Appendix E** of this report for calculations documenting required and provided water quality.

Groundwater Recharge Volume

The groundwater recharge criterion is intended to maintain pre-development annual groundwater recharge volumes by capturing and infiltrating stormwater runoff to the maximum extent practicable using infiltration measures. The groundwater recharge volume (GRV) is the post-development design recharge volume required to minimize the loss of annual pre-development groundwater recharge. The GRV is determined as a function of annual pre-development recharge for site-specific soils, average annual rainfall volume, and amount of impervious cover on a site. The GRV was calculated using the Hydrologic Soil Group approach. The GRV is provided to the maximum extent practicable due to poor hydraulic conductivity, groundwater elevations, fill conditions of the proposed development, and limiting disturbance to the wetland buffers. Refer to **Appendix E** of this report for calculations documenting GRV.

Runoff Capture Volume

The objective of the runoff capture criterion is to capture stormwater runoff to prevent the discharge of pollutants, including "unpolluted" fresh water, to sensitive coastal receiving waters and wetlands. The runoff capture criterion applies to new stormwater discharges located less than 500 feet from tidal wetlands, which are not fresh-tidal wetlands. The site is located more than 500 feet from tidal wetlands and therefore this criterion is NOT provided.

Stream Channel Protection

The stream channel protection criterion is intended to protect stream channels from erosion and associated sedimentation in downstream receiving waters and wetlands as a result of urbanization within a watershed. This criterion does not apply when (1) entire channel protection volume is recharged to ground water; (2) Site less than or equal to one acre of impervious; (3) site discharges to a large river (fourth order or greater), lake, estuary, or tidal water where the development area is less than 5 percent of the watershed area upstream of the development site unless known water quality problems exist in the receiving waters. This criterion does NOT apply as our development area discharges to the Quinnipiac River and is less than 5% of the watershed area upstream of the site. The 2-year, 24-hr rainfall event is still provided in the analysis and the post-development peak rate of stormwater runoff is reduced from the pre-development condition.

Conveyance Protection

Pipes have been designed to safely convey the 10-year storm using the Hydraflow Storm Sewers Extension for Autodesk Civil 3D. This program utilizes the rational method. Final discharge pipes were modeled with 'normal' starting tailwater conditions as determined by Manning's Equation. In situations where the pipe discharges into a stormwater basin, the tail water is set at the water surface elevation of that stormwater basin for the design storm event. In situations where the normal depth is less than the critical depth, Hydraflow Storm Sewers Extension changes the starting tailwater to critical depth (min. specific energy) of the line.

The input data for rainfalls, regarding storm conveyance, with statistical recurrence frequencies of 10-years are based on NOAA and provided in the appendices of this report. Refer to **Appendix E** for more information and pipe sizing calculations.

Peak Runoff Attenuation

The pre- and post-development runoff rates discharged from the site were computed using the HydroCAD Software Solutions LLC computer program. HydroCAD is a computer model that utilizes the methodologies set forth in the Technical Release No. 55 (TR-55) manual and Technical Release No. 20 (TR-20) computer model, originally developed by the United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). The computer program forecasts the rate of surface water runoff based upon several factors including land use, hydrologic soil type, contributing watershed area, time of concentration, rainfall data, storage volumes, exfiltration rates, and the hydraulic capacity of structures. The computer model predicts the amount of runoff as a function of time, with the ability to include the attenuation effect due to dams, lakes, large wetlands, floodplains, and stormwater management basins. Land use for the site under pre-and post-development conditions were determined from field survey, town topographic maps, and aerial imagery.

The input data for rainfalls with statistical recurrence frequencies of 2-, 10-, 25-, and 100- years are based on NOAA and are listed in table 4.1 below. Refer to **Appendix E** for more information.

Table		Nannan D	cpuis	
Frequency	2-year	10-year	25-year	100-year
Rainfall* (inches)	3.43	5.45	6.71	8.65

Table 4.1: NOAA Rainfall Depths

*The rainfall depths were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 10, Precipitation Frequency Data Server (PFDS).

The proposed stormwater management as designed will provide a decrease in peak rates of runoff for the 2-, 10-, 25-, and 100-year design storm events in accordance with the 2004 Connecticut Stormwater Quality Manual and the Southington Zoning Regulations. The pre-development versus post-development stormwater discharge comparisons are contained in Table 1.1. Refer to **Appendix C and D** for the Existing and Proposed Hydrologic analysis.

Emergency Outlet Sizing

The emergency outlets of stormwater management facilities shall be designed to safely pass the peak discharge rate associated with the 100-year storm. The emergency outlets are sized to pass the 100-year peak runoff rate, in a controlled manner, without eroding outfalls or downstream

conveyances. The peak discharges from the basins are managed via outlet control structures that feed into respective HDPE drainage pipes and empty to a suitably designed outlet protection measure. Refer to **Appendix E** for more information.

V. <u>SUMMARY</u>

In summary, the proposed stormwater management system illustrated on the drawings prepared by Bohler, meets, or exceeds the standards set forth in the 2004 Connecticut Stormwater Quality Manual and the Southington Zoning Regulations. The proposed development provides pollutant reduction and reduces peak rates of stormwater runoff from the subject site when compared to predevelopment conditions for the analyzed storm events. The pre-development versus postdevelopment stormwater discharge comparisons are contained in Table 1.1 above. Supporting documentation and stormwater-related computations are contained in the appendices of this report.

APPENDIX F: STORMWATER OPERATION & MAINTENANCE PLAN

➢ <u>O & M PLAN</u>

APPENDIX A: PROJECT LOCATION MAPS

➤ <u>USGS MAP</u>

➢ <u>FEMA FIRMETTE</u>

ed by the United States Geological Su erican Datum of 1983 (NADB3) odetic System of 1984 (WGS84). Projection and ter grid:Universal Transverse Mercator, Zone 18T

.Multiple

World Gei 1 000-met

Hydr Cont Bour

logical Survey

U.S. Census

National Hydrography I National Elevat sources; see metadata

mit t

UTM GRID AND 2019 MAGN DECLINATION AT CENTER

U.S. National Orid

хм

Zone Des

1'22' 24 MILS

1000

13%*

SCALE 1:24 000

4000 FEET

CONTOUR INTERVAL 10 FEET NORTH AMERICAN VERTICAL DATUM OF 1988

This map was produced to conform with the ional Geospatial Program US Topo Product Standard

8000 9000

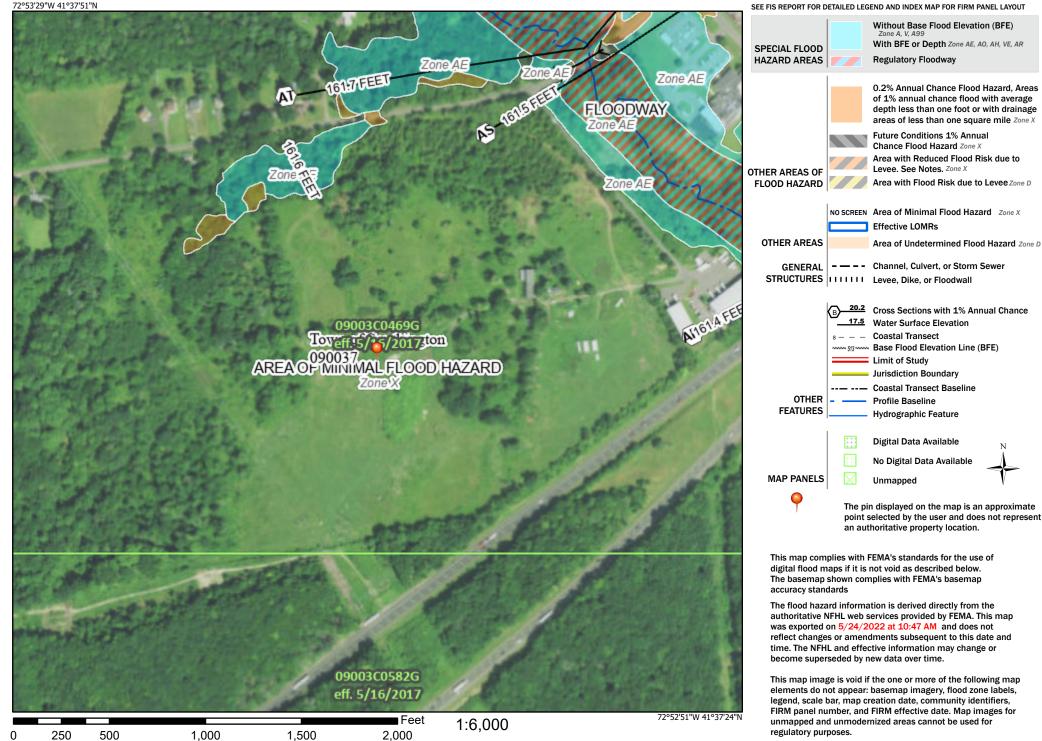
7000

ROAD CLASSIFICATION

US Route

BRISTOL, CT 2021

Local Conne Local Road 4WD _


State Route

COMPLETICUT

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

APPENDIX B: SOIL AND WETLAND INFORMATION

- > <u>NCRS CUSTOM SOIL RESOURCE REPORT</u>
- ➢ <u>GEOTECHNICAL REPORT</u>
- ➢ <u>WETLAND/WATERCOURSES REPORT</u>

16 OLD FORGE ROAD SUITE A ROCKY HILL, CT 06067 860.726.7889 whitestoneassoc.com

June 21, 2022

via email

JOHNSON DEVELOPMENT ASSOCIATES, INC. 551 West Lancaster Avenue Suite 202 Haverford, Pennsylvania 19041

Attention: Mr. Cole Sanford Real Estate Analyst, Industrial Division

Regarding: LIMITED GEOTECHNICAL INVESTIGATION PROPOSED INDUSTRIAL WAREHOUSE 53 SPRING STREET MAP 156, LOT 6 SOUTHINGTON, HARTFORD COUNTY, CONNECTICUT WHITESTONE PROJECT NO.: GM2219183.000

Dear Mr. Sanford:

Whitestone Associates, Inc. (Whitestone) has completed a limited geotechnical investigation at the abovereferenced site. The results of the investigation and recommendations presented below are based on the soil conditions disclosed from a limited number of soil borings and test pits conducted during Whitestone's field investigation. The purpose of the investigation was to assess subsurface conditions within and adjacent to the proposed building area accessible to an all terrain vehicle mounted drill rig and tracked excavator. Recommendations for support of the proposed structure and pavement, and anticipated earthwork requirements are included herein.

1.0 **PROJECT DESCRIPTION**

1.1 Site Location & Existing Conditions

The subject property is located at 53 Spring Street in Southington, Hartford County, Connecticut. The site currently is developed with a residence and farm buildings. The site slopes down to the north from approximately 225 feet above North American Vertical Datum of 1988 (NAVD) to 175 feet above NAVD. Organic material and concrete and asphalt have been dumped on the site. The approximate extent of the dumping is shown on attached Figure 1 - *Test Location Plan*. Delineated wetlands are located within the proposed building footprint.

1.2 Site Geology

Based on a review of the Surficial Materials Map of Connecticut (1992), the natural site soils consist of glacial till. The Bedrock Geologic Map of Connecticut (1985) indicates that the subject property is underlain by Upper Triassic-age (possibly Lower Jurassic at top) New Haven Arkose, consisting of arkose with minor siltstone, conglomerate, and sandstone, part of Central Lowlands; Newark Terrane - Hartford and Pomperaug Mesozoic Basins and part of Newark Supergroup (Upper Triassic and Lower Jurassic).

		0	ther Office Location	is:		
Warren, NJ	CHALFONT, PA 215.712.2700	Southborough, MA	WALL, NJ	PHILADELPHIA, PA	Bedford, NH	Тамра, FL
908.668.7777		508.485.0755	732.592.2101	215.848.2323	603.514.2230	813.851.0690

1.3 Proposed Construction

Based on a June 3, 2022 *Site & Grad Exhibit*, prepared by Bohler Engineering MA, LLC of West Hartford, Connecticut, the proposed development will include removal of the farm buildings and the construction of an industrial warehouse with a footprint of approximately 282,700 square feet, new pavements, and utilities. Access will be from Smoron Drive, which connects to Spring Street. The location is shown on attached Figure 1 - *Test Location Plan*.

The proposed building is anticipated to be a single-story, masonry and steel-framed structure with a ground-supported floor slab and no basement or crawl space. The finished floor elevation (FFE) will be 210 feet above NAVD with loading bays at 206 feet above NAVD. This will require up to approximately 12 feet of cut at the southern corner of the building and 14 feet of fill at the northern corner. Cuts and fill of similar magnitudes will be required for parts of the parking areas and access roads.

Three retaining walls are planned: approximately 630 feet long and up to 14 feet high at the southern corner of the site; 500 feet long and up to 12 feet high on the northeastern side; and 220 feet long and up to 10 feet high along a portion of the access road on the northern side. Stormwater management basins are planned at the northern and western corners of the site.

Detailed structural information was not available at the time of this report, however, based on experience with similar facilities, Whitestone anticipates that maximum column, wall, and floor loads will be less than about 350 kips, 4.0 kips per lineal foot, and 150 pounds per square foot, respectively.

2.0 FIELD EXPLORATION & TESTING

2.1 Field Exploration

Field exploration at the project site consisted of advancing 19 soil borings (identified as B-1 through B-19). The explorations subsequently were backfilled to the surface with excavated soils from the investigation. The locations of the explorations are shown on the accompanying *Test Location Plan* included as Figure 1. *Records of Subsurface Exploration* are provided in Appendix A.

Field exploration also consisted of excavating 24 test pits (identified as TP-1 through TP-24) The test pits subsequently were backfilled to the surface with excavated soils. The locations of the test pits are shown on the accompanying *Test Location Plan* included as Figure 1. *Records of Subsurface Exploration* are provided in Appendix A.

The subsurface tests were conducted in the presence of a Whitestone engineer, who conducted field tests, recorded visual classifications, and collected samples of the various strata encountered. Test locations were established in the field using phone-based GPS. These locations are presumed to be accurate to the degree implied by the method used.

Soil borings and Standard Penetration Tests (SPTs) were conducted in general accordance with ASTM International (ASTM) designation D1586. The SPT resistance value (N) can be used as an indicator of the consistency of fine-grained soils and the relative density of coarse-grained soils. The N-value for various soil types can be correlated with the engineering behavior of earthworks and foundations. Rock was cored using a NQ2-sized diamond bit. The rock core description, recovery, RQD, and other pertinent information were recorded on the boring log and are included in Appendix A on the *Records of Subsurface Exploration*. The RQD value reflects the quality and fracture spacing of the rock and is

calculated by summing all unbroken samples that are four inches or longer divided by the total length of the run. The percentage of core recovery and RQD value provide an understanding of the physical and engineering properties of the rock.

Groundwater level observations, where encountered, were recorded during and immediately after the completion of field operations prior to backfilling the tests. Seasonal variations, temperature effects, man-made effects, and recent rainfall conditions may influence the levels of the groundwater, and the observed levels will depend on the permeability of the soils. Groundwater elevations derived from sources other than seasonally observed groundwater monitor wells may not be representative of true groundwater levels.

2.2 Infiltration Testing

Field infiltration testing was conducted with a Guelph permeameter, which has an applicable permeability range of about 0.01 inches per hour (in/hr) to 15 in/hr. Hydraulic conductivities, k_{fs} , measured by the Guelph apparatus and tabulated below, ranged from 0.3 in/hr to 1.3 in/hr. The measured hydraulic conductivities are within the applicable range for the Guelph permeameter. No indications of seasonal high groundwater level were noted in the test pits.

		SUMMARY OF	INFILTRATION TH	ESTING	
		Guelph P	ermeameter Testing		
Location	Ground Elevation (feet above NAVD)	Groundwater Depth/Elevation (fbgs/feet NAVD)	Test Depth/Elevation (fbgs/feet NAVD)	Soil Type (USCS)	Field Saturated Hydraulic Conductivity, k _{fs} (in/hr)
I-1 (TP-2)	177	5.0/172	2.0/175	SM	0.7
I-2 (TP-3)	184	4.0/180	2.0/182	SM	1.3
I-3 (TP-4)	177	5.0/172	2.5/174.5	SM	0.3
I-4 (TP-8)	192	9.5/182.5	6.0/186	SM	0.3
I-5 (TP-9)	195	9.0/186	5.0/190	ML	0.3

NE: Not encountered; fbgs: feet below ground surface

Typically, a Factor of Safety (FoS) is applied to field infiltration rates to account for siltation and consolidation of the soils below systems over time. Safety factors used should consider how critical the systems are to the development, and the available storage. If the system is critical and storage is limited, a higher FoS should be applied. Infiltration rates are variable and dependent on test depth and stratification. An appropriate Factor of Safety should be selected and applied to the values above.

2.3 Laboratory Testing

Laboratory testing was conducted to determine additional, pertinent engineering characteristics of representative samples of on-site soils. Laboratory testing was conducted in general accordance with applicable ASTM standard test methods and included physical/textural testing of representative samples.

The results of the laboratory program are presented in this section in a general manner and qualitatively interpreted. The results are incorporated into the findings and recommendations discussed throughout this report. Quantitative test results are provided in Appendix B.

Physical and Textural Analysis: Five representative samples were subjected to a laboratory testing program that included moisture content determinations (ASTM D2216) and washed gradation analyses (ASTM D422) in order to conduct supplementary engineering soil classifications in general accordance with ASTM D2487. The soil strata tested were classified by the Unified Soil Classification System (USCS), provided in Appendix C. The results of the laboratory testing are summarized in the following table.

		PHYSICAL/TEXT	TURAL ANALYSES	SUMMARY	
Boring	Sample	Depth (fbgs)	Moisture Content (%)	Passing No. 200 Sieve (%)	USCS Classification
TP-2	S-1	3.0	10.1	28.1	SM
TP-3	S-1	3.0	13.4	24.4	SM
TP-4	S-1	4.0	11.3	32.8	SM
TP-8	S-1	3.0	27.4	94.7	ML
TP-8	S-2	6.0	9.9	25.4	SM

3.0 SUBSURFACE CONDITIONS

The subsurface soil conditions encountered within the subsurface tests conducted by Whitestone consisted of the following generalized strata in order of increasing depth. *Records of Subsurface Exploration* are provided in Appendix A.

Surface Cover Materials: The explorations, with the exception of boring B-3, encountered six inches to 16 inches of topsoil at the ground surface, underlain by six inches to 23 inches of subsoil with roots. Boring B-3 encountered six inches of gravel at the surface. Although explorations were not advanced within delineated wetlands, wetlands are expected to have some quantity of organic material.

Existing Fill (intermittent): Beneath the surface cover materials, borings B-2, B-3, and B-18 encountered existing fill, consisting of brown to black, loose to medium dense (occasionally dense), silty sand with gravel. The SPT N-values within the existing fill were variable, ranging from nine blows per foot (bpf) to 36 bpf. The existing fill extended to depths of four fbgs to seven fbgs.

In addition to the intermittent existing fill discussed above, organic material, and concrete and asphalt have been dumped within various parts of the site. Additional areas of existing fill associated with the previous farming operations should be expected between the widely spaced explorations. Buried stump pits are also common on sites of this type

Alluvial Deposit (intermittent): Beneath the surface cover materials, borings B-8, B-9, B-10, and B-13, and test pits TP-8, TP-9, TP-13, TP-17, and TP-21 encountered an alluvial deposit, consisting of brown, loose to medium dense, sandy silt (USCS: ML). The SPT N-values within the alluvial deposit were variable, ranging from six bpf to 23 bpf indicating a loose to medium dense density. The alluvial deposit extended to depths of 3.5 fbgs to seven fbgs.

Glacial Till: Beneath the surface cover materials, alluvial deposit, or existing fill, the explorations encountered glacial till, consisting of reddish-brown, medium dense to very dense, silty sand with gravel,

cobbles, boulders (USCS: SM). The SPT N-values within the glacial till were variable, ranging from 14 bpf to 98 bpf indicating a medium dense to very dense relative density. The borings B-4 through B-9 terminated in the glacial till at depths of 6.8 fbgs to 16 fbgs. Test pits TP-1, TP-2, TP-5, TP-8, TP-13, TP-15 through TP-18, TP-22, TP-23, and TP-24 terminated in the glacial till at depths of eight fbgs to 10 fbgs.

Weathered Bedrock and Bedrock: Beneath the glacial till, borings B-3, B-12, and B-13, and test pits TP-3, TP-4, TP-7, TP-9 through TP-12, TP-14, TP-19, TP-20, and TP-21 encountered up to approximately three feet of weathered bedrock. Borings B-1, B-2, B-3, B-10 through B-13, and B-16 through B-19 encountered auger refusal on more competent bedrock at depths ranging from 11 fbgs to 18 fbgs. Test pits TP-4, TP-6, TP-7, TP-12, and TP-13 encountered excavator bucket refusal on more competent bedrock at depths ranging from four fbgs to 10 fbgs. The bedrock, which was cored in borings B-14 and B-15, consists of reddish-brown to gray, slightly to highly weathered, medium grained, medium to thickly bedded, medium hard, arkose. Specific descriptions of each core run are on the boring logs. A summary of the bedrock coring is tabulated below:

	BEDROCK COR	RING SUMMARY	
Boring	Cored Depth (fbgs)	Recovery (%)	RQD (%)
B-14	10 - 15	98	76
B-14	15 - 20	97	90
B-15	10 - 15	92	23
B-15	15 - 19	100	56

The RQD values ranged from 23 percent, indicating "very poor" rock quality, to 90 percent, indicating "good" rock quality. RQD values typically increase with depth.

Groundwater: Groundwater was encountered in the soil borings during the exploration at depths of five fbgs to 15 fbgs, typically around five fbgs to seven fbgs. Groundwater levels should be expected to fluctuate seasonally and following periods of precipitation.

4.0 CONCLUSIONS & RECOMMENDATIONS

Contingent upon construction phase evaluation, Whitestone's findings indicate that the proposed building may be supported on conventional shallow foundations bearing on the inspected and approved glacial till or alluvial deposit, and/or structural fill placed on the glacial till/alluvial deposit, or to bear on crushed stone placed on the bedrock. A ground-supported floor slab may derive support from the properly inspected and approved glacial till, alluvial deposit, bedrock, or existing fill (improved by surface compaction), and/or controlled structural fill materials. Additionally, the site conditions support the use of typical pavement sections using standard Connecticut Department of Transportation (CTDOT) specified materials.

The following recommendations have been developed on the basis of the previously described project characteristics and subsurface conditions encountered within the limited exploration conducted. If there are any significant changes to the project characteristics or if significantly different subsurface conditions are encountered during construction, Whitestone should be consulted, such that the recommendations of this report can be reviewed.

4.1 Site Preparation & Earthwork

Surface Cover Stripping and Demolition: Prior to stripping operations, utilities should be identified and secured. Existing structures should be removed from within and at least five feet beyond the limits of the proposed building and pavement areas. Any existing structural elements, such as foundation walls, and concrete foundations, walls or slabs encountered during excavations, should be removed entirely. Topsoil, organic subsoil, vegetation, trees, shrubs, and other organic matter should also be removed from within and at least five feet beyond the limits of the proposed building footprint and other site structures, as well as any other area that will require controlled structural fill placement. Tree/shrub removal should include the removal of stumps and root material. Root structures will require removal in excess of the few inches of topsoil typically encountered at the ground surface. The demolition contractor should be required to conduct earthwork in accordance with the recommendations in this report, including backfilling any excavation, etc. with structural fill. Fill or backfill placed within the proposed building area during demolition operations should be placed as structural fill in accordance the recommendations of this report.

Excavation Difficulties: Very dense glacial till and cobbles and boulders typically encountered in glacial till, and the relatively shallow bedrock, including any weathered bedrock, will likely present excavation difficulties at marginal depths below the ground surface during proposed site excavations. Excavation difficulties will be affected by excavation size and depth. The speed and ease of excavation also will depend on the type of equipment used and the skill of the operator. Although excavation of some of the weathered bedrock close to the bedrock surface may be feasible with a large excavator, a "hoe-ram" or other mechanical device will be required to loosen up weathered and fractured rock to facilitate excavation. Blasting may be required for more competent bedrock.

Surface Preparation/Proofrolling: Prior to placing fill to raise or restore grades to the desired subgrade elevations the existing exposed soils should be compacted to a firm and unyielding surface with several passes in two perpendicular directions of a minimum 10-ton vibratory compactor. The surface should then be proofrolled with a loaded tandem axle truck in the presence of the geotechnical engineer to help identify soft or loose pockets that may require removal and replacement, or further evaluation. Proofrolling should be conducted after a suitable period of dry and non-freezing weather to reduce the likelihood of degrading an otherwise stable subgrade. Should construction be started during the winter months, Whitestone should be contacted for alternate surface preparation procedures. Fill and backfill should be placed and compacted in accordance with Section 4.2.

Bedrock Foundation Subgrade Preparation: Bedrock slopes that form the subgrade for foundation support should not be steeper than 4:1 (horizontal:vertical). Bedrock steeper than 4:1 (horizontal:vertical) should be stepped. Loose bedrock should be removed from the subgrade prior to placement of crushed stone. Bedrock fractures and joints should be tight. Bedrock joints, fractures, or fissures greater than 0.5 inch in width should be filled with lean concrete. Only minus 0.375-inch crushed stone should be placed directly over the bedrock. Structural fill (sand and gravel) should not be placed directly on the bedrock surface to reduce the likelihood of migration of fines into the bedrock.

Weather Performance Criteria: The site soils are moisture sensitive. Every effort should be made to maintain drainage of surface water runoff away from construction areas by grading and limiting the exposure of excavations and prepared subgrades to rainfall. Accordingly, excavation and fill placement procedures should be conducted during favorable weather conditions. Overexcavation of saturated soils and replacement with controlled structural fill per Section 4.2 of this report may be required prior to resuming work on disturbed subgrade soils.

Subgrade Protection and Inspection: The site soils are moisture sensitive. Every effort should therefore be made to reduce disturbance of the on-site soils by construction traffic and surface runoff.

The contractor should be responsible for protection of subgrades and minimization of exposure of the site soils to precipitation by covering stockpiles and subgrades with plastic and preventing ponding of water by sealing subgrades before precipitation events and grading the site to allow proper drainage of surface water. The services of the geotechnical engineer should be retained to observe soils conditions during construction and review the suitability of prepared foundation subgrades for support of design loads.

Groundwater Control: Groundwater was encountered during the exploration. In addition, shallower perched water may be encountered during construction above impermeable material. Construction phase dewatering will likely consist of temporarily lowering the groundwater table and removing surface water runoff, infiltrating water, or trapped water. Whitestone anticipates that such construction phase dewatering would typically include installing temporary sump pits and filtered pumps within trenches and excavations. Whitestone recommends that foundation construction occur during periods of relatively dry weather. Every effort should be made to maintain drainage of surface water runoff away from construction areas by grading and limiting the exposure of foundation areas to precipitation.

In terms of permanent drainage, a foundation perimeter drain and slab underdrains should be provided for the portion of the proposed building footprint that is within the area of the site where finished grade is lower than existing grade. The slab underdrains should be oriented across the building (approximately northwest-southeast) with a maximum spacing of 20 feet-on-center. In addition, for the portion of the paved parking and access areas where finished grade is lower than existing grade, edge (interceptor) drains on the higher sides of the paved areas and a network of underdrains connected to the catch basins should be installed.

Proper grading and drainage should be incorporated into the site design and construction phase grading to discourage ponding of surface runoff. Every effort should be made to maintain drainage of surface runoff away from construction areas by grading. The contractor should limit exposure of excavations and prepared subgrades to rainfall. Overexcavation of wet soils and replacement with controlled structural fill per Section 4.2 of this report may be required prior to resuming work on disturbed subgrade soils.

4.2 Structural Fill & Backfill

Imported Fill Material: Only 0.375-inch minus crushed stone should be placed directly on bedrock subgrade. Elsewhere, imported material placed as structural fill or backfill to restore design grades should consist of clean, relatively well-graded sand or gravel with a maximum particle size of three inches and up to 15 percent of material finer than a #200 sieve. The material should be free of clay lumps, organics, and deleterious material. Any imported structural fill material should be approved by a qualified geotechnical engineer prior to delivery to the site.

Soil Reuse: Whitestone anticipates that only the more granular portions of the glacial till will be structurally suitable for selective reuse as fill/backfill material, provided that soil moisture contents are controlled within three percent of optimum moisture level, particles larger than three inches in diameter are either removed or crushed, and objectionable portions, such as any organics, are segregated. The glacial till has a relatively high fines content and will be difficult to place and compact, especially during cold and wet periods. Reuse of the glacial till will require moisture conditioning and/or drying to facilitate reuse, workability, and compaction in fill areas. Alternatively, the glacial till may be mixed with more granular material. Reuse of the glacial till should not be attempted during inclement weather or in damp conditions. Blast rock may be processed with on-site crushers to gradations recommended above for imported fill material. The alluvial deposit is not suitable for reuse as fill/backfill material. Reuse of the site soils will be contingent on careful review in the field by visual observation by the owner's geotechnical engineer during construction as recommended herein.

Compaction and Placement Requirements: Fill and backfill should be placed in maximum eight-inch loose lifts and compacted to 95 percent of the maximum dry density within three percent of the optimum moisture content, as determined by ASTM D1557 (Modified Proctor). Whitestone recommends using only a small hand-held vibratory compactor to compact the on-site soils within footing excavations.

4.3 Foundation Design Criteria

Foundations: Contingent upon construction phase evaluation, Whitestone preliminarily recommends supporting the proposed building on conventional shallow spread foundations designed to bear within the inspected and approved glacial till or alluvial deposit, and/or structural fill placed on the glacial till/alluvial deposit, or to bear on crushed stone placed on the bedrock, provided these materials are properly evaluated, placed, and compacted in accordance with the recommendations of this report. Foundations bearing within these materials may be designed using a maximum net allowable bearing pressure of 4,000 pounds per square foot.

Footings bearing on the glacial till should be underlain by a minimum of 12 inches of glacial till over any bedrock. Where exposed at footing subgrade level, the alluvial deposit should be overexcavated by 12 inches, geotextile separation fabric (Mirafi 140N, or similar) placed, and the underside of footing level reestablished with minus 0.75-inch crushed stone. Footings deriving support from the bedrock should be underlain by a minimum of 12 inches of minus 0.375-inch crushed stone placed over the bedrock, with the crushed stone connecting to the granular base under the interior floor slab to promote drainage. Foundations should not be supported partially on bedrock and partially on soil, because of the risk of differential settlement.

A foundation perimeter drain should be provided for the portion of the proposed building footprint that is within the area of the site where finished grade is lower than existing grade.

Foundation subgrades should be reviewed by the geotechnical engineer. Regardless of loading conditions, new foundations should be sized no less than minimum dimensions of 24 inches for continuous wall footings and 36 inches for isolated column footings.

Footings subject to lateral loads and/or overturning should be designed so that the maximum toe pressure due to the combined effect of vertical loads and overturning moment does not exceed the recommended maximum allowable net bearing pressure. In addition, positive contact pressure should be maintained throughout the base of the footings such that no uplift or tension exists between the base of the footings and the supporting soil. Uplift loads should be resisted by the weight of the concrete. Side friction should be neglected when proportioning the footings so that lateral resistance should be provided by friction resistance at the base of the footings. An allowable coefficient of friction against sliding of 0.4 is recommended for use in the design of the foundations bearing within the existing site soils or imported structural fill soils.

Seismic Site Class: Based on a review of the subsurface conditions relevant to the *Connecticut State Building Code*, the subject site has been assigned a Site Class C. The site soils are not susceptible to earthquake induced liquefaction.

Inspection/Overexcavation Criteria: Whitestone recommends that the suitability of the bearing soils at the footing bottoms be reviewed by a geotechnical engineer immediately prior to placing concrete for the footings. In the event that areas of unsuitable materials are encountered, additional overexcavation and replacement of the materials may be necessary to provide a suitable footing subgrade. Any overexcavation to be restored with structural fill will need to extend at least one foot laterally beyond footing edges for each vertical foot of overexcavation. Lateral overexcavation may be eliminated if grades are restored with lean concrete.

Partial Weathered Rock/Bedrock Support: Foundations should not be supported partially on weathered rock or bedrock and partially on soil because of the risk of brittle fracture due to a hinging effect. If the proposed bearing elevations result with partial bearing on such materials, Whitestone recommends removing a minimum of six inches of the weathered rock/bedrock and restoring the bearing elevation with structural fill. Alternatively, the proposed footings may be extended deeper to bear entirely within weathered rock/bedrock.

Frost Coverage: Footings subject to frost action should be placed at least 42 inches below adjacent exterior grades, in accordance with the *Connecticut State Building Code*, to provide protection from frost penetration. Interior footings not subject to frost action may be placed at a minimum depth of 18 inches below the floor slab subgrade, but should not be placed on existing fill.

Settlement: Whitestone estimates post construction settlements of proposed foundations of less than one inch, if the recommendations outlined in this report are properly implemented. Differential settlement of spread foundations should be less than $\frac{1}{2}$ inch.

4.4 Floor Slab

Following surficial compaction and proofrolling to densify any upper loose zones, Whitestone anticipates that the properly inspected and approved existing fill, glacial till, alluvial deposit, and/or compacted structural fill and/or backfill placed to raise or restore design elevations, will be suitable for support of the proposed floor slab provided these materials are properly compacted and proofrolled in accordance with the recommendations of this report during favorable weather conditions. The floor slab may also derive support from the bedrock, provided a minimum 12-inch thickness of crushed stone is placed over the bedrock subgrade.

Areas of overexcavation should be anticipated if the soil subgrades are exposed to precipitation or where deleterious materials is encountered. Areas that are, or become, softened or disturbed as a result of wetting and/or repeated exposure to construction traffic should be removed and replaced with compacted structural fill. The properly prepared on-site soils are expected to yield a minimum subgrade modulus (k) of 150 psi/in.

A minimum 12-inch layer of CTDOT *M.05.01 Processed Aggregate Base* (or approved equivalent) should be placed below the floor slab to provide a uniform granular base. However, where the floor slab derives support from the bedrock, the processed gravel should be replaced with a similar thickness of minus 0.375-inch crushed stone. Within the area of the slab where finished grade is lower than existing grade, slab underdrains should be installed below the granular base, oriented across the building (approximately northwest-southeast) with a maximum spacing of 20 feet-on-center. A moisture vapor barrier should also be installed beneath the floor slab in accordance with flooring manufacturer's recommendations.

4.5 Pavement Design

Whitestone anticipates that the properly inspected and approved glacial till, alluvial deposit, existing fill (improved by surface compaction), or bedrock, and/or compacted structural fill and/or backfill placed to raise or restore design elevations will be suitable for support of the proposed pavements, provided these materials are properly evaluated, compacted, and proofrolled in accordance with the recommendations in this report during favorable weather conditions.

A California Bearing Ratio value of 8.0 has been assigned to the properly prepared subgrade soils for pavement design purposes. This value was correlated with pertinent soil support values and assumed traffic loads to a prepare flexible pavement design per the AASHTO *Guide for the Design of Pavement Structures*.

Design traffic loads were assumed based on typical volumes for similar facilities and correlated with 18kip equivalent single axle loads (ESAL) for a 20-year life. Estimated maximum pavement loads of 30,000 ESALs and 2,000,000 ESALs were used for the standard-duty and heavy-duty pavement areas, respectively. These values assume the pavements primarily will accommodate both automobile and limited heavier truck traffic, with the heavier truck traffic designated to the main drive lanes. Actual loading experienced is anticipated to be less than these values.

Pavement components should meet material specifications from CTDOT *Standard Specifications* specified below. The recommended flexible pavement sections are tabulated below:

	FLEXIBLE PAVEMENT SECTION		
Layer	Material	Standard-Duty Thickness (inches)	Heavy-Duty Thickness (inches)
Asphalt Wearing Course	CTDOT HMA S0.375 (Superpave); PG 64S-22	1.5	1.5
Asphalt Binder Course	CTDOT HMA S0.5 (Superpave); PG 64S-22	1.5	4.0
Granular Base	CTDOT M.05.01 Processed Aggregate Base	6.0	6.0
Granular Subbase	CTDOT M.02.02 Subbase; M.02.06 Gradation A	6.0	6.0

Rigid concrete pavement should be used to provide suitable support at areas of high traffic or severe turns, such as at trailer parking areas, ingress/egress locations and the trash enclosure. The recommended rigid pavement is tabulated below:

	RIGID PAVEMENT SECTION	
Layer	Material	Thickness (inches)
Surface	4,000 psi Air-Entrained Concrete	6.0 ¹
Granular Base	CTDOT M.05.01 Processed Aggregate Base	6.0
Granular Subbase	CTDOT M.02.02 Subbase; M.02.06 Gradation A	6.0

¹ The outer edges of concrete pavements are susceptible to damage as trucks move from rigid pavement to adjacent flexible pavement. Therefore, the thickness at the outer two feet of the rigid concrete pavement should be 12 inches. The concrete should be reinforced with at least one layer of six-inch by six-inch W5.4/W5.4 welded wire fabric (ASTM A185).

Where finished grade is lower than existing grade, Whitestone recommends installing edge (interceptor) drains and a network of underdrains extending out from stormwater inlet structures to improve drainage within proposed pavement areas. Edge drains and underdrains typically consist of top perforated polyvinyl chloride (PVC) piping within a 12-inch by 12-inch, clean 0.75-inch crushed stone layer surrounded by a fines separation fabric. A woven fabric, such as long term, clog resistant Mirafi FW700, or approved equivalent, is recommended. Drains should be designed to pitch towards and discharge into the stormwater drainage system. The pipes should have a minimum slope of 0.5 percent.

The pavement section thickness designs presented in this report are based on the design parameters detailed herein and are contingent on proper construction, inspection, and maintenance. Additional pavement thickness may be required by local code. The designs are contingent on achieving the minimum soil support value in the field. To accomplish this requirement, subgrade soil and supporting fill or backfill should be placed, compacted, and evaluated in accordance with the recommendations of this report. Proper drainage should be provided for the pavement structure, including appropriate grading and surface water control. In areas where finished grade is lower than existing grade, edge drains on the higher sides of the paved areas and a network of underdrains connected to the catch basins should be installed.

The performance of the pavement also will depend on the quality of materials and workmanship. Whitestone recommends that CTDOT standards for materials, workmanship, and maintenance be applied to this site. Project specifications should include verifying that the installed asphaltic concrete material composition is within tolerance for the specified materials and that the percentage of air voids of the installed pavement is within specified ranges for the respective materials. Rigid concrete pavements should be suitably air-entrained, jointed, and reinforced in general accordance with ACI 330R-08 *Guide for the Design and Construction of Concrete Parking Lots*.

4.6 Retaining Walls/Lateral Earth Pressures

Retaining walls up to approximately 14 feet in height are planned. The following parameters may be used for design of the proposed retaining walls, any below-grade walls, and other structures reliant on granular materials to provide adequate drainage. However, the parameters are not directly applicable to the design of mechanically stabilized earth (MSE) retaining walls, which require proprietary design methods for the selected earth retention system.

Retaining/below-grade walls should be capable of withstanding active and at-rest earth pressures. With an active earth pressure coefficient (K_a) of 0.33, a level backfill, and an assumed maximum backfill soil unit weight of 140 pounds per cubic foot (pcf), an equivalent fluid pressure of 46 psf per foot of wall height should be used in design of retaining/below-grade walls which are free to rotate.

Retaining/below-grade walls and wall corners that are restrained from lateral movement should be designed using at-rest earth pressures. A coefficient of at-rest earth pressure (K_0) of 0.5, for a level backfill, is recommended for retaining/below-grade walls designed to resist at-rest earth pressures, which assume no lateral movement. With an assumed maximum total unit weight of backfill of approximately 140 pcf, an equivalent fluid pressure of 70 pounds per square foot per foot of wall height should be used in design of restrained retaining/below-grade wall and wall corners. A coefficient of friction of 0.4 against sliding can be used for concrete on the existing site soils. Additional lateral earth pressures from a sloped backfill or any temporary or long-term surcharge loads also should be included in the design. Retaining wall design should include a global stability analysis.

Whitestone recommends that granular soils be used to backfill behind retaining walls. The granular backfill materials should consist of clean, relatively well graded sand or gravel.

Whitestone recommends that backfill directly behind any walls be compacted with light, hand-held compactors. Heavy compactors and grading equipment should not be allowed to operate within a zone of influence measured at a 45-degree angle from the base of the walls during backfilling to avoid developing excessive temporary or long-term lateral soil pressures.

Positive drainage should be provided at the base of the below-grade walls. Where wall drainage is not provided, the wall should be designed to withstand full hydrostatic pressure.

Whitestone should be notified if any other retaining structures or design considerations requiring lateral earth pressure estimations are proposed. Specific recommendations for temporary retaining structures are beyond Whitestone's scope.

4.7 Excavations

The site soils encountered during this investigation typically are, at a minimum, consistent with Type C Soil Conditions as defined by 29 CFR Part 1926 (OSHA), which require a maximum unbraced excavation angle of 1.5:1 (horizontal:vertical). Actual conditions encountered during construction should be evaluated by a competent person (as defined by OSHA), so that safe excavation methods and/or shoring and bracing requirements are implemented. Competent bedrock may be excavated at an angle of 1:6 (horizontal:vertical). A steeper temporary excavation angle in the bedrock may be feasible, if the exposed bedrock is reviewed by a professional engineer or geologist.

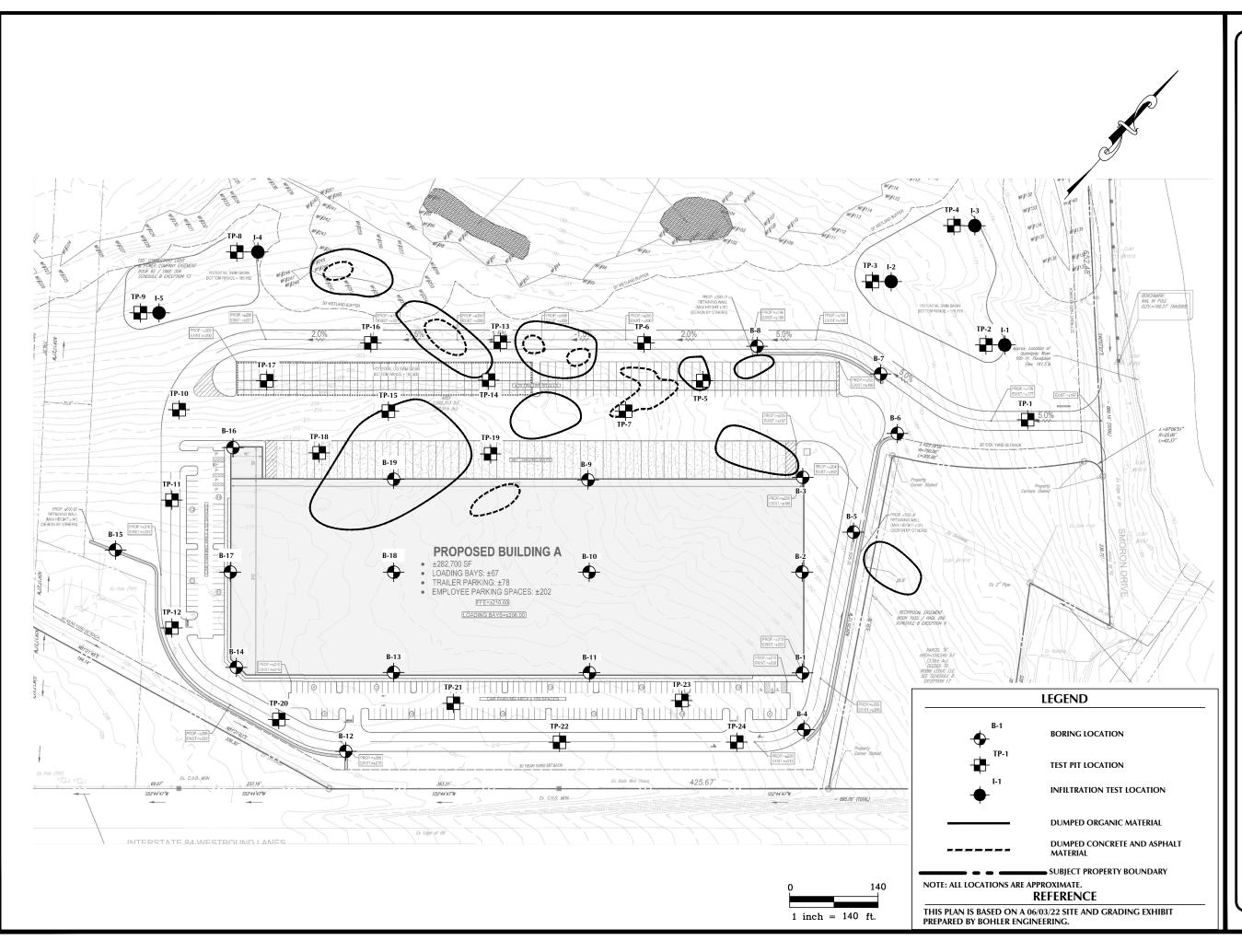
5.0 SUPPLEMENTAL POST INVESTIGATION SERVICES

Demolition and Construction Inspection and Monitoring: The owner's geotechnical engineer with specific knowledge of the site subsurface conditions and design intent should conduct inspection, testing, and consultation during demolition and construction as described in previous sections of this report. Monitoring and testing should also be conducted to confirm that the building foundations are removed and properly backfilled, any other encountered underground structures are removed and properly backfilled, the existing surface cover materials are properly removed, and suitable materials, used for controlled fill, are properly placed and compacted over suitable subgrade soils. Proofrolling of all subgrades prior to foundation, slab and pavement support should be witnessed and documented by the owner's geotechnical engineer.

6.0 CLOSING

Whitestone's Geotechnical Division appreciates the opportunity to be of service to Johnson Development Associates, Inc. Please note that Whitestone has the capability to conduct the additional geotechnical engineering services recommended herein. Please contact us with any questions regarding this report.

Sincerely,


WHITESTONE ASSOCIATES, INC.

Richard W.M. McLaren, P.E. Senior Consultant

Ryan R. Roy, P.E. Vice President

FIGURE 1 Test Location Plan

N:\Job Folders\2022\2219183GM\Drawings and Plans\CAD\GM2219183.000.d

TEST LOCATION PLAN TEST LOCATION PLAN CLIENT: CLIENT: JOHNSON DEVELOPMENT ASSOCIATES, INC JOHNSON DEVELOPMENT ASSOCIATES, INC	LN F ASSOCIATES, INC.	WHITESTONE
2219183	T ASSOCIATES, INC.	
3		An Environ Ormod Company
PROJECT: PROPOSED INDUSTRIAL WAREHOUSE 53 SPRING STREET 53 SPRING STREET PARCEL D1 156006 SOUTHINGTON HARTFORD COLINITY CONNECTICITY	OUSE HINTY CONNECTICUT	16 OLD FORGE ROAD, SUITE A, ROCKY HILL, CT 06067 860.726.7889 WHITESTONEASSOC.COM

APPENDIX A Records of Subsurface Exploration

Boring No.: B-1

Page 1 of 1

Project:		Proposed Industrial Warehouse WAI Project No.: GM2219183.000												
Location:		53 Sp	oring Street, Southin	gton, I	Hartford	County,						ment Associates, Inc.		
Surface El	n:	± 207.0 fee	t abov	e NAVE	088	Date Started: 6/6/2022			Wate	r Depth Elevation	Cave-In	Depth Elevation		
							Date Completed: 6/6/2022 (feet bgs) (ft NAVD88)				(f	eet bgs) (ft NAVD88)		
Proposed Location: Building							Logged By:	RK		During:	8.5 198.5 🕎			
Drill / Test	Metho	od:	HSA / SPT				Contractor:	MS		At Completion:	<u></u> \(\nabla \)	At Completion:	<u> -</u>	
							Equipment:	Mobil	e B-53	24 Hours:	<u> </u>	24 Hours:	<u> </u>	
	S۵		E INFORMATION	1		DEDTU				ļ				
Depth	07			Rec.		DEPTH	STRAT	Ά		DESCRIPTIO	N OF MATERIALS	;	REMARKS	
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Clas	sification)			
						0.0								
		\setminus /] _	TS	<u>NU</u>	12" Topsoil					
0 - 2	S-1	X	2 - 2 - 2 - 3	16	4		-							
		\wedge				-				-				
		$\left(\rightarrow \right)$				_	SUBSOIL		18" Subsoil, Root	ts				
		$\backslash /$				-		14114	Reddish-Brown	Medium Dense, Silty	Sand with Gravel (SM)		,	
2 - 4	S-2	Х	6 - 10 - 8 - 8	16	18									
		/				-								
						1 -								
						5.0								
		\setminus /												
5 - 7	S-3	Y	10 - 10 - 13 - 12	18	23				As Above (SM)					
		\wedge				-								
		$\left(\rightarrow \right)$												
		$\backslash /$				-			As Above (SM)					
7 - 9	S-4	X	10 - 11 - 12 - 12	18	22				AS ADOVE (SIVI)					
		/				2								
						10.0	GLACIAL							
						1 —	TILL							
10 - 12	0 F	\mathbf{V}	44 05 00 00	10	54	-			As Above, Very Dense (SM)					
10 - 12	S-5	Λ	14 - 25 - 26 - 26	16	51									
		/				_								
						-								
							-							
						-								
						15.0								
		\mathbf{V}				-			As Above (SM)					
15 - 17	S-6	Å	41 - 50 - 48 - 52	18	98									
		/												
						_								
								19494	D · · · · ·		D / 1 · D · · · · ·			
						-			Boring Log B-1 T	erminated upon Auge	er Refusal at Depth of 18 f	bgs.		
						20.0								
						-	1							
						-	1							
						-	1							
]							
						-								
						_								
						25.0								
						25.0	-							
						1	1		L					

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-2

Page 1 of 1

Project: Proposed Industrial Warehouse WAI Project No.: GM2219183.000														
Location:			oring Street, Southin			1							ment Associates, Inc.	
Surface El					e NAVE		Date Started: 6/6/2022			Water Depth Elevation Cave-In Depth Elevation				
Terminatio			t bgs			Date Complet	-	6/6/2022		feet bgs) (ft NAVD88)	(f	eet bgs) (ft NAVD88)		
Proposed		Building				Logged By:	RK		During:	6.0 196.0 🕎				
Drill / Test	od:	HSA / SPT				Contractor:	MS		At Completion:		At Completion:	<u> </u>		
							Equipment:	Mobile	e B-53	24 Hours:	¥	24 Hours:	<u> </u>	
	SA	MPLI	E INFORMATION	I		DEPTH	STRAT	- ^	DESCRIPTION OF MATERIALS					
Depth (feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)	SIRAI	A			ssification)	•	REMARKS	
(ieer)		Type	Blows Fel 0	(111.)	N	0.0		1		(end	, some and the second se			
		\bigtriangledown				-	TS	<u>\\\/</u>	10" Topsoil					
0 - 2	S-1	Ň	1 - 2 - 2 - 3	12	4	-	EXISTING FILL	X	Brown, Very Loose to Loose, Silty Sand (FILL)					
2 - 4	S-2	X	4 - 7 - 16 - 11	16	23				Reddish-Brown to	(FILL)				
4 - 6	S-3	$\left \right\rangle$	15 - 18 - 18 - 13	16	36	5.0 5.5				se, Silty Sand with G				
6 - 8	S-4	$\left \right\rangle$	15 - 20 - 19 - 18	16	39	 	GLACIAL TILL		Reddish-Brown, I As Above (SM)	Dense, Silty Sand wit	h Gravel (SM)			
						10.0								
10 - 11.4	S-5	Х	10 - 16 - 50/5"	8	32				As Above (SM)					
									Boring Log B-2 T	erminated upon Auge	er Refusal at Depth of 12 f	bgs.		

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-3

Page 1 of 1

Project:	roject: Proposed Industrial Warehouse WAI Project No.: GM2219183.000												
Location:		53 Sp	oring Street, Southin	gton, I	Hartford	County,	r, Connecticut Clien						ment Associates, Inc.
Surface E	n:	± 196.0 fee	t abov	e NAVE	088	Date Started: 6/6/2022			Wate	er Depth Elevation	Cave-Ir	Depth Elevation	
Termination Depth: 16.0 feet bgs							Date Complete	ed:	6/6/2022	((feet bgs) (ft NAVD88)	(f	eet bgs) (ft NAVD88)
Proposed Location: Building							Logged By:	RK		During:	6.0 190.0 🝸		
Drill / Test	Methe	od:	HSA / SPT				Contractor:	MS		At Completion:	<u> </u>	At Completion:	<u>bei</u>
							Equipment:	Mobile	e B-53	24 Hours:	¥	24 Hours:	<u> 💆</u>
	•												
	54	MPL	E INFORMATION	-		DEPTH	STRAT	Δ		DESCRIPTIC	ON OF MATERIALS	;	REMARKS
Depth (feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)	0				ssification)		
(1001)		Type	Biowstere	()		0.0		1		(,		
						1 -	GRAVEL	æ	6" Gravel				
		V						XXX	Brown to Reddish	n-Brown, Medium De	nse, Silty Sand with Grave	el (FILL)	
0 - 2	S-1	١Å	18 - 15 - 6 - 4	3	21	-	1						
		V \setminus					EXISTING	1333					
		Λ /					FILL						
2 - 4	S-2	V	6 - 4 - 6 - 9	6	10	_			As Above, Loose	to Medium Dense (F	FILL)		
2 4	02	$ \Lambda $	0 - 0 0	Ŭ	10			1338					
		$\langle \rangle$				4.0		∞					
						5.0	4						
		Λ /					4						
5 - 7	S-3	IX	10 - 60 - 23 - 12	14	83	_	Ţ		Reddish-Brown,	/ery Dense, Silty Sa	nd with Gravel (SM)		
		$ /\rangle $					4						
		()				- 1	-						
		N/					-		As Above Mediu	m Dense to Dense (S	SM)		
7 - 9	S-4	IX	10 - 14 - 16 - 13	18	30		-		AS ADOVE, IVIEUIU	in Dense to Dense (a	5101)		
		$ / \rangle$					GLACIAL						
		\sim				- 1	TILL						
						10.0	-						
							-						
		\mathbb{N}					-		As Above, Mediu	m Dense (SM)			
10 - 12	S-5	ΙXΙ	8 - 9 - 13 - 11	16	22		1		,				
		$V \setminus$					-						
						1 -	1						
						13.0		間間					
						_							
							WEATHERED	333					
						15.0	BEDROCK	3-3-3					
15 - 15.3	S-6	\bowtie	50/3"	2	-		4		Weathered Arkos	e Bedrock			
									Devine Law D. C. T	amala ata di sa 🍐	an Defined at Danit 117	(h.c.o.	
							-		BORING LOG B-3 1	erminated upon Aug	er Refusal at Depth of 16	ibgs.	
						-	-		1				
									1				
						-	-		1				
						· ·	1		1				
						-	1		1				
						20.0			1				
						-	1		1				
							1		1				
						-			1				
									1				
						_							
						_							
							1						
						_			1				
						25.0			1				
1						1	1		1				

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-4

Page 1 of 1

Project:	Project: Proposed Industrial Warehouse WAI Project No.: GM2219183.000												
Location:		53 Sp	oring Street, Southin	ngton, I	Hartford	l County, (-				ment Associates, Inc.		
Surface E	levatio	on:	± 209.0 fee	et abov	e NAVE	D88 I				r Depth Elevation	Cave-Ir	Depth Elevation	
Terminati	oth:	<u>9.0</u> fee	et bgs			Date Completed: 6/6/2022 (feet bgs) (ft NAVD88)				(1	eet bgs) (ft NAVD88)		
Proposed	ion:	Retaining Wa	11			Logged By:	RK		During:	<u> </u>			
Drill / Tes	od:	SSA / SPT				Contractor:	MS		At Completion:	<u></u> ▽	At Completion:	<u> -</u> <u>ka</u>	
							Equipment:	Mobile	e B-53	24 Hours:	<u> </u>	24 Hours:	<u> </u>
	SA	MPL		J		DEPTH							
Depth	1	1		Rec.	r –	DEFIN	STRAT	A		DESCRIPTIO	N OF MATERIALS	;	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Clas	sification)		
						0.0							
		N /				-	TS	<u>></u>	8" Topsoil				
0 - 2	S-1	IX.	2 - 1 - 2 - 4	14	3		SUBSOIL		12" Subsoil, Root	s			
		$V \setminus$				-		ELLER					
		\mathbf{k}											
2 - 4	S-2	IV	6 - 12 - 23 - 48	16	35				Reddish-Brown, I	Dense, Silty Sand with	h Gravel (SM)		
2 7	02	$ \Lambda $	0 12 20 40	10	00	_							
	<u> </u>	()											Cobbles
						5.0	GLACIAL						Auger refusal @ 5 fbgs
	-					3.0	TILL						Boring offset
		V				-			As Above (SM)				
5 - 7	S-3	١Å	13 - 18 - 17 - 20	20	35		1	日間					
		I											
		Ν/				-							
7 - 9	S-4	IX	36 - 32 - 22 - 21	16	54				As Above, Very D	ense (SM)			Cobbles
		$ / \rangle$				-							
		<u>۲</u>					Boring Log B-4 Terminated at Depth of 9 feet below ground surface.						
						10.0			5 5 5		9 · · · ·		
						-							
						-							
						-							
						15.0							
	1												
						-							
						-							
	1						1						
	1					_	1						
						_							
	1					20.0							
	1					20.0							
	1												
							1						
						_							
	1												
	1												
						—							
						25.0							
							1						

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-5

Page 1 of 1

Project:															
Location:		53 Sp	oring Street, Southin	igton, I	Hartford	County,	, Connecticut Client: Johnson D				Johnson Develop	ment Associates, Inc.			
Surface E	levatio	n:	± 195.0 fee	t abov	e NAVE	088	Date Started: 6/6/2022			Water Depth Elevation Cave-In Depth Elevation					
Terminatio	-			t bgs			Date Completed: 6/6/2022 (feet bgs) (ft NAVD88)				(f	eet bgs) (ft NAVD88)			
Proposed	ion:	Retaining Wa	II				RK		During:	6.0 189.0 🝸					
Drill / Test	od:	SSA / SPT					MS		At Completion:	<u> </u>	At Completion:	<u> </u> bª			
							Equipment:	Mobile	e B-53	24 Hours:	<u> </u>	24 Hours:	<u> </u>		
	SA	MPL		I		DEPTH				<u>.</u>		,			
Depth				Rec.		1	STRAT	A				;	REMARKS		
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet) 0.0		1		(Clas	ssification)				
						0.0									
		V				-	TS	<u> \\\/</u>	18" Topsoil mixed	d with Fill					
0 - 2	S-1	١Å	3 - 2 - 2 - 2	16	4	_	1	<u>\\\/</u>							
		$\langle \rangle$					SUBSOIL		12" Subsoil, Root						
		Ν/				-	0000012								
2 - 4	S-2	IX	4 - 8 - 11 - 14	12	19		-		Reddish-Brown, I	Medium Dense, Silty	Sand with Gravel (SM)				
		$ /\rangle$					-								
		<u> </u>					1								
						5.0	1								
		Ν /					GLACIAL								
5 - 7	S-3	V	16 - 21 - 18 - 15	18	39		TILL		As Above, Dense	(SM)					
		$ \Lambda $	10 21 10 1		35	-									
		()				- 1	-								
		N/					1		As Above (SM)						
7 - 9	S-4	IX	18 - 16 - 15 - 16	12	31		1		AS ADOVE (SIVI)						
		$V \setminus$					1								
									Boring Log B-5 T	erminated at Depth o	of 9 feet below ground surf	ace.			
						10.0									
						-	4								
							-								
						-	1								
							1								
						-	1								
						_									
							4								
						15.0	ł								
						-	1								
						-	1								
						-	1								
						_]								
						_	1								
						-	4								
						-	4								
						20.0	1								
						-	1								
						_	1								
						.	ļ								
						_	ł								
						-	ł								
						-	1								
							1								
						-	1								
						25.0	1								
				ĺ		-]								

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-6

Page 1 of 1

Project:		Propo	sed Industrial Ware	house	9						WAI Project No.:	GM2219183.000	
Location:		53 Sp	oring Street, Southin	gton, I	Hartford	County,	Connecticut				Client:	Johnson Develop	ment Associates, Inc.
Surface E	levatio	n:	± 186.0 fee	t abov	e NAVE	088	Date Started:		6/6/2022	Wate	r Depth Elevation	Cave-Ir	Depth Elevation
Terminatio	on Dep	th:	8.3 fee	t bgs		1	Date Complete	ed:	6/6/2022	(1	feet bgs) (ft NAVD88)	(f	eet bgs) (ft NAVD88)
Proposed	Locat	on:	Retaining Wal	ll			Logged By:	RK		During:	1.0 185.0 🕎		
Drill / Test	Meth	od:	SSA / SPT					MS		At Completion:	<u> </u>	At Completion:	<u> </u> <u>kä</u>
							Equipment:	Mobile	e B-53	24 Hours:	<u> </u>	24 Hours:	<u> </u>
	SA	MPL	E INFORMATION	1		DEPTH							
Depth	-			Rec.	I	DEFIN	STRAT	A			N OF MATERIALS	;	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Clas	sification)		
						0.0							
		$\backslash /$				-	TS	<u>></u> /	8" Topsoil				
0 - 2	S-1	X	1 - 2 - 2 - 3	14	4	_	SUBSOIL		12" Subsoil, Root	ts			
		$V $ \vee				-		1414					
2 - 4	S-2	V	6 - 9 - 13 - 15	18	22				Reddish-Brown, I	Medium Dense, Silty S	Sand with Gravel (SM)		
						-							
						5.0	GLACIAL						
							TILL						
5 - 7	S-3	V	14 - 10 - 12 - 12	20	22	-			As Above (SM)				
5-7	5-5	$ \Lambda $	14 - 10 - 12 - 12	20	~~~								
		()											
7 0 0	S 4	\mathbb{N}	10 00 50/2"	8	40	-			An Above Deper	(SM)			
7 - 8.3	S-4		12 - 20 - 50/3"	8	40				As Above, Dense	(SIVI)			
								141114	Boring Log B-6 T	erminated at Depth of	f 8.3 feet below ground su	Irface.	
						_							
						10.0							
						_							
						-							
						-							
						15.0							
						_							
						-							
						-							
						-							
						-							
						20.0							
						-							
						-							
						-							
						-							
]						
						_							
						_							
						25.0							
						20.0							
I	1				1	1 I	l i		I				

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-7

Page 1 of 1

Project:		Propo	osed Industrial Ware	ehouse	9					v	WAI Project No.:	GM2219183.000				
Location:		53 Sp	oring Street, Southin	igton, I	Hartford	County,	Connecticut				Client:	Johnson Develop	ment Associates, Inc.			
Surface El	levatio	n:	± 186.0 fee	t abov	e NAVE		Date Started:	-	6/6/2022		Depth Elevation		Depth Elevation			
Terminatio				t bgs			Date Complet	-	6/6/2022		t bgs) (ft NAVD88)	(f	eet bgs) (ft NAVD88)			
Proposed			Retaining Wa	ll			Logged By:	RK		During:	1.0 185.0 🕎					
Drill / Test	Metho	od:	SSA / SPT				Contractor:	MS		At Completion:		At Completion:	<u> </u> - <u>b</u>			
							Equipment:	Mobile	B-53	24 Hours:	<u> </u> ¥	24 Hours:	<u> </u>			
	SA	MPL	E INFORMATION	I		DEPTH				•						
Depth				Rec.	<u> </u>		STRAT	A			OF MATERIALS	;	REMARKS			
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet) 0.0		1		(Classif	fication)					
						0.0	TS 12" Topsoil									
		\mathbb{N}				-										
0 - 2	S-1	Ň	1 - 1 - 2 - 4	18	3		_¥SUBSOIL IIIIII 12" Subsoil, Roots									
		$\langle \rangle$					SUBSOIL 12" Subsoil, Roots									
		Ν/				-	Reddish-Brown, Medium Dense, Silty Sand with Gravel (SM)									
2 - 4	S-2	X	8 - 12 - 16 - 14	18	28		-									
		/				-	-									
		H				1 -	GLACIAL									
						5.0										
		\wedge				1 .]									
5 - 6.8	S-3	Y	12 - 15 - 40 - ^{50/} 3"	14	55	_	4		As Above, Very D	ense (SM)						
		$ \rangle $	3"			.	4						Cobblee			
								F41#1	Boring Log B-7 T	erminated at Depth of 6.8	8 feet below around su	Irface	Cobbles			
						-			Boning Log B-7 1	enninated at Depth of 0.0	o leet below ground so	indee.				
						-										
						_										
						-										
						10.0	-									
						-	1									
							1									
						-	1									
						_										
							-									
						-	1									
							1									
						15.0	1									
						_]									
						_	ł									
						-	4									
						-	1									
						-	1									
							1									
						_	1									
							4									
						20.0	4									
							1									
						-	1									
						_]									
						-	ł									
						_	4									
						-	4									
						-	1									
						25.0	1									
						-]									

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-8

Project:		Propo	osed Industrial Ware	house	9						WAI Project No .:	GM2219183.000			
Location:		53 Sp	oring Street, Southin	Street, Southington, Hartford County, Connecticut Client: Johnson Devel											
Surface El	evatio	n:	± 193.0 fee	t abov	e NAVE	88	Date Started:	_	6/7/2022	Wate	r Depth Elevation	Cave-Ir	Depth Elevation		
Terminatio	on Dep	oth:	7.6 fee	t bgs		1	Date Complete	ed:	6/7/2022		ieet bgs) (ft NAVD88)	(f	eet bgs) (ft NAVD88)		
Proposed	Locat	on:	Retaining Wal	ll			Logged By:	RK		During:	2.0 191.0 🕎				
Drill / Test	Methe	od:	SSA / SPT					MS		At Completion:	<u> </u>	At Completion:	<u> -</u> <u>k</u>		
							Equipment:	Mobile	B-53	24 Hours:	<u> </u>	24 Hours:	<u> </u>		
	SA	MPL	E INFORMATION	1		DEPTH				,					
Depth				Rec.	<u> </u>	DEFIN	STRAT	Α		DESCRIPTIO	N OF MATERIALS	5	REMARKS		
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Clas	sification)				
						0.0									
		Λ /					TS	<u>\\</u>	8" Topsoil						
0 - 2	S-1	X	4 - 4 - 4 - 6	14	8				Brown, Loose, Sa	indy Siit (IVIL)					
		/					ALLUVIAL								
		\leftarrow					DEPOSIT								
2 - 4	S-2	V	2 - 2 - 4 - 10	10	6	-			As Above (ML)						
2 - 4	5-2	$ \Lambda $	2 - 2 - 4 - 10	18	6	3.5									
		$\langle \rangle$							Reddish-Brown, N	/ledium Dense, Silty S	Sand with Gravel (SM)				
						5.0									
		\backslash /					GLACIAL TILL		As Above, Dense	(SM)					
5 - 7	S-3	X	7 - 14 - 22 - 23	20	36				AS ADOVE, Dense	(GM)					
		$V \setminus$				-									
7 - 7.6	S-4	\mathbf{X}	43 - 50/1"	6	-	1 —			As Above (SM)						
									Boring Log B-8 T	erminated at Depth of	f 7.6 feet below ground si	urface.			
						10.0									
						10.0									
						-									
						-									
						-									
						15.0									
						-									
						_									
						-									
						_									
						-									
						-									
						20.0	1								
						-	1								
						_									
						_									
						_									
						-	}								
						-									
						-									
						-									
						25.0	1								
						-	1								

Boring No.: B-9

							SUBSUR	RFA	CE EXPI	ORATIO	N		Page 1 of 1
Project:		Propo	osed Industrial Ware	ehouse	9						WAI Project No.:	GM2219183.000	
Location:			oring Street, Southir			l County,	Connecticut				Client:		ment Associates, Inc.
Surface E	levatio				e NAVE		Date Started:		6/7/2022	Wate	er Depth Elevation	1	Depth Elevation
Terminatio	on Der	oth:		et bgs			Date Complet	•	6/7/2022		feet bgs) (ft NAVD88)	(1	eet bgs) (ft NAVD88)
Proposed	-		Building	Ũ			Logged By:	RK		During:	Ţ		
Drill / Test			SSA / SPT				Contractor:	MS		At Completion:		At Completion:	💆
							Equipment:	Mobile	B-53	24 Hours:	¥	24 Hours:	; _
											¥		'₽
	SA	MPLI	E INFORMATION	J		DEPT		- •		DEOODIDTIC			DEMARKO
Depth		_		Rec.		<i>(</i> 1)	STRAT	A			ON OF MATERIALS ssification)		REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)		<u> </u>		(Clas	sincation		
		k 7											
0 - 2	S-1	IV	2 - 2 - 3 - 4	15	5		TS	<u>×11/</u>	12" Topsoil				
0-2	5-1	IΛ	2 - 2 - 3 - 4	15	5		SUBSOIL		12" Subsoil, Root	.			I
		()				_	SUBSUL			5			
		Ν/					4						
2 - 4	S-2	IX.	7 - 7 - 13 - 11	18	20				Brown, Medium D	ense, Sandy Silt (MI	_)		
		$ /\rangle$					ALLUVIAL DEPOSIT						
							DEFOSIT						
						5.0	-						
5 - 5.5	S-3	\sim	16 - 50/0"	6	-	5.5			As Above (SM)				
							1	13131					Cobbles
		Ν/					-						
8 - 10	S-4	IX.	8 - 10 - 15 - 15	22	25	_	4		Reddish-Brown, N	ledium Dense, Silty	Sand with Gravel (SM)		
		$ /\rangle$				10.0	GLACIAL						
		()				10.0	TILL						
		N/							As Above, Dense	(SM)			
10 - 12	S-5	IX.	12 - 14 - 17 - 14	16	31		-			(0)			
		$V \setminus$					1						
						-							
							-						
15 15 1		\sim	50/1"			15.0	-	144	As Above (CM)				Cabbles
15 - 15.1	S-6	\succ	50/1	1	-		-		As Above (SM)				Cobbles
									Boring Log B-9 T	erminated at Depth o	of 16 feet below ground su	rface.	
							-						
						-	1						
]						
]						
							4						
						20.0	4						
							4						
						-	-						
							-						
						-	-						
							1						
							1						
							1						
]						
						25.0							
		1											

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-10

Page 1 of 1

Project:		Propo	osed Industrial Ware	house	9					WAI Proje	ect No.:	GM2219183.000	
Location:		53 Sp	Spring Street, Southington, Hartford County, Connecticut Client: Johnson Develop										ment Associates, Inc.
Surface El	evatio	n:	± 209.0 fee	t abov	e NAVE	088	Date Started:		6/7/2022	Water Depth El	levation	Cave-Ir	n Depth Elevation
Terminatio	on Dep	th:	14.0 fee	t bgs			Date Complete	ed:	6/7/2022	(feet bgs) (ft	NAVD88)	(f	eet bgs) (ft NAVD88)
Proposed	Locati	on:	Building				Logged By:	RK		During:	\mathbf{V}_{-}		
Drill / Test	Metho	od:	SSA / SPT				Contractor:	MS		At Completion:		At Completion:	I⊠≝
							Equipment:	Mobile	e B-53	24 Hours:	Ţ	24 Hours:	<u> 🖄</u>
	64											<u> </u>	
Donth	34			Rec.	-	DEPTH	STRAT	A		DESCRIPTION OF MAT	FERIALS	5	REMARKS
Depth (feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Classification))		
						0.0							
		Ν/				-	TS	<u>NU</u> 2	9" Topsoil				
0 - 2	S-1	X	2 - 3 - 4 - 5	13	7	_							
		\backslash				-	-		Brown, Loose, Sa	ndy Silt (ML)			
		$\left(\rightarrow \right)$				┥ —	-						
		$\backslash /$				-	ALLUVIAL		As Above, Mediu	m Dense (ML)			
2 - 4	S-2	X	10 - 16 - 7 - 9	22	23		DEPOSIT						
		$/ $ \setminus				-	1						
						5.0							
		Ν/				5.5			As Above (ML)				
5 - 7	S-3	X	17 - 15 - 22 - 16	20	37		-		Reddish-Brown, [Dense, Silty Sand with Gravel (SM)			
		$\backslash $				-	4						
		$\left(\rightarrow \right)$				┥ —	-						
		$\backslash /$				-			As Above (SM)				
7 - 9	S-4	Х	14 - 17 - 16 - 21	13	33		1						
		/ N				-	1						
							GLACIAL						
						10.0	TILL						
10 - 10.9	S-5	\searrow	19 - 50/5"	11	-	-			As Above (SM)				
		\sim					ł						Cobbles
						-							
						-							
							1						
						-							
						-			Boring Log B-10	Terminated upon Auger Refusal at	Depth of 14	l fbgs.	
						15.0	4						
						-	4						
						-	4						
						-	1						
						-	1						
						-	1						
						-]						
						_	l						
						20.0	4						
						-	4						
						-	1						
						-	1						
						-	1						
						-	1						
]						
						_							
							4						
						25.0	4						
									1				

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-11

Page 1 of 1

Project:			osed Industrial Ware								WAI Project No.:	GM2219183.000	
Location:			oring Street, Southin							1	Client:		oment Associates, Inc.
Surface El					e NAVE		Date Started:		6/7/2022		er Depth Elevation		n Depth Elevation
Terminatio	-			t bgs			Date Complet	-	6/7/2022		(feet bgs) (ft NAVD88		feet bgs) (ft NAVD88)
Proposed Drill / Test			Building SSA / SPT				Logged By: Contractor:	RK MS		During:	<u> </u>		. bəl
Drill / Test	weth	ba:	55A/5PT				Equipment:	Mobile	P 52	At Completion: 24 Hours:	<u> </u>		
							Equipment.	INDDIR	; Б-33	24 Hours.	<u> </u>	24 Hours.	<u> </u>
	SA	MPL	E INFORMATION		-	DEPTH	STRAT	-Δ		DESCRIPTIC	ON OF MATERIAL	s	REMARKS
Depth (feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)					ssification)	-	
()		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(,		0.0		1		, , , , , , , , , , , , , , , , , , ,	,		
0 - 2	S-1	\bigvee	1 - 2 - 3 - 3	12	5		TS	<u>\\\/</u>	12" Topsoil				
		\square				. _	SUBSOIL		12" Subsoil, Root	s			-
2 - 4	S-2	X	10 - 13 - 9 - 9	14	22		-		Reddish-Brown, N	∕ledium Dense, Silty	Sand with Gravel (SM)		
5 - 7	S-3	X	9 - 10 - 13 - 14	24	23	5.0			As Above (SM)				
7 - 9	S-4	X	13 - 15 - 15 - 17	21	30	-	GLACIAL TILL		As Above, Mediu	m Dense to Dense (S	SM)		
10 - 12	S-5	X	12 - 13 - 21 - 21	23	34	10.0			As Above, Dense	(SM)			
15 - 15.3	S-6	X	50/3"	2	-	15.0	- - - - - -		As Above (SM)	Terminoted upon Au	aar Bofusal et Denth of	f that	Cobbles
						20.0			Boring Log B-11	Terminated upon Au	ger Refusal at Depth of	16 fbgs.	

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-12

Page 1 of 1

Project:		Prop	osed Industrial Ware	house)						WAI Pr	oject No.:	GM2219183.000	
Location:		53 Spring Street, Southington, Hartford County, Connecticut Client: Johnson Developm												oment Associates, Inc.
Surface E	levatio	n:		t abov	e NAVE	D88	Date Started:		6/7/2022			Elevation		n Depth Elevation
Terminatio	-			t bgs			Date Complete		6/7/2022		feet bgs)	(ft NAVD88)	(1	feet bgs) (ft NAVD88)
Proposed			Building					RK		During:				
Drill / Test	Metho	od:	SSA / SPT					MS		At Completion:		▽	At Completion:	<u> </u>
							Equipment:	Mobile	e B-53	24 Hours:		<u> </u>	24 Hours:	<u> </u>
	SA	MPLI		I		DEPTH	4							
Depth				Rec.			STRAT	A		DESCRIPTIC			6	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)		-		(Clas	ssificatio	on)		
						0.0								
		\mathbf{V}			_		TS	<u>\\!/</u>	12" Topsoil					
0 - 2	S-1	Ň	2 - 2 - 5 - 8	12	7	-		IIIII						1
							SUBSOIL		18" Subsoil					
		N/												4
2 - 4	S-2	X	5 - 10 - 10 - 13	20	20	-			Reddish-Brown, I	Medium Dense, Silty	Sand with	Gravel (SM)		
		/							1					
		<u> </u>							1					
						5.0			1					
		7							1					
5 - 7	S-3	Y	16 - 20 - 19 - 31	18	39	_			As Above, Dense	(SM)				
-		Λ							1					
		\leftrightarrow	50/01						A. A					Oshblas
7 - 7.3	S-4	X	50/3"	3	-		GLACIAL		As Above (SM)					Cobbles
							TILL		1					
									1					
						10.0	_		1					
		\mathbb{N}												
10 - 11.2	S-5	Ŵ	21 - 24 - 50/2"	12	48				As Above (SM)					Cobbles
									1					CODDIES
									1					
									1					
						14.0		1999						4
						15.0	WEATHERED	<u> </u>	Weathered Arkos	e Bedrock				
							BEDROCK		Wednered / Ince	le Dearook				
									Boring Log B-12	Terminated upon Aug	ger Refusal	at Depth of 16	6 fbgs.	
						_	4							
							-							
						_	-							
						-								
						20.0								
							-							
						-	-							
							-							
						-								
						-]							
						_								
							-							
						25.0	-							

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-13

Page 1 of 1

Project:		Propo	sed Industrial Ware	house	;						WAI Pro	oject No.:	GM2219183.000	
Location:		53 Spring Street, Southington, Hartford County, Connecticut Client: Johnson Developm ion: ± 216.0 feet above NAVD88 Date Started: 6/7/2022 Water Depth Elevation Cave-In I												
Surface El	evatio	n:		t abov	e NAVE	088	Date Started:	-			-			Depth Elevation
Terminatio	n Dep	th:	11.0 fee	t bgs			Date Complete	ed:	6/7/2022		(feet bgs)	(ft NAVD88)	(f	eet bgs) (ft NAVD88)
Proposed	Locati	on:	Building				Logged By:	RK		During:		<u></u> <u>V</u>		
Drill / Test	Metho	od:	SSA / SPT					MS		At Completion:			At Completion:	<u> </u>
							Equipment:	Mobile	B-53	24 Hours:		<u> </u>	24 Hours:	<u> </u>
	SA	MPLE		I		DEPTH				<u>.</u>				
Depth		_		Rec.			STRAT	A		DESCRIPTIC	ON OF MA		;	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet) 0.0		1		(Clas	SSIIICallO	'n)		
0 - 2	S-1	\bigvee	1 - 1 - 2 - 4	6	3	· ··· _	TS	<u>\\\</u>	12" Topsoil					
	01	\triangle		0	Ŭ		SUBSOIL		12" Subsoil, Root	S				
2 - 4	S-2	X	7 - 10 - 7 - 7	16	17		ALLUVIAL DEPOSIT		Brown, Medium D	ense, Sandy Silt (ML	L)			
5 - 7	S-3	X	14 - 17 - 19 - 21	18	36	5.0			Reddish-Brown, [Dense, Silty Sand wit	th Gravel (SM	М)		
7 - 9	S-4	X	19 - 17 - 22 - 24	17	39		GLACIAL		As Above (SM)					
						10.0								
10 - 10.1	S-5	\times	50/1"	1	-		WEATHERED BEDROCK		Weathered Arkos	e Bedrock				
									Boring Log B-13	Terminated upon Aug	ger Refusal á	at Depth of 11	fbgs.	

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-14

Page 1 of 1

Project:		Propo	osed Industrial Ware	house	9					WAI Project No .:	GM2219183.000			
Location:		53 Sp	oring Street, Southin	gton, l	Hartford	County,	Connecticut			Client:	Johnson Develop	ment Associates, Inc.		
Surface El	evatio	n:	± 222.0 fee	t abov	e NAVE	88	Date Started:	Cave-Ir	Depth Elevation					
Terminatio	on Dep	oth:	20.0 fee	t bgs			Date Complete	(f	eet bgs) (ft NAVD88)					
Proposed	Locati	on:	Building				Logged By:	MB		During: 🗸				
Drill / Test	Metho	od:	SSA / SPT				Contractor:	MS		At Completion: \bigtriangledown	At Completion:	<u> </u>		
							Equipment:	Mobile	e B-53	24 Hours: ▼	24 Hours:	<u> </u>		
	SA	MPL	E INFORMATION			DEPTH								
Depth				Rec.			STRAT	Ά		DESCRIPTION OF MATERIALS	S	REMARKS		
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)		-		(Classification)				
						0.0		<u>NU</u> 2						
		\backslash /				-	TS SUBSOIL		6" Topsoil 6" Subsoil					
0 - 2	S-1	X	2 - 6 - 6 - 10	14	12	_	OODOOL	EI I		ledium Dense, Silty Sand with Gravel (SM)				
		/				-	1		,					
						_								
2 - 4	S-2	IV	13 - 15 - 20 - 23	16	35	_			As Above, Dense	(SM)				
						-	4							
							-							
						5.0	GLACIAL							
							TILL							
5 - 7	S-3	V	25 - 21 - 20 - 18	14	41	-			As Above (SM)					
5-7	0-0	$ \Lambda $	25 - 21 - 20 - 10	14		-								
		(\rightarrow)					-							
		\backslash /				-	4							
7 - 9	S-4	X	19 - 31 - 46 - 35	14	77		As Above, Very Dense (SM)							
		/				-	1							
]							
10 - 10.2	S-5	Х	50/2"	1	-	10.0		IN HE	As Above (SM)					
			2.0 mins			-	4	出出						
							1	133						
			2.0 mins			-		133						
10 - 15	C-1	NQ2	2.0 mins	59"	RQD]	33		lightly Weathered, Medium Grained, Medium	to Thickly Bedded,			
10 - 13	0-1	NGZ	2.0 mm3	98%	76%	_		133	Medium Hard, Ark	ose				
			2.0 mins			-	-							
							-							
			2.0 mins			15.0	BEDROCK	199						
			1.8 mins			-	1	199						
			1.6 111115					133						
			1.5 mins			-	ł	188						
				50"	DOD		4	133	Reddish-Brown, S Medium Hard, Ark	lightly Weathered, Medium Grained, Medium	to Thickly Bedded,			
15 - 20	C-2	NQ2	1.8 mins	58" 97%	RQD 90%	-	1	[[1]]						
			2.5 mins				1	133						
			2.5 mins			_	1							
			2.5 mins			-	-							
				Det	DOD	20.0			Boring Log P 443	Ferminated at Depth of 20 feet below ground	surface			
			Time	Rec.	RQD	-	1		Bonng Log B-14	emmateu al Deptri of 20 reet below ground :				
							1							
						-	1							
						_	ł							
						-	ł							
							1							
						25.0	1							
							1							

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-15

Page 1 of 1

Project:			osed Industrial Ware			_	_			WAI Project No.: GM2219183.000	
Location: Surface El	ovet: -		oring Street, Southin		Hartford		Connecticut Date Started:		6/13/2022	Client: Johnson Development Associates, Water Depth Elevation Cave-In Depth Elevatio	
Terminatio				t bgs	e navl		Date Started: Date Complet	-	6/13/2022	- (feet bgs) (ft NAVD88) (feet bgs) (ft NAVD	
Proposed	-		Retaining Wa	-			Logged By:	MB	0/10/2022	During:	,
Drill / Test			SSA / SPT				Contractor:	MS			24
							Equipment:	Mobile	B-53		Ā
	SA	MPL		I		DEPTH					
Depth (feet)	No	Turne	Blows Per 6"	Rec. (in.)	N	(feet)	STRAT	A		DESCRIPTION OF MATERIALS REMARKS (Classification)	•
(leet)	INO	Туре	Blows Fel 6	(111.)	N	0.0		1			
0 - 2	S-1	\bigtriangledown	6 - 4 - 6 - 4	14	10		TS	<u>NI/</u>	12" Topsoil		
		\triangle					SUBSOIL		12" Subsoil, Root	ots	
2 - 4	S-2	X	3 - 14 - 38 - 27	12	52	 			Reddish-Brown, \	Very Dense, Silty Sand with Gravel (SM)	
5 - 6.8	S-3	X	14 - 37 - 45 - ^{50/} 4"	14	82	5.0	GLACIAL TILL		As Above (SM)		
			Time	Rec.	RQD	10.0	•				
			1.5 mins					時時			
			2.3 mins				-				
10 - 15	C-1	NQ2	2.0 mins	55" 92%	RQD 23%	-	-		Reddish-Brown, M Medium Hard, Arl	Medium to Highly Weathered, Medium Grained, Medium Bedded, rkose	
			1.5 mins								
			1.3 mins			15.0	BEDROCK	8			
			1.8 mins								
15 - 19	C-2	NQ2	2.5 mins	48" 100%	RQD 56%		-		Reddish-Brown, M Hard, Arkose	Medium Weathered, Medium Grained, Medium Bedded, Medium	
			1.3 mins			-					
			2.0 mins			-	1	83			
						20.0			Boring Log B-15	5 Terminated at Depth of 19 feet below ground surface.	
						25.0					

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-16

Page 1 of 1

Project:			osed Industrial Ware			0	0				WAI Project No.:	GM2219183.000	
Location:			oring Street, Southin			1	Date Started:		6/40/0000	Wate	Client: er Depth Elevation	-	ment Associates, Inc.
Surface El					e NAVE				6/13/2022		feet bgs) (ft NAVD88)		eet bgs) (ft NAVD88)
Termination Proposed	-		Building	t bgs			Date Complet	MB	6/13/2022	During:		(,	
Drill / Test			SSA / SPT				Contractor:	MS		At Completion:	<u> </u> ▽	At Completion:	<u></u> Ij2
Dimi rest	Weth	Ju.	55A7 51 1				Equipment:	Mobile	B-53	24 Hours:	<u> </u>	24 Hours:	
	SA	MPL		I		DEPTH							
Depth (feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)	STRAT	A			ON OF MATERIALS	5	REMARKS
(1661)	NO	турс	Blowstero	()		0.0				(0.00			
0 - 2	S-1	\bigvee	2 - 2 - 3 - 3	12	5		TS	<u>\\\/</u>	12" Topsoil				
		\square				· _	SUBSOIL		12" Subsoil, Root	s			
2 - 4	S-2	Х	10 - 20 - 18 - 21	12	38				Reddish-Brown, [Dense, Silty Sand wit	h Gravel (SM)		
						5.0	-						
5 - 7	S-3	X	5 - 5 - 10 - 13	20	15		GLACIAL		As Above, Mediur	n Dense (SM)			
7 - 9	S-4	X	24 - 17 - 16 - 31	18	33	 	TILL		As Above, Dense	(SM)			
						10.0	-						
10 - 10.3	S-5	${ imes}$	50/3"	2	-	-			As Above (SM)				
						-							
							-		Boring Log B-16	Ferminated upon Aug	ger Refusal at Depth of 12	2 fbgs.	
						_	_						
						15.0	-						
						.	4						
						-	-						
						· ·	1						
						_]						
						_							
						20.0	-						
							1						
						_]						
						.	4						
							-						
						· ·	1						
						_]						
						_	-						
						25.0	-						
							1						

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-17

Page 1 of 1

Project:		Propo	osed Industrial Ware	house	9						WAI Project No.:	GM2219183.000	
Location:		53 Sp	oring Street, Southin	gton, I	Hartford	County,	Connecticut				Client:	Johnson Develop	ment Associates, Inc.
Surface El	evatio	n:	± 221.0 fee	t abov	e NAVE	088	Date Started:	_	6/13/2022	Water	Depth Elevation	Cave-Ir	n Depth Elevation
Terminatio	on Dep	th:	14.0 fee	t bgs			Date Complet	ed:	6/13/2022	(fe	eet bgs) (ft NAVD88)	(f	eet bgs) (ft NAVD88)
Proposed	Locati	on:	Building				Logged By:	MB		During:	<u> </u> Ţ		
Drill / Test	Metho	od:	SSA / SPT				Contractor:	MS		At Completion:		At Completion:	💆
							Equipment:	Mobile	e B-53	24 Hours:	🕎	24 Hours:	<u></u> <u>\</u>
	0.4												
	5A		E INFORMATION	-	-	DEPTH	STRAT	A		DESCRIPTION	N OF MATERIALS	;	REMARKS
Depth (feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)					sification)		
()		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		()		0.0		1		, ,	,		
						1 –	TS	<u>NU</u>	12" Topsoil				
0 - 2	S-1	V	1 - 2 - 2 - 3	12	4	_	13		12 Topsoli				
0 2	01	$ \Lambda $	1 2 2 0	12	-		SUBSOIL		12" Subsoil, Root	is.			
		()				_				-			
		$\Lambda /$											
2 - 4	S-2	X	5 - 6 - 8 - 14	12	14		-		Redaisn-Brown, r	Medium Dense, Silty Sa	and with Gravel (SIVI)		
		/				•	1						
						1 -							
						5.0	1						
						1 -	1						
5 - 7	S-3	V	24 - 13 - 12 - 14	12	25				As Above (SM)				
5-7	3-3	$ \Lambda $	24 - 13 - 12 - 14	12	20								
		Ν/											
7 - 9	S-4	X	20 - 32 - 23 - 17	6	55		GLACIAL		As Above, Very D	Dense (SM)			
		$ \land $				-	TILL						
						- 1							
						10.0	1						
		V				-			As Above (SM)				
10 - 12	S-5	Ň	14 - 16 - 65 - 28	20	81		1						
		\land											
								TTTL	Boring Log B-17		er Refusal at Depth of 14	fbas	
						15.0	1		Loning Log B-17	reminated upon Auge		1595.	
						-	1						
						'	1						
						-	1						
						_]						
						.	1						
						_	1						
						.	-						
						-	4						
						20.0	1						
						-							
						-	1						
						'	1						
						-	1						
						_]						
						.	1						
						_	4						
							-						
						25.0	4						
1					Í		1		1				

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-18

Page 1 of 1

Project:		Propo	osed Industrial Ware	house)						WAI Project No.:	GM2219183.000	
Location:			oring Street, Southin	gton, H	Hartford	ī					Client:		ment Associates, Inc.
Surface E	levatio	n:	± 215.0 fee	t abov	e NAVE	088	Date Started:		6/13/2022		er Depth Elevation		Depth Elevation
Terminatio	-			t bgs			Date Complet	-	6/13/2022		(feet bgs) (ft NAVD88)	(f	eet bgs) (ft NAVD88)
Proposed			Building				Logged By:	MB		During:	5.0 210.0 🕎		
Drill / Test	Metho	od:	SSA / SPT				Contractor:	MS		At Completion:		At Completion:	<u> </u>
							Equipment:	Mobile	e B-53	24 Hours:	<u></u>	24 Hours:	<u> </u>
	SA	MPL		I		DEPTH							
Depth				Rec.			STRAT	Ά			ON OF MATERIALS	5	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet) 0.0		1		(Cla	ssification)		
						0.0	TS	<u>N1/</u>	6" Topsoil				
		\mathbb{N}					10	Ī					
0 - 2	S-1	Ň	1 - 2 - 2 - 7	12	4		SUBSOIL		18" Subsoil				
		\land											
		\wedge /											
2 - 4	S-2	ΙX	4 - 6 - 8 - 9	14	14		4		Reddish-Brown,	Medium Dense, Silty	Sand with Gravel (FILL)		
							-						
							EXISTING	$ \otimes $					
						5.0	FILL	$ \otimes $					
							ľ						
5 - 7	S-3	V	5 - 3 - 6 - 8	12	9				As Above, Loose	(FILL)			
5-7	5-5	$ \Lambda $	5 - 5 - 0 - 8	12	5								
		()				7.0							
		Λ /							Dadallah Daawa				
7 - 9	S-4	X	6 - 8 - 10 - 11	12	18		-		Reddish-Brown,	viedium Dense, Slity	Sand with Gravel (SM)		
		$/ \setminus$					4						
						10.0							
							GLACIAL						
10 - 12	S-5	ΙV	7 - 10 - 10 - 9	20	20		TILL		As Above (SM)				
							4						
							-						
							4						
							1						
						15.0							
						.	4		Boring Log B-18	I erminated upon Au	ger Refusal at Depth of 15	tbgs.	
							-						
						·	1						
						-	1						
]						
						.	1						
						_	4						
						20.0	4						
						20.0	1						
						· ·	1						
							1						
						_]						
						.	1						
						-	4						
						·	-						
							1						
						25.0	1						
						-	1						

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-19

Page 1 of 1

Project:		Propo	osed Industrial Ware	ehouse	1						WAI PI	oject No.:	GM2219183.000	
Location:		53 Sp	oring Street, Southin	igton, H	Hartford	County,	Connecticut					Client:		oment Associates, Inc.
Surface E	levatio	n:	± 215.0 fee	t abov	e NAVE	088	Date Started:		6/13/2022	Wate	er Depth	Elevation		n Depth Elevation
Termination	on Dep	oth:	13.0 fee	t bgs			Date Complet	ed:	6/13/2022		(feet bgs)	(ft NAVD88)	(1	ieet bgs) (ft NAVD88)
Proposed	Locat	ion:	Building				Logged By:	MB		During:		<u> </u>		
Drill / Test	Meth	od:	SSA / SPT				Contractor:	MS		At Completion:		▽	At Completion:	<u> </u>
							Equipment:	Mobile	e B-53	24 Hours:		<u> </u>	24 Hours:	<u> </u>
	SA	MPL		I		DEPTH	4							
Depth				Rec.			STRAT	A		DESCRIPTIC			5	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet) 0.0		1		(Clas	ssificati	on)		
						0.0	TS	<u>NU</u> 2	6" Topsoil					
		V			-			Imm						
0 - 2	S-1	١Å	1 - 2 - 5 - 5	6	7	_	SUBSOIL		12" Subsoil					
		$\langle \rangle$												
		Ν /							L					
2 - 4	S-2	IX	15 - 23 - 18 - 14	6	41	_	-		Reddish-Brown, I	Dense, Silty Sand wit	th Gravel (S	SM)		
		/					-							
		\sim				1 -								
						5.0								
		\wedge /												
5 - 7	S-3	IV	13 - 13 - 11 - 17	12	24	_	_		As Above, Mediu	m Dense (SM)				
		$ \wedge $,	GLACIAL							
		()				- 1	TILL							
		\mathbb{N}				· ·	-		As Above, Very D	Dense (SM)				
7 - 9	S-4	ΙX	17 - 23 - 30 - 30	16	53	-	-							
		\vee												
						1 7								
						10.0	_							
10 - 10.3	S-5	\succ	80/4"	2	-	4,			As Above (SM)					
						-	-	1111						
									Boring Log B-19	Terminated upon Aug	ger Refusa	at Depth of 13	fbgs.	
						_	_							
							_							
						-	-							
						15.0	-							
]							
							4							
						_	4							
						· ·	-							
						-	-							
						· ·								
						-]							
						20.0								
							4							
						-	-							
						· ·	-							
						-	1							
						· ·	1							
						05.0	-							
						25.0	-							

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Test Pit No.: TP-1

Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000	
	53 Spring	Street, South	hington, Hartfo	rd County, Conne	cticut				Client:		ment Associates, Inc.
Surface Eleva			feet NAVD88	Date Started:		6/7/2022	Wat	er Depth	Elevation	Cave-	In Depth Elevation
Termination [Depth:	9.0	feet bgs	Date Comple	ted:	6/7/2022	(1	feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		Access	-	Logged By:	-		During:	5.0	169.0 🛛 🝸		
Excavating M	ethod:	Compact Ex	xcavator	Contractor:			At Completion:			At Completion:	l 🖾
Test Method:		Visual Obse		Rig Type:		oillar 315	24 Hours:		T	-	
							· · · ·		· · ·		
SAMPLE		IATION	DEPTH	STRATA					MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)				(C)	lassificat	tion)		
			0.0								
					\$112						
				TOPSOIL		16" Topsoil					
					<u>>>></u>	· ·					
			_	SUBSOIL		8" Subsoil, Roo	ts				
					14141						
			-								
			- 1								
			^{5.0} T								
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	el, Cobbles (SM)		
			-	TILL							
				TILL							
						-			0 10 1		
						I est Pit TP-1 To	erminated at Depth of	9 ⊢eet Belov	v Ground Surface.		
			10.0								
			-								
			-								
			-								
			-								
			15.0								
			1								

Test Pit No.: TP-2

Project:	Proposed	Industrial Wa	arehouse					WAIF	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartfo	rd County, Conne	cticut				Client:	Johnson Develop	ment Associates, Inc.
Surface Eleva	ation: ±		feet NAVD88	Date Started		6/7/2022			Elevation		In Depth Elevation
Termination I			feet bgs	Date Comple		6/7/2022			(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		SWM Area		Logged By:			During:	5.0	172.0 🕎		
Excavating M		Compact Ex		Contractor:			At Completion:		<u></u> ▽	At Completion:	<u></u> <u></u>
Test Method:		Visual Obse	ervation	Rig Type:	Cater	oillar 315	24 Hours:		<u> </u>		
SAMPLE	-	IATION	DEPTH	STRATA			DESCRIPTI				REMARKS
Depth (ft.)	Number	Туре	(feet)		-		(Cla	assificat	ion)		
			0.0								
					<u>NU/</u>						
				TOPSOIL	\$112	10" Topsoil					
					<u></u>						
				SUBSOIL		6" Subsoil, Roo	ts				
					ыня						
											Guelph infiltration test @ 2 fbgs
3	S-1	Grab									
		1									
				GLACIAL							
			5.0	TILL		Reddish-Brown	, Silty Sand with Gravel,	Cobbles (SM)		
			^{5.0}								
					推開						
						Test Pit TP-2 T	erminated at Depth of 8	Feet Below	Ground Surface.		
			10.0								
			1								
			-								
			-								
			15.0								

Test Pit No.: TP-3

Page 1 of 1

Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000	
				d County, Conne	cticut				Client:		ment Associates, Inc.
Surface Eleva			feet NAVD88	Date Started:		6/7/2022	Wat	ter Depth			In Depth Elevation
Termination I			feet bgs	Date Comple	-	6/7/2022			(ft NAVD88)		feet bgs) (ft NAVD88)
Location:		SWM Area		Logged By:	-		During:	4.0	180.0 🛛		
Excavating M		Compact Ex	cavator	Contractor:			At Completion:			At Completion:	
Test Method:		Visual Obse				oillar 315	24 Hours:		' <u></u> ∓ <u></u> ▼		I _
					outorp				·¥		
SAMPLE		IATION	DEPTH	STRATA			DESCRIP	TION OF	MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)	UIIIAIA			(C	lassificat	tion)		
			0.0								
				TODOOU	<u> </u>	10" To a sell					
				TOPSOIL	<u>\\\/</u>	12" Topsoil					
				SUBSOIL		10" Subsoil, Ro	ots				Guelph infiltration test @ 2 fbgs
3	S-1	Grab									
			Y								
				GLACIAL		Reddish-Brown	, Silty Sand with Grav	el (SM)			
			5.0	OL/ OI/ L		Trougion Brown					
				TILL							
			_								
			_								
			8.0	WEATHERED							
				BEDROCK	222	Weathered Arke	ose Bedrock				
						Test Pit TP-3 Te	erminated at Depth of	8.5 Feet Bel	ow Ground Surface		
							-				
			10.0								
			10.0								
			15.0								
			15.0								

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Test Pit No.: TP-4

Page 1 of 1

Project:	Proposed	Industrial Wa	arehouse					WAL	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartfor	d County, Conne	cticut				Client:	Johnson Develop	ment Associates, Inc.
Surface Elev	ation: ±	177.0	feet NAVD88	Date Started		6/7/2022	Wa	ter Depth	Elevation	Cave	In Depth Elevation
Termination	Depth:	7.5	feet bgs	Date Comple	ted:	6/7/2022		(feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		SWM Area	-	Logged By:	RK		During:	5.0	172.0		
Excavating M	lethod:	Compact Ex	kcavator	Contractor:	CL		At Completion:		I <u></u> ▽	At Completion:	<u> </u>
Test Method	:	Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u></u>		
SAMPLE		ATION	DEPTH	OTDATA			DESCRIP		MATERIALS		DEMARKO
Depth (ft.)	Number	Туре	(feet)	STRATA			(C	lassificat	ion)		REMARKS
			0.0								
					\$112						
				TOPSOIL	\$112	10" Topsoil					
					<u> </u>						
				SUBSOIL		17" Subsoil, Ro	ots				
											Guelph infiltration test @ 2.5 fbgs
			+		1414						
	İ										
4	S-1	Grab									
				GLACIAL							
			5.0	TILL		Reddish-Brown	, Silty Sand with Grav	el, Cobbles (SM)		
			3.0 <u> </u>								
			7.0								
				WEATHERED BEDROCK		Weathered Arke	ose Bedrock				
						Test Pit TP-4 T	erminated upon Refus	al at Depth c	f 7.5 Feet Below G	round Surface.	
			-								
			10.0								
			-								
			15.0								

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Test Pit No.: TP-5

Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000		
				rd County, Conne	cticut				Client:	Johnson Developr	ment Assoc	ciates, Inc.
Surface Eleva			feet NAVD88	Date Started:		6/7/2022	Wat	er Depth	Elevation			Elevation
Termination [Depth:	9.0	feet bgs	Date Complet	ted:	6/7/2022	(feet bgs)	(ft NAVD88)	(feet bgs)	(ft NAVD88)
Location:		Parking		Logged By:	RK		During:	5.3	192.7 🛛 🐺			
Excavating M	ethod:	Compact Ex	kcavator	Contractor:	CL		At Completion:		I <u></u> ∑	At Completion:		<u> <u>bz</u></u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u></u> _▼			
SAMPLE												
			DEPTH	STRATA				ION OF	MATERIALS		R	EMARKS
Depth (ft.)	Number	Туре	(feet)		_		(0	lassificat				
			0.0									
					<u>\\\/</u>							
			_	TOPSOIL	\$112	10" Topsoil						
					_							
				SUBSOIL		18" Subsoil, Ro	oto					
				SUBSUL		To Subsoli, Ro	015					
					HI HI	1						
			5.0									
			5.0									
			Y	GLACIAL		Reddish-Brown	Silty Sand with Grave	el (SM)				
				TILL								
			_									
			_									
			_									
					田田							
						Test Pit TP-5 Te	erminated at Depth of	9 Feet Below	w Ground Surface.			
			_									
			10.0									
			15.0									

Test Pit No.: TP-6

Project Project Outpoint Outpoint <thoutpoint< th=""> <thoutpoint< th=""> <t< th=""><th>WAI Pro</th><th>.000</th></t<></thoutpoint<></thoutpoint<>	WAI Pro	.000
Surface Elevation: ± 199.0 4.0 feet NAVD88 (bet Sarred: Mater Sarred: Mater Sarred: Mater Sarred: Mater Sarred: (eet bgs) Water Depth Elevation (feet bgs) Cave-In Elevation (feet bgs)		
Termination Depth: <u>1.0</u> freet bgs. Location: <u>Bioadway</u> Excavating Method: <u>Compact Excavator</u> Test Method: <u>Valual Observation</u> SAMPLE INFORMATION <u>DEPTH</u> <u>Opth (t)</u> <u>Number</u> Type (test) <u>Valual Observation</u> STRATA <u>Contractor</u> Rig Type: <u>Caterpliar 315</u> <u>Caterpliar 315</u> <u>Caterpliar 315</u> <u>DescRiPTION OF MATERIALS</u> (classification) <u>Classification</u>) <u>REMARKS</u> <u>REMARKS</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u> <u>Classification</u>	6/7/2022 Water Depth	Cave-In Depth Elevation
Location: Roadway Logged By: RK During: - T T At Completion: - T T At Completion: - T		•
Excavating Method: Completion:		
Test Method: Visual Observation Rig Type: Caterpillar 315 24 Hours:		on: 🖂
SAMPLE INFORMATION DEPTH STRATA DESCRIPTION OF MATERIALS (Classification) REMARKS Depin (t) Number Type (text) 1" TopSoll 1" T		······································
Depth (h) Number Type (fee) STRATA Classification REMARKS Image: Construction of the second s		
Depth (ft.) Number Type (feet) (Classification) 0.0 -	DESCRIPTION OF M	REMARKS
0.0 TOPSOIL III Topsoil III Subsoil, Roots III Subsoil, Roots III GLACIAL III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand with Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand With Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand With Gravel (SM) III Subsoil, Roots III Reddsh-Brown, Sity Sand With Gravel (SM) III Subsoil, Roots III R	(Classificatio	ILLINAI (ILC
Image: Subscription of the second		
Image: Subsolution of the second s		
Image: Subscription of the second state of the second s		
Image: Second	TT Topson	
Image: Second		
Image: Second		
Image: Second	19" Subsoil Roots	
TILL Image: Site State Sta		
TILL TILL Reddish-Brown, Silty Sand with Gravel (SM) Image: Solution of the set o		
TILL Image: Site State Sta		
Image: Solution of the set		
Image: State of the second st	Reddish-Brown, Silty Sand with Gravel (SM)	
Image: State of the second st		
	Test Pit TP-6 Terminated upon Refusal at Depth of 4	
15.0		

Test Pit No.: TP-7

Project:	Proposed	Industrial Wa	arehouse					WAII	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartfor	d County, Conned	cticut				Client:	Johnson Developr	ment Associates, Inc.
Surface Eleva	tion: ±	204.0	feet NAVD88	Date Started:	6	6/7/2022	Wat	er Depth	Elevation	Cave-	In Depth Elevation
Termination I	Depth:	10.0	feet bgs	Date Complet	ted: 6	6/7/2022	(1	feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		Parking		Logged By:	RK		During:		I		
Excavating M	ethod:	Compact Ex	cavator	Contractor:	CL		At Completion:		I <u></u> ▽	At Completion:	I 💆
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	illar 315	24 Hours:				
SAMPLE		IATION	DEPTH				DESCRIPT		MATERIALS		
Depth (ft.)	Number	Туре	(feet)	STRATA				lassificat			REMARKS
			0.0								
					<u>\\\/</u>						
				TOPSOIL	\$112	12" Topsoil					
					<u> </u>						
					ППП						
			_								
				SUBSOIL		16" Subsoil, Ro	ots				
					10110						
			5.0								
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	al Cobbles (SM)		
				GEAGIAE		Reduisii-Drown,	, only band with Grave		Sivi)		
				TILL							
			9.5								
			9.5 10.0	Weathered		Weathered Arko	ose Bedrock				
			10.0	Bedrock		Test Pit TP-7 Te	erminated upon Refusa	al at Depth c	f 10 Feet Below Gr	ound Surface.	
			$- $								
			15.0								
1											

Test Pit No.: TP-8

		Industrial Wa					WAI P	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartford	County, Conne	cticut			Client:		ment Associates, Inc.
Surface Eleva		192.0	feet NAVD88	Date Started:		6/7/2022	Water Depth			In Depth Elevation
Termination I	Depth:	10.0	feet bgs	Date Comple	ted:	6/7/2022	(feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		SWM Area		Logged By:	RK		During: 9.5	182.5 🕎		
Excavating M	lethod:	Compact Ex	cavator	Contractor:	CL		At Completion:		At Completion:	<u> </u> <u> </u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:	<u> </u>		
SAMPLE		IATION	DEPTH	STRATA			DESCRIPTION OF M			REMARKS
Depth (ft.)	Number	Туре	(feet)				(Classificati	ion)		
			0.0							
				TOPSOIL	회회	12" Topsoil				
			-	SUBSOIL		18" Subsoil, Roi	ots			
3	S-1	Grab		ALLUVIAL DEPOSIT		Brown, Sandy S	ilt (ML)			
6	S-2	Grab	4.5 5.0 	GLACIAL TILL			Silty Sand with Gravel (SM)	w Ground Surface		Cobble layer 4.5 to 5 fbgs Guelph infiltration test @ 6 fbgs
						Test Pit TP-8 Te	rrminated at Depth of 10 Feet Belov	w Ground Surface		

Test Pit No.: TP-9

Page 1 of 1

Project:	Proposed	Industrial Wa	arehouse					WAL	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartfor	d County, Conne	cticut				Client:	Johnson Develop	ment Associates, Inc.
Surface Eleva	ation: ±	195.0	feet NAVD88	Date Started		6/7/2022	Wat	ter Depth	Elevation	Cave	In Depth Elevation
Termination I	Depth:	10.0	feet bgs	Date Comple	ted:	6/7/2022	(feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		SWM Area		Logged By:	RK		During:	9.0	<u>186.0</u>		
Excavating M	lethod:	Compact Ex	cavator	Contractor:	CL		At Completion:		I <u></u> ▽	At Completion:	<u> </u> <u>ba</u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u></u> Ţ		
SAMPLE		IATION	DEPTH	STRATA					MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)		-		(C	lassificat	lion)		
			0.0								
			_	TOPSOIL	<u>NII</u>	10" Topsoil					
				SUBSOIL		13" Subsoil, Ro	ots				
			_	ALLUVIAL		Brown, Sandy S	silt (ML)				
			5.0	DEPOSIT							Guelph infiltration test @ 5 fbgs
			_								
			7.0								
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	el (SM)			
			9.0	WEATHERED		Weathered Arke	ose Bedrock				
			10.0	BEDROCK	Ē						
						Test Pit TP-9 T	erminated at Depth of	10 Feet Belc	w Ground Surface		

NOTES: bgs = below ground surface, msl = mean sea level, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Test Pit No.: TP-10

Project:	Proposed	Industrial W	arehouse					WAL	Project No.:	GM2219183.000	
	53 Spring	Street, Sout	hington, Hartfor	d County, Conne	cticut				Client:	Johnson Develop	ment Associates, Inc.
Surface Eleva	ation: ±	207.0	feet NAVD88	Date Started:		6/7/2022	Wat	er Depth	Elevation	Cave	In Depth Elevation
Termination I	Depth:	8.0	feet bgs	Date Complet	ted:	6/7/2022	(1	feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:	-	Roadway	-	Logged By:	-		During:		Ā		
Excavating M	ethod:	Compact E	xcavator	Contractor:			At Completion:			At Completion:	<u> </u>
Test Method:		Visual Obse				oillar 315	24 Hours:		·		· =
					·		· · ·		· +		
SAMPLE		IATION	DEPTH	STRATA					MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)				(C)	lassificat	ion)		
			0.0								
					NU/						
				TOPSOIL	_	14" Topsoil					
					<u>\\\/</u>						
			-+								
				SUBSOIL		18" Subsoil, Ro	ots				
			5.0	GLACIAL		Reddish-Brown	, Silty Sand with Grave	el, Cobbles (SM)		
			0.0								
				TILL							
			7.5								
				Weathered Bedrock		Weathered Ark	ose Bedrock				
				Dedrock		Toot Bit TD 10	Terminated at Depth of	f 9 East Pala	w Cround Surface		
						Test Pit TP-10	Terminated at Depth of	T & Feet Beic	w Ground Surface.		
			10.0								
			15.0								

Test Pit No.: TP-11

Project:	Proposed	Industrial Wa	arehouse					WAI F	Project No.:	GM2219183.000	
			nington, Hartford	County, Conne	cticut				Client:		ment Associates, Inc.
Surface Eleva			feet NAVD88	Date Started		6/7/2022	Wat	er Depth	Elevation		In Depth Elevation
Termination I			feet bgs	Date Comple	-	6/7/2022		feet bgs)	(ft NAVD88)		feet bgs) (ft NAVD88)
Location:		Roadway		Logged By:	-		During:		- <u>Y</u>		
Excavating M	ethod:	Compact Ex	cavator	Contractor:			At Completion:			At Completion:	I 🔛
Test Method:		Visual Obse				oillar 315	24 Hours:		└ <u></u> ▼		I \
		1100001 00000							·¥		
SAMPLE			DEPTH	STRATA				FION OF I lassificat	MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)		r –		(0	lassinoat			
			0.0								
					<u>\\\</u>						
				TOPSOIL	\$112	12" Topsoil					
				SUBSOIL		20" Subsoil, Ro	ots				
			5.0								
			0.0								
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	el, Cobbles (S	SM)		
				TILL							
			9.5								
			10.0	Weathered Bedrock		Weathered Arke	ose Bedrock				
						Test Pit TP-11	Terminated at Depth o	f 10 Feet Bel	low Ground Surfac	e.	
			15.0								

Test Pit No.: TP-12

Project: Proposed Industrial Warehouse WAI Project No.: GM2219183.000											
	53 Spring	Street, South	nington, Hartfor	d County, Conne	cticut				Client:	Johnson Develop	ment Associates, Inc.
Surface Eleva			feet NAVD88	Date Started:		6/7/2022	Wat	er Depth	Elevation	Cave	In Depth Elevation
Termination I	Depth:		feet bgs	Date Comple	-	6/7/2022	(1	feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:	•	Roadway		Logged By:	-		During:		T		· · · · · · · · · · · · · · · · · · ·
Excavating M	lethod:	Compact Ex	cavator	Contractor:			At Completion:			At Completion:	🔟
Test Method:		Visual Obse				oillar 315	24 Hours:		<u></u> ¥	•	' <u> </u>
							· · · · ·		·+		
SAMPLE		IATION	DEPTH	STRATA					MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)	-			(C)	lassificat	ion)		
			0.0								
			0.0		NU2						
				TOPSOIL		10" Topsoil					
					<u>\\\/</u>	ro ropoon					
					шш						
				SUBSOIL		11" Subsoil, Ro	ots				
					1111						Cabble lover 2 to 2 ft
											Cobble layer 2 to 3 fbgs
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	el (SM)			
			5.0	TILL							
			7.0								
				Weathered Bedrock	Ξ	Weathered Arke					
						Test Pit TP-12	Ferminated upon Refu	sal at Depth	of 7.5 Feet Below	Ground Surface.	
			10.0								
			15.0								

Test Pit No.: TP-13

Project:	Proposed	Industrial W	arehouse					WAL	Project No.:	GM2219183.000	
				d County, Conne	cticut				Client:		ment Associates, Inc.
Surface Eleva		201.0	feet NAVD88	Date Started		6/7/2022	Wat	ter Depth	Elevation	r	In Depth Elevation
Termination I		9.0	feet bgs	Date Comple	-	6/7/2022		(feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:	•	Roadway		Logged By:	-		During:	7.0	194.0 ₮		•
Excavating M	ethod:	Compact E	xcavator	Contractor:			At Completion:			At Completion:	I <u></u> <u>×</u>
Test Method:		Visual Obs		Rig Type:		oillar 315	24 Hours:		· <u> </u>		' <u></u> *
				3					· *		
SAMPLE		IATION	DEPTH	STRATA			DESCRIP	TION OF	MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)	Untain			(C	lassificat	tion)		
			0.0								
			0.0								
				TOPSOIL	<u>×11</u> /	10" Topsoil					
				TOFSOL	<u>\\\/</u>						
				SUBSOIL		22" Subsoil, Ro	ots				
				ALLUVIAL							
				DEPOSIT		Brown, Sandy S	Silt (ML)				
			4.0		HHH						
			5.0								
				GLACIAL		Reddish-Brown	, Silty Sand with Grav	el, Cobbles (SM)		
				TILL							
			<u> </u> ₹								
			+		19119						
						Test Pit TP-13	Terminated at Depth c	of 9 Feet Belo	ow Ground Surface		
			10.0								
			10.0								
			15.0								
			13.0								

Test Pit No.: TP-14

Project:	Proposed	Industrial Wa	arehouse					WAIF	Project No.:	GM2219183.000		
	-			ord County, Conne	cticut				Client:	Johnson Developr	ment Assoc	ciates, Inc.
Surface Eleva			feet NAVD88			6/7/2022	Wate	er Depth	Elevation			Elevation
Termination I	Depth:		feet bgs	Date Comple	-	6/7/2022	(f	eet bgs)	(ft NAVD88)	(feet bgs)	(ft NAVD88)
Location:		Parking		Logged By:	RK		During:		T 1			
Excavating M	lethod:	Compact Ex	kcavator	Contractor:	CL		At Completion:		▽	At Completion:		22
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u> </u>			
SAMPLE		IATION	DEPTH				DESCRIPT		MATERIALS			
	1			STRATA				assificat			R	EMARKS
Depth (ft.)	Number	Туре	(feet)				(-					
			0.0									
					<u>\\\/</u>							
				TOPSOIL	<u>\\\/</u>	12" Topsoil						
			_+									
				SUBSOIL		14" Subsoil, Ro	ote					
				CODOCIE			013					
					EFE							
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	I (SM)				
				TILL								
				THEE								
			4.0									
				WEATHERED		Weathered Arke	ose Bedrock					
			_									
			5.0	BEDROCK								
						Test Pit TP-14	Ferminated upon Refus	al at Depth	of 5 Feet Below Gr	ound Surface.		
			_									
			$ \rightarrow$									
			10.0									
			-									
			$- $									
			-									
			1									
			-									
			15.0									

Test Pit No.: TP-15

Project:	Proposed	Industrial Wa	arehouse					WAIF	Project No.:	GM2219183.000	
				rd County, Conne	cticut				Client:		ment Associates, Inc.
Surface Eleva			feet NAVD88	Date Started		6/7/2022	Wat	er Depth	Elevation		In Depth Elevation
Termination I			feet bgs	Date Comple	-	6/7/2022			(ft NAVD88)		feet bgs) (ft NAVD88)
Location:		Parking		Logged By:	-		During:	9.0	202.0 🛛		
Excavating M	ethod:	Compact Ex	cavator	Contractor:			At Completion:			At Completion:	<u> </u>
Test Method:		Visual Obse				oillar 315	24 Hours:		· <u> </u>		'¥
				3 //			· · · · ·		· *		
SAMPLE		IATION	DEPTH	STRATA			DESCRIPT		MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)	•			(C	lassificat	ion)		
			0.0								
			0.0		\$17						
				TOPSOIL	<u> </u>	12" Topsoil					
				TOPOOL	<u>\\\/</u>	12 1003011					
				SUBSOIL		13" Subsoil, Ro	ots				
				0020012							
					PLIT						
			5.0								
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	el (SM)			
							-	. ,			
				TILL							
			¥		1.044						
						lest Pit TP-15	Ferminated at Depth of	t 9 Feet Belo	w Ground Surface		
			10.0								
			-								
			-								
			-								
			45.0								
			15.0								

Test Pit No.: TP-16

Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000	
				d County, Conne	cticut				Client:		ment Associates, Inc.
Surface Eleva			feet NAVD88	Date Started:		6/7/2022	Wat	ter Depth	Elevation		In Depth Elevation
Termination			feet bgs	Date Comple	-	6/7/2022	((feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		Roadway	-	Logged By:	-		During:	5.7	-		
Excavating M		Compact Ex	xcavator	Contractor:			At Completion:			At Completion:	<u> </u>
Test Method:		Visual Obse				oillar 315	24 Hours:		Ţ <u></u> Ā		· =
									·+		
SAMPLE		IATION	DEPTH	STRATA					MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)				(C	lassifica	tion)		
			0.0								
					NU/						
				TOPSOIL		12" Topsoil					
					<u>\\\/</u>	· ·					
				SUBSOIL		18" Subsoil, Ro	ots				
					围机						
			5.0								
				GLACIAL							
				TILL		Poddish-Brown	, Silty Sand with Grav	ol (SM)			Cobbles below 6 fbgs
			_	TILL		INCOULSIT-DIOWIN	, Silty Sand with Grav				Cobbles below o lbgs
											Boulders @ 7 fbgs
			10.0		11111						
						Test Pit TP-16	Ferminated at Depth c	of 10 Feet Be	elow Ground Surface	е.	
			-								
			-								
			15.0								
			1			1					

Test Pit No.: TP-17

Project:	Proposed	Industrial W	arehouse					WAI	Project No.:	GM2219183.000		
Location:			hington, Hartfor	d County, Conne	cticut				Client:		ment Associates, Inc	-
Surface Eleva		204.0	feet NAVD88	Date Started		6/7/2022	Wat	er Depth	Elevation	Cave	In Depth Elevatio	on
Termination	Depth:	10.0	feet bgs	Date Comple	ted:	6/7/2022	(feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVI	D88)
Location:		Parking		Logged By:	RK		During:		<u>v</u>			
Excavating N	lethod:	Compact E	xcavator	Contractor:	CL		At Completion:		I 🛛	At Completion:	<u> </u>	
Test Method:	1	Visual Obs	ervation	Rig Type:	Cater	oillar 315	24 Hours:		<u></u> _			
SAMPLE		IATION	DEPTH				DESCRIPT		MATERIALS			-
Depth (ft.)	Number	Туре	(feet)	STRATA				lassifica			REMARK	S
			0.0									
			0.0		\$112	-						
				TOPSOIL		12" Topsoil						
					<u>~</u>							
				SUBSOIL		8" Subsoil, Root						
				SUBSUL		o Subsoli, Roo	15					
				ALLUVIAL		Brown, Sandy S	ilt (ML)					
				DEPOSIT								
			4.7									
			4.7		11111	-						
			5.0									
				GLACIAL								
				TILL		Reddish-Brown,	Silty Sand with Grave	el (SM)				
			10.0									
			10.0		19114	Toot Dit TD 47.7	forminated at David		low Oround Out			
						rest Pit TP-17	Ferminated at Depth o	i iu Feet Be	now Ground Suffac	.		
			15.0									

Test Pit No.: TP-18

Project:	Proposed	Industrial Wa	arehouse					WAIF	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartfo	rd County, Conne	cticut				Client:	Johnson Developr	ment Associates, Inc.
Surface Elev			feet NAVD88	Date Started:		6/7/2022			Elevation	Cave-	In Depth Elevation
Termination	Depth:	10.0	feet bgs	Date Comple	ted:	6/7/2022	(1	eet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		Loading Ba	ys	Logged By:	RK		During:		T A		
Excavating M	lethod:	Compact Ex	cavator	Contractor:	CL		At Completion:		I	At Completion:	<u></u> <u></u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u> </u>		
SAMPLE		IATION	DEPTH				DESCRIPT		MATERIALS		
	I			STRATA				assificat			REMARKS
Depth (ft.)	Number	Туре	(feet)				(0.				
			0.0								
					<u>\\\/</u>						
				TOPSOIL	<u>\\\/</u>	9" Topsoil					
						17" Out a di Da					
				SUBSOIL		17" Subsoil, Ro	ots				
			_								
			5.0								
			_								
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	I (SM)			
				TILL							
			_								
			10.0								
						Test Pit TP-18	Ferminated at Depth of	10 Feet Be	low Ground Surface	e.	
			15.0								

Test Pit No.: TP-19

Project:	Proposed	Industrial Wa	arehouse				WAI	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartfo	ord County, Conne	cticut			Client:	Johnson Develop	ment Associates, Inc.
Surface Eleva	tion: ±	211.0	feet NAVD88	Date Started:		6/7/2022	Water Depth	Elevation	Cave	In Depth Elevation
Termination I	Depth:	9.0	feet bgs	Date Comple	ted:	6/7/2022	(feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		Loading Bay	/S	Logged By:	RK		During:	I		
Excavating M	ethod:	Compact Ex	cavator	Contractor:			At Completion:		At Completion:	I <u>bai</u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:	<u></u> _		
SAMPLE		IATION	DEPTH				DESCRIPTION OF			DEMARKS
Depth (ft.)	Number	Туре	(feet)	STRATA			(Classifica			REMARKS
			0.0							
			_	TOPSOIL		12" Topsoil and	Compost			
				SUBSOIL		10" Subsoil, Ro	ots			
			_							
			5.0	GLACIAL						
			_	TILL		Reddish-Brown	Silty Sand with Gravel (SM)			Cobbles / Boulders below 5 fbgs
			_							
			_							
			8.5							
				WEATHERED BEDROCK		Weathered Arko	ose Bedrock			
						Test Pit TP-19	Ferminated at Depth of 9 Feet Be	ow Ground Surface		
			10.0							
			1							
			_							
			$- $							
			15.0							
			15.0							

Test Pit No.: TP-20

Project:	Proposed	Industrial W	arehouse					WAIF	Project No.:	GM2219183.000			
Location:	53 Spring	Street, Sout	hington, Hartfo	ord County, Conne	cticut				Client:	Johnson Develop	ment Asso	ciates, Inc.	
Surface Elev	vation: ±	220.0	feet NAVD88	Date Started		6/7/2022	Wat	er Depth	Elevation	Cave	In Depth	Elevatio	n
Termination	Depth:	7.0	feet bgs	Date Comple	ted:	6/7/2022	(1	feet bgs)	(ft NAVD88)	(feet bgs)	(ft NAVE	088)
Location:		Roadway		Logged By:	RK		During:	6.5	213.5 🕎				
Excavating I	lethod:	Compact E	xcavator	Contractor:	CL		At Completion:		I <u></u> ▽	At Completion:		l <u></u>	
Test Method	:	Visual Obs	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u></u> ▼				
SAMPL		IATION	DEPTH	STRATA					MATERIALS		R	EMARK	s
Depth (ft.)	Number	Туре	(feet)				(C	lassificat	ion)				-
			0.0										
					\$112								
				TOPSOIL	<u></u>	14" Topsoil							
					<u> </u>								
				SUBSOIL		8" Subsoil, Roo	ts						
			-										
				GLACIAL		Reddish-Brown	, Silty Sand with Grave	el (SM)					
				TILL									
			5.0										
			5.0										
			6.0										
				WEATHERED		Weathered Ark	and Rodrock				r		
			$\overline{\Lambda}$	WEATHERED		weathered Ark	JSE DEGIOCK						
				BEDROCK									
						Test Pit TP-20	Terminated at Depth of	f 7 Feet Belo	w Ground Surface.				
			$ \rightarrow$										
			10.0										
			10.0										
			–										
			-										
			15.0										
			10.0										

Test Pit No.: TP-21

Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000	
	53 Spring	Street, South	hington, Hartfo	ord County, Conne	cticut				Client:		ment Associates, Inc.
Surface Eleva	ation: ±	218.0	feet NAVD88	Date Started:		6/7/2022	Wate	er Depth	Elevation	Cave-	In Depth Elevation
Termination I	Depth:	7.0	feet bgs	Date Complet	ed:	6/7/2022	(f	eet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		Parking	-	Logged By:	RK		During:	3.7	214.3 🛛 🐺		
Excavating M	lethod:	Compact Ex	xcavator	Contractor:	CL		At Completion:		I <u></u> ∑	At Completion:	<u> </u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u></u> _▼		
SAMDLE											
	-		DEPTH	STRATA				ION OF assificat	MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)				(0)	ussinou			
			0.0								
					<u>\\\/</u>						
			_	TOPSOIL	<u>NU</u> 2	11" Topsoil					
				SUBSOIL		10" Subsoil, Ro	ots				
				ALLUVIAL							
				DEPOSIT		Brown, Sandy S	ilt (ML)				
			3.5								
			Ţ								
			5.0	GLACIAL		Reddish-Brown	Silty Sand with Grave	I (SM)			
			0.0								
				TILL							
			6.5	WEATHERED	IIIII						
				BEDROCK	Ē	Weathered Arke	ose Bedrock				
						Test Pit TP-21	erminated at Depth of	7 Feet Belo	ow Ground Surface.		
			10.0								
			_								
			_								
			15.0								
			15.0								

Test Pit No.: TP-22

Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000	
Location:	53 Spring	Street, South	nington, Hartfor	d County, Conned	cticut				Client:	Johnson Develop	ment Associates, Inc.
Surface Eleva	tion: ±	218.0	feet NAVD88	Date Started:	(6/7/2022	Wat	er Depth	Elevation	Cave	In Depth Elevation
Termination D	epth:	9.0	feet bgs	Date Complet	ted:	6/7/2022	(1	feet bgs)	(ft NAVD88)	(feet bgs) (ft NAVD88)
Location:		Roadway		Logged By:	RK		During:		I		
Excavating M	ethod:	Compact Ex	cavator	Contractor:	CL		At Completion:		I <u></u> ∇	At Completion:	<u> </u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u> </u>		
SAMPLE		1	DEPTH	STRATA					MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)				(C	lassificat	ion)		
			0.0								
					<u>\\\</u>						
				TOPSOIL	\$112	9" Topsoil					
			_								
				SUBSOIL		23" Subsoil, Roo	ots				
											Cobble layer @ 3 fbgs
			_								
			5.0								
				GLACIAL							
			_								
				TILL		Reddish-Brown,	Silty Sand with Grave	el (SM)			
			_								
			_								
			_								
					ЦЦ						
						Test Pit TP-22 1	erminated at Depth of	f 9 Feet Belo	w Ground Surface.		
			10.0								
			15.0								
			13.0								

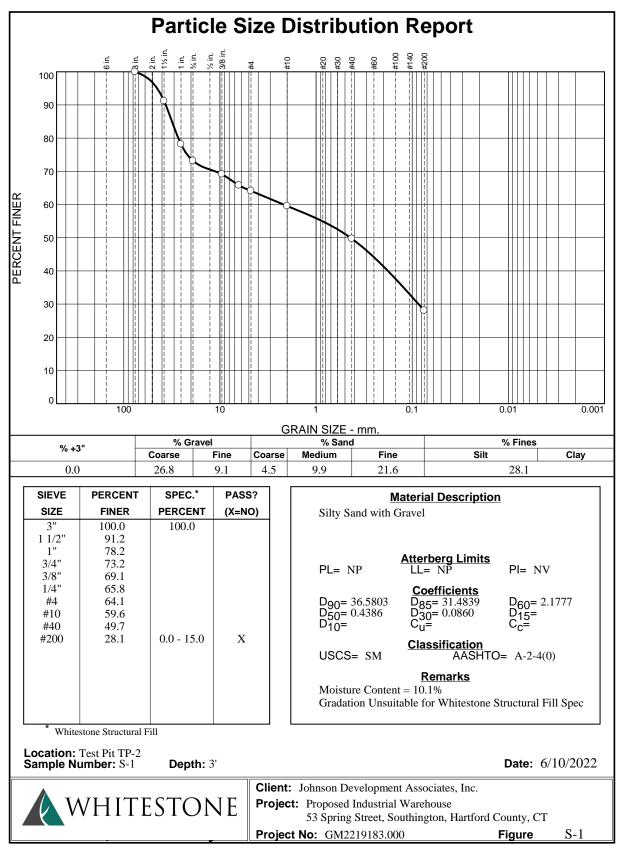
RECORD OF SUBSURFACE EXPLORATION

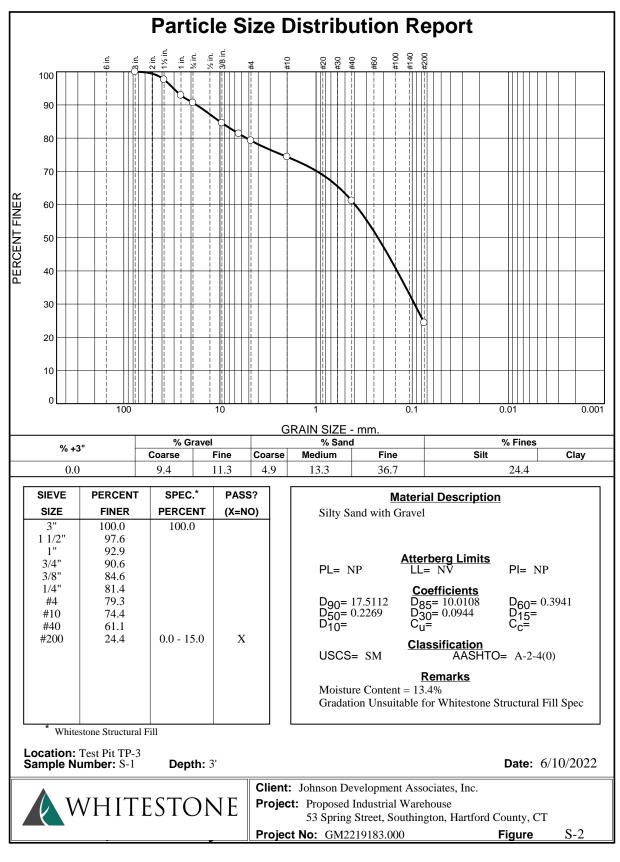
Test Pit No.: TP-23

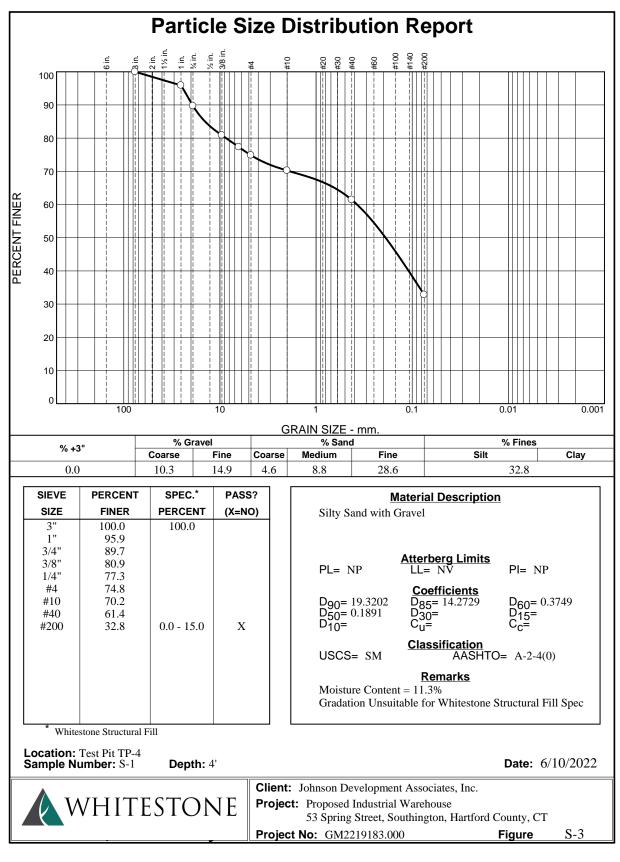
Page 1 of 1

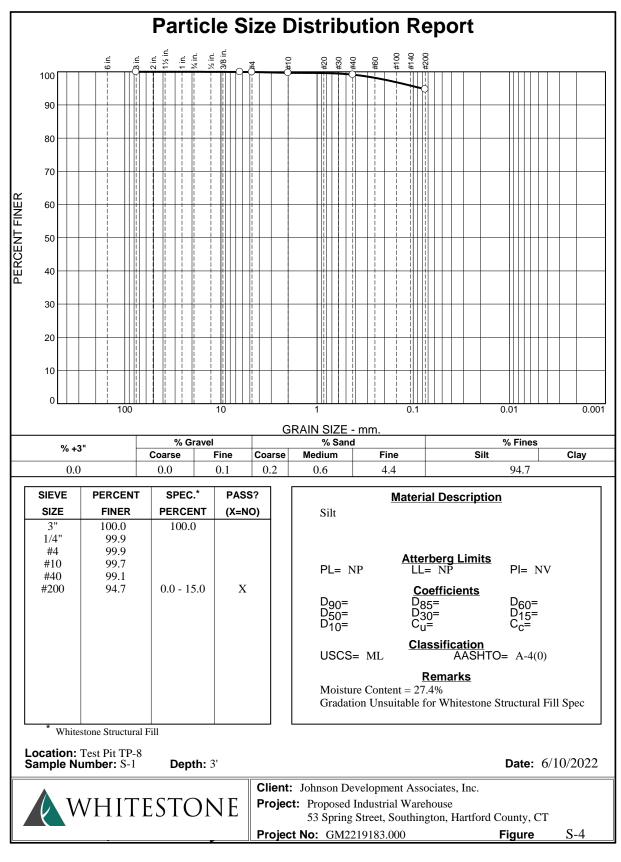
Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000		
				ord County, Connec	cticut				Client:	Johnson Develop	ment Asso	ciates, Inc.
Surface Eleva			feet NAVD88	1		6/7/2022	Wat	er Depth	Elevation			Elevation
Termination I			feet bgs	Date Complet	-	6/7/2022			(ft NAVD88)			(ft NAVD88)
Location:		Parking		Logged By:	-	0/1/2022	During:		¥		0,	,
Excavating M		Compact Ex	vegyator	Contractor:			At Completion:			At Completion:		l bad
						iller 215				At completion.		
Test Method:		Visual Obse		Rig Type:	Caler	oillar 315	24 Hours:		<u> </u> ▼			
SAMPLE		IATION	DEPTH	STRATA			DESCRIPT	ION OF	MATERIALS		Р	
Depth (ft.)	Number	Туре	(feet)	SIRAIA			(C	lassificat	tion)		ĸ	EMARKS
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
			0.0			ļ						
					<u> </u>							
				TOPSOIL	<u>\\\/</u>	9" Topsoil						
				SUBSOIL		18" Subsoil, Ro	ots					
			-+								•	
			5.0									
			5.0									
				GLACIAL								
				TILL		Reddish-Brown	, Silty Sand with Grave	el (SM)				
								()				
						Test Pit TP-23	Ferminated at Depth of	f 9 Feet Belo	w Ground Surface			
			10.0									
			-									
			-									
			-									
			15.0									

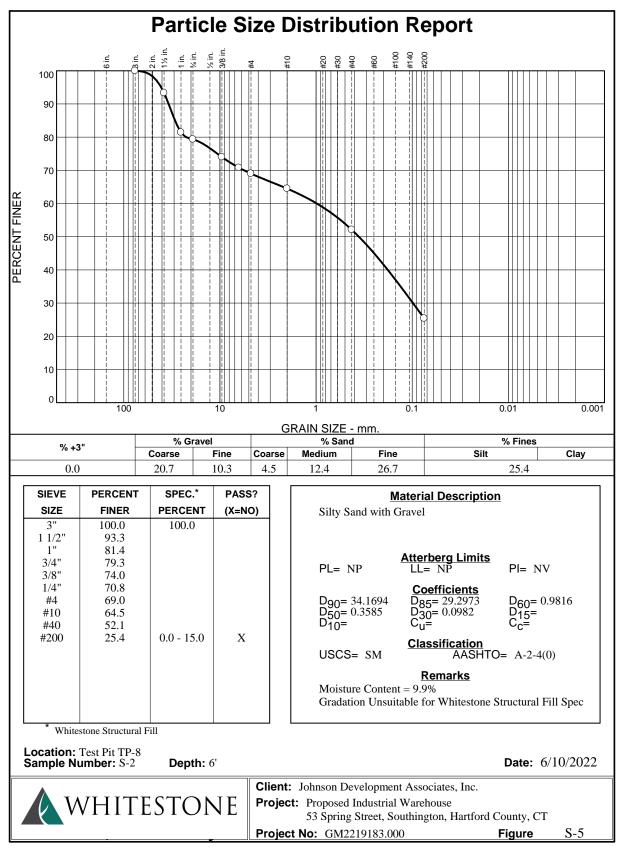
RECORD OF SUBSURFACE EXPLORATION


Test Pit No.: TP-24


Page 1 of 1


Project:	Proposed	Industrial Wa	arehouse					WAI	Project No.:	GM2219183.000		
				rd County, Conned	cticut				Client:	Johnson Develop	ment Asso	ciates, Inc.
Surface Eleva			feet NAVD88	Date Started:		6/7/2022	Wat	er Depth	Elevation			Elevation
Termination			feet bgs	Date Complet	-	6/7/2022			' (ft NAVD88)			' (ft NAVD88)
Location:		Roadway	leet bys		-	0/1/2022	During:		·			(
				Logged By:						A4 Commission		المع
Excavating M		Compact Ex		Contractor:			At Completion:			At Completion:		l <u> kä</u>
Test Method:		Visual Obse	ervation	Rig Type:	Caterp	oillar 315	24 Hours:		<u> </u> ▼			
SAMPLE		IATION	DEPTH	STRATA							R	EMARKS
Depth (ft.)	Number	Туре	(feet)				(0	assificat	tion)			
			0.0									
					NU/							
				TOPSOIL		12" Topsoil						
					<u>\\\/</u>	12 100000						
				SUBSOIL		16" Subsoil, Roo	ote					
				CODOCIL								
			+		HITH							
			5.0									
				01.40141								
				GLACIAL								
				TILL		Reddish-Brown,	Silty Sand with Grave	l, Cobbles,	Boulders (SM)			
			_									
					THE						L	
						Test Pit TP-24 1	erminated at Depth of	9 Feet Belo	ow Ground Surface			
							•					
			10.0									
			15.0									




APPENDIX B Laboratory Test Results

APPENDIX C Supplemental Information (USCS, Terms & Symbols)

UNIFIED SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISIONS		LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)	GP	POORLY-GRADED GRAVELS, GRAVEL- SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
00.20	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
	SAND AND SANDY	CLEAN SAND (LITTLE OR NO	SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	SOILS FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN	MORE THAN 50% OF	SANDS WITH	SM	SILTY SANDS, SAND-SILT MIXTURES
50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	COARSE FRACTION PASSING NO. 4 SIEVE	FINES (APPRECIABLE AMOUNT OF FINES)	SC	CLAYEY SANDS, SAND-CLAY MIXTURES
FINE	SILTS	LIQUID LIMITS	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
GRAINED SOILS	AND CLAYS	<u>LESS</u> THAN 50	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
MATERIAL IS SMALLER THAN NO. 200 SIEVE	SILTS AND CLAYS	LIQUID LIMITS <u>GREATER</u> THAN 50	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
SIZE			ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
ŀ	HIGHLY ORGANIC SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

SOIL CLASSIFICATION CHART

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS FOR SAMPLES WITH 5% TO 12% FINES

GRADATION*

% FINER BY WEIGHT

COMPACTNESS* Sand and/or Gravel

> RELATIVE DENSITY

% TO 10%	LOOSE	0% TO	40%
% TO 20%	MEDIUM DENSE	40% TO	70%
% TO 35%	DENSE	70% TO	90%
% TO 50%	VERY DENSE	. 90% TO ′	100%

CONSISTENCY* Clay and/or Silt

RANGE OF SHEARING STRENGTH IN POUNDS PER SQUARE FOOT

* VALUES ARE FROM LABORATORY OR FIELD TEST DATA, WHERE APPLICABLE. WHEN NO TESTING WAS PERFORMED, VALUES ARE ESTIMATED.

L:\Geotechnical Forms and References\Reports\USCSTRMSSYM CT.docx

Other Office Locations:

Warren, NJ	CHALFONT, PA 215.712.2700	Southborough, MA	WALL, NJ	PHILADELPHIA, PA	Bedford, NH	Тамра, FL
908.668.7777		508.485.0755	732.592.2101	215.848.2323	603.514.2230	813.851.0690

Environmental & Geotechnical Engineers & Consultants

GEOTECHNICAL TERMS AND SYMBOLS

SAMPLE IDENTIFICATION

The Unified Soil Classification System is used to identify the soil unless otherwise noted.

SOIL PROPERTY SYMBOLS

- Standard Penetration Value: Blows per ft. of a 140 lb. hammer falling 30" on a 2" O.D. split-spoon. N:
- Unconfined compressive strength, TSF. Ou:
- Qp: Penetrometer value, unconfined compressive strength, TSF.
- Mc: Moisture content, %.
- Liquid limit, %. LL:
- Plasticity index, %. PI:
- Natural dry density, PCF. δd:
- Apparent groundwater level at time noted after completion of boring. ₹:

DRILLING AND SAMPLING SYMBOLS

- NE: Not Encountered (Groundwater was not encountered).
- SS: Split-Spoon - 1 3/8" I.D., 2" O.D., except where noted.
- ST: Shelby Tube - 3" O.D., except where noted.
- AU: Auger Sample.
- Diamond Bit. OB:
- CB: Carbide Bit
- WS: Washed Sample.

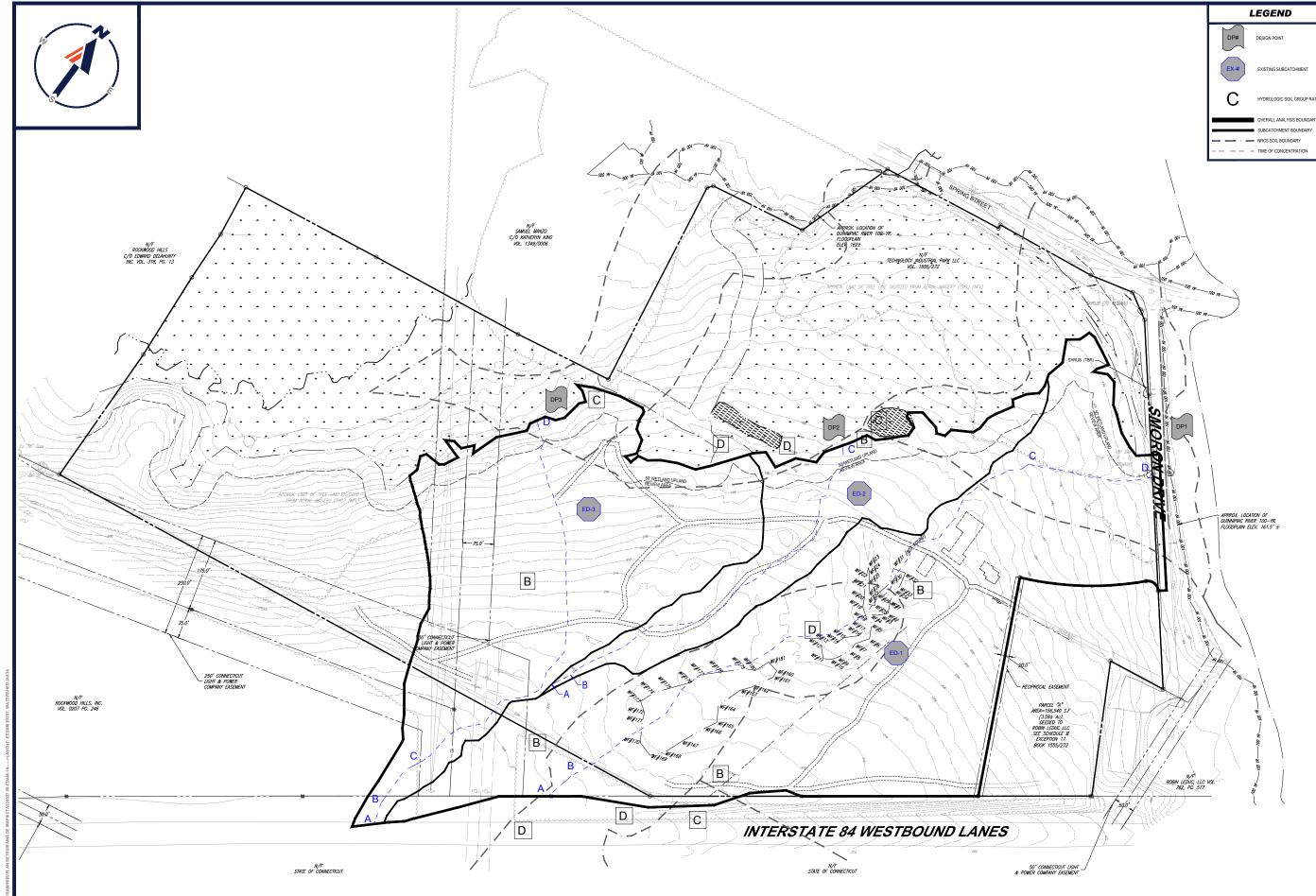
RELATIVE DENSITY AND CONSISTENCY CLASSIFICATION

Term (Non-Cohesive Soils)

Term (Non-Cohesive Soils)		Standard Penetration Resistance
Very Loose		0-4
Loose		4-10
Medium Dense		10-30
Dense		30-50
Very Dense		Over 50
<u>Term (Cohesive Soils)</u>	Qu (TSF)	
Very Soft	0 - 0.25	
Soft	0.25 - 0.50	
Firm (Medium)	0.50 - 1.00	
Stiff	1.00 - 2.00	
Very Stiff	2.00 - 4.00	
Hard	4.00+	

PARTICLE SIZE

Boulders	8 in.+	Coarse Sand	5mm-0.6mm	Silt	0.074mm-0.005mm
Cobbles	8 in3 in.	Medium Sand	0.6mm-0.2mm	Clay	-0.005mm
Gravel	3 in5mm	Fine Sand	0.2mm-0.074mm	-	


L:\Geotechnical Forms and References\Reports\USCSTRMSSYM CT.docx

		0	ther Office Location	15:		
WARREN, NJ	CHALFONT, PA	SOUTHBOROUGH, MA	WALL, NJ	PHILADELPHIA, PA	Bedford, NH	TAMPA, FL
908.668.7777	215.712.2700	508.485.0755	732.592.2101	215.848.2323	603.514.2230	813.851.0690

Environmental & Geotechnical Engineers & Consultants

APPENDIX C: EXISTING CONDITIONS HYDROLOGIC ANALYSIS

- EXISTING CONDITIONS DRAINAGE MAP
- ➢ EXISTING CONDITIONS HYDROCAD COMPUTATIONS

HYDROLOGIC SOIL GROUP RATIN

SUBCATCHMENT BOUNDARY

ORG. DATE - 04/17/2023

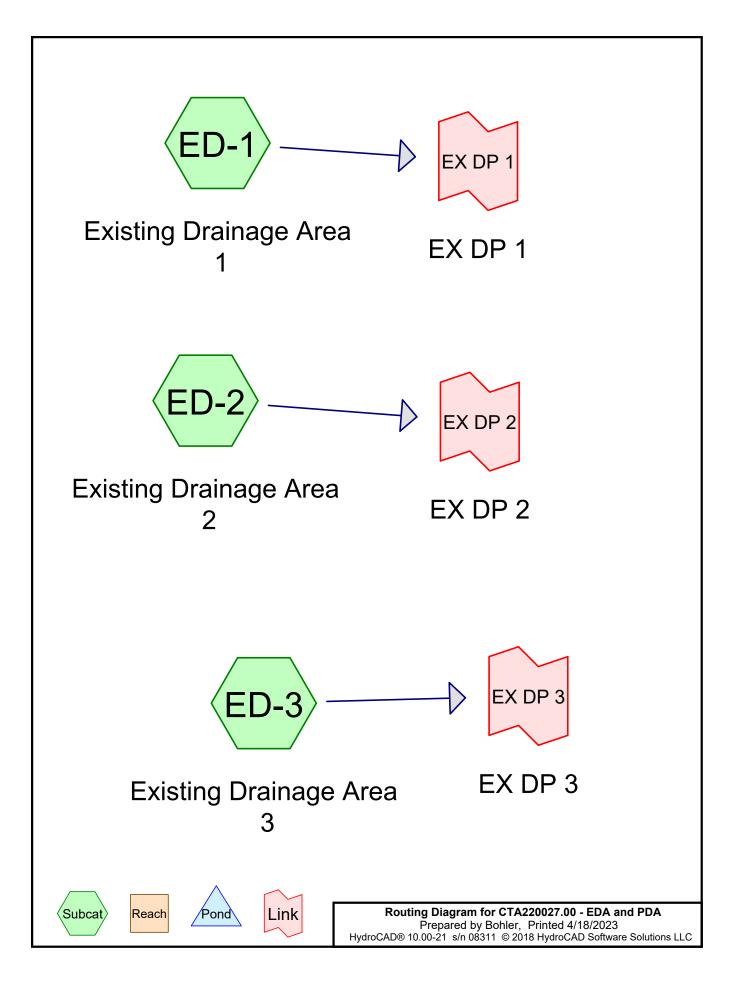
Cn Data				
			Value	
Cover Type/Condition	HSG A	HSG B	HSG C	HSG D
Open Space (Lawns), Poor Condition	68	79	86	89
Open Space (Lawns), Fair Condition	49	69	79	84
Open Space (Lawns), Good Condition	39	61	74	80
Impervious	98	98	98	98
Impervious (Roofs)	98	98	98	98
Impervious (High Traffic Street / Highway)	98	98	98	98
Impervious (Medium Traffic Street)	98	98	98	98
Impervious (Low Traffic / Residential Street)	98	98	98	98
Impervious (Res. Driveways, Play Courts, etc.)	98	98	98	98
Impervious (High Traffic Parking Lot)	98	98	98	98
Impervious (Low Traffic Parking Lot)	98	98	98	98
Impervious (Paved; open ditches (incl. R.O.W.)	83	89	92	93
Impervious (Gravel)	76	85	89	91
Impervious (Dirt, incl. R.O.W.)	72	82	87	89
Residential (1/8 Ac or less - 65% imperv.)	77	85	90	92
Residential (1/4 Ac - 38% imperv.)	61	75	83	87
Residential (1/3 Ac - 30% imperv.)	57	72	81	86
Residential (1/2 Ac - 25% imperv.)	54	70	80	85
Residential (1 Ac - 20% imperv.)	51	68	79	84
Residential (2 Ac - 12% imperv.)	46	65	77	82
Pasture, grassland, or range, Poor Condition	68	79	86	89
Pasture, grassland, or range, Fair Condition	49	69	79	84
Pasture, grassland, or range, Good Condition	39	61	74	80
Meadow	30	58	71	78
Brush - brush-weed-grass mixture, Poor Condition)	48	67	77	83
Brush - brush-weed-grass mixture, Fair Condition)	35	56	70	77
Brush - brush-weed-grass mixture, Good Condition)	30	48	65	73
Woods - grass combo (orchard or tree farm), Poor Condition	57	73	82	86
Woods, Poor Condition	45	66	77	83
Woods, Fair Condition	36	60	73	79
Woods, Good Condition	30	55	70	77
Fallow (Bare Soil)	77	86	91	94
Fallow (Crop Residue Cover), Poor Condition	76	85	90	93
Fallow (Crop Residue Cover), Good Condition	74	83	88	90
Row Crops (Straight Row (SR)), Poor Condition	72	81	88	91
Row Crops (Straight Row (SR)), Good Condition	67	78	85	89
Row Crops (SR + CR), Poor Condition	71	80	87	90
Row Crops (SR + CR), Good Condition	64	75	82	85
Row Crops (Contoured (C)), Poor Condition	70	79	84	88
Row Crops (Contoured (C)), Good Condition	65	75	82	86
Row Crops (C + CR), Poor Condition	69	78	83	87
Row Crops (C + CR), Good Condition	64	74	81	85
Row Crops (C + T), Poor Condition	66	74	80	82
Row Crops (C + T), Good Condition	62	71	78	81

Project: Johnson Development

Description: ED-1

Soil Group	Land Use Description	CN	% or Area (Acre)	Product (A x B)
Α		(A)	(B)	(C)
<u>A</u>	Woods, Good Condition	55	0.369	20.32
	Meadow	58	9.324	540.77
	Impervious	98	0.030	2.92
в	Impervious (Roofs)	98	0.170	16.71
	Meadow	71	0.878	62.35
	Impervious	98	0.082	8.07
	Woods, Good Condition	70	1.806	126.44
С				
	Meadow	78	4.442	346.44
	Woods, Good Condition	77	0.381	29.33
D				
water				
			17.483	1153.36
C	N (weighted) = <u>Total (C)</u> 1153	3.36 = 65.97		
-	Total (B) 17.		CN =	

Project: Johnson Development


Description: ED-2

Soil Group	Land Use Description	CN	% or Area	Product
			(Acre)	(A x B)
A		(A)	(B)	(C)
A	Meadow	58	3.563	206.68
	Meadow	00	3.003	200.00
в				
	Meadow	71	0.425	30.18
	Woods, Good Condition	70	0.294	20.55
с				
Ŭ				
	Meadow	78	0.081	6.34
D				
water				
		•	4.364	263.76
CI	N (weighted) = <u>Total (C)</u> 263.76	= 60.45		
	Total (B) 4.36		CN =	60

Project: Johnson Development

Description: ED-3

Soil Group	Land Use Description	CN	% or Area	Product
			(Acre)	(A x B)
		(A)	(B)	(C)
A	Weede Ocead Oceadities		0.500	07.00
	Woods, Good Condition	55 58	0.506 8.827	27.83 511.98
	Meadow	58	0.021	511.98
В				
	Meadow	71	0.563	39.97
с				
Ű				
	Meadow	78	0.631	49.19
		70	0.031	49.19
D				
water				
waler				
	1	1	10.527	628.97
CI	N (weighted) = <u>Total (C)</u> 628.97	= 59.75		
	Total (B) 10.53		CN =	60

CTA220027.00 - EDA and PDA Prepared by Bohler HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LI	Type III 24-hr 2-Yr Rainfall=3.43" Printed 4/18/2023 LC Page 2
Time span=0.00-24.00 hrs, dt=0.01 hrs, 2 Runoff by SCS TR-20 method, UH=SCS, W Reach routing by Dyn-Stor-Ind method - Pond routing	/eighted-CN
	0.00% Impervious Runoff Depth>0.76" min CN=66 Runoff=8.95 cfs 1.104 af
SubcatchmentED-2: Existing Drainage Area Runoff Area=4.364 ac Flow Length=994' Tc=17.6	0.00% Impervious Runoff Depth>0.50" min CN=60 Runoff=1.22 cfs 0.181 af
	0.00% Impervious Runoff Depth>0.50" min CN=60 Runoff=2.54 cfs 0.435 af
Link EX DP 1: EX DP 1	Inflow=8.95 cfs 1.104 af Primary=8.95 cfs 1.104 af
Link EX DP 2: EX DP 2	Inflow=1.22 cfs 0.181 af Primary=1.22 cfs 0.181 af
Link EX DP 3: EX DP 3	Inflow=2.54 cfs 0.435 af Primary=2.54 cfs 0.435 af

Total Runoff Area = 32.374 acRunoff Volume = 1.721 afAverage Runoff Depth = 0.64"100.00% Pervious = 32.374 ac0.00% Impervious = 0.000 ac

Summary for Subcatchment ED-1: Existing Drainage Area 1

Runoff = 8.95 cfs @ 12.32 hrs, Volume= 1.104 af, Depth> 0.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

	Area	(ac) C	N Dese	cription		
*	17.	483 6	6			
	17.483		100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.3	50	0.0300	0.08		Sheet Flow, A-B
						Grass: Bermuda n= 0.410 P2= 3.43"
	8.6	1,441	0.0300	2.79		Shallow Concentrated Flow, B-C
	0.6	293	0.0550	7.68	53.79	Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=4.00' D=1.00' Z= 3.0 '/' Top.W=10.00'
						n= 0.035 Earth, dense weeds

19.5 1,784 Total

Summary for Subcatchment ED-2: Existing Drainage Area 2

Runoff = 1.22 cfs @ 12.34 hrs, Volume= 0.181 af, Depth> 0.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

	Area	(ac) C	N Dese	cription		
*	4.	364 6	60			
	4.	364	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	12.2	50	0.0200	0.07		Sheet Flow, A-B
	5.4	944	0.0330	2.92		Grass: Bermuda n= 0.410 P2= 3.43" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
-	17.6	004	Total			

17.6 994 Total

Summary for Subcatchment ED-3: Existing Drainage Area 3

Runoff = 2.54 cfs @ 12.52 hrs, Volume= 0.435 af, Depth> 0.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

CTA220027.00 - EDA and PDA

Prepared by Bohler	•					
HydroCAD® 10.00-21	s/n 08311	© 2018 H	ydroCAD	Software	Solutions	LLC

	Area	(ac) C	N Dese	cription		
*	10.	527 6	60			
	10.	527	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	20.7	50	0.0200	0.04		Sheet Flow, A-B
	2.2	133	0.0410	1.01		Woods: Dense underbrush n= 0.800 P2= 3.43" Shallow Concentrated Flow, B-C
	4.8	1,043	0.0510	3.64		Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
_	27.7	1,226	Total			

Summary for Link EX DP 1: EX DP 1

Inflow Area =	17.483 ac,	0.00% Impervious, Inflow	Depth > 0.76"	for 2-Yr event
Inflow =	8.95 cfs @	12.32 hrs, Volume=	1.104 af	
Primary =	8.95 cfs @	12.32 hrs, Volume=	1.104 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link EX DP 2: EX DP 2

Inflow Area	a =	4.364 ac,	0.00% Impervious, Inflow	Depth > 0.50"	for 2-Yr event
Inflow	=	1.22 cfs @	12.34 hrs, Volume=	0.181 af	
Primary	=	1.22 cfs @	12.34 hrs, Volume=	0.181 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link EX DP 3: EX DP 3

Inflow Area =	10.527 ac,	0.00% Impervious, Inflow [Depth > 0.50"	for 2-Yr event
Inflow =	2.54 cfs @	12.52 hrs, Volume=	0.435 af	
Primary =	2.54 cfs @	12.52 hrs, Volume=	0.435 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

CTA220027.00 - EDA and PDAType III 24-hr10-Yr FPrepared by BohlerPrinteHydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC	Rainfall=5.45" ed 4/18/2023 Page 5
Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method	I
SubcatchmentED-1: Existing Drainage Runoff Area=17.483 ac 0.00% Impervious Runof Flow Length=1,784' Tc=19.5 min CN=66 Runoff=27.55	•
SubcatchmentED-2: Existing Drainage Area Runoff Area=4.364 ac 0.00% Impervious Runoff Flow Length=994' Tc=17.6 min CN=60 Runoff=5.2	
SubcatchmentED-3: Existing Drainage Runoff Area=10.527 ac 0.00% Impervious Runof Flow Length=1,226' Tc=27.7 min CN=60 Runoff=10.44	•
	5 cfs 2.959 af 5 cfs 2.959 af
	2 cfs 0.569 af 2 cfs 0.569 af
	5 cfs 1.368 af 5 cfs 1.368 af

Total Runoff Area = 32.374 acRunoff Volume = 4.895 afAverage Runoff Depth = 1.81"100.00% Pervious = 32.374 ac0.00% Impervious = 0.000 ac

Summary for Subcatchment ED-1: Existing Drainage Area 1

Runoff = 27.55 cfs @ 12.28 hrs, Volume= 2.959 af, Depth> 2.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

	Area	(ac) C	N Dese	cription		
*	17.	483 6	6			
	17.	483	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.3	50	0.0300	0.08		Sheet Flow, A-B
						Grass: Bermuda n= 0.410 P2= 3.43"
	8.6	1,441	0.0300	2.79		Shallow Concentrated Flow, B-C
						Unpaved Kv= 16.1 fps
	0.6	293	0.0550	7.68	53.79	Trap/Vee/Rect Channel Flow, C-D
						Bot.W=4.00' D=1.00' Z= 3.0 '/' Top.W=10.00'
_						n= 0.035 Earth, dense weeds

19.5 1,784 Total

Summary for Subcatchment ED-2: Existing Drainage Area 2

Runoff = 5.22 cfs @ 12.26 hrs, Volume= 0.569 af, Depth> 1.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

_	Area	(ac) C	N Dese	cription		
*	4.	364 6	50			
	4.	364	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	12.2	50	0.0200	0.07		Sheet Flow, A-B
	5.4	944	0.0330	2.92		Grass: Bermuda n= 0.410 P2= 3.43" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
	176	004	Total			

17.6 994 Total

Summary for Subcatchment ED-3: Existing Drainage Area 3

Runoff = 10.45 cfs @ 12.43 hrs, Volume= 1.368 af, Depth> 1.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

CTA220027.00 - EDA and PDA

Type III 24-hr	10-Yr Rainfall=5.45"
	Printed 4/18/2023
LC	Page 7

Prepared by Bohler			
HydroCAD® 10.00-21	s/n 08311	© 2018 HydroCAD Soft	ware Solutions LL

	Area	(ac) C	N Dese	cription		
*	10.	527 6	60			
	10.527 100.00		00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	20.7	50	0.0200	0.04		Sheet Flow, A-B
	2.2	133	0.0410	1.01		Woods: Dense underbrush n= 0.800 P2= 3.43" Shallow Concentrated Flow, B-C
	4.8	1,043	0.0510	3.64		Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
	27.7	1,226	Total			

Summary for Link EX DP 1: EX DP 1

Inflow Are	a =	17.483 ac,	0.00% Impervious, Inflow E	Depth > 2.03"	for 10-Yr event
Inflow	=	27.55 cfs @	12.28 hrs, Volume=	2.959 af	
Primary	=	27.55 cfs @	12.28 hrs, Volume=	2.959 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link EX DP 2: EX DP 2

Inflow Area	a =	4.364 ac,	0.00% Impervious, Inflow I	Depth > 1.56"	for 10-Yr event
Inflow	=	5.22 cfs @	12.26 hrs, Volume=	0.569 af	
Primary	=	5.22 cfs @	12.26 hrs, Volume=	0.569 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link EX DP 3: EX DP 3

Inflow Area	=	10.527 ac,	0.00% Impervious,	Inflow Depth > 1.5	56" for 10-Yr event
Inflow =	=	10.45 cfs @	12.43 hrs, Volume	= 1.368 af	
Primary =	=	10.45 cfs @	12.43 hrs, Volume	= 1.368 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

CTA220027.00 - EDA and PDA Prepared by Bohler HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions	Type III 24-hr 25-Yr Rainfall=6.71" Printed 4/18/2023 LLC Page 8
Time span=0.00-24.00 hrs, dt=0.01 hrs, Runoff by SCS TR-20 method, UH=SCS, Reach routing by Dyn-Stor-Ind method - Pond routin	Weighted-CN
	0.00% Impervious Runoff Depth>2.96" min CN=66 Runoff=41.07 cfs 4.320 af
SubcatchmentED-2: Existing Drainage Area Runoff Area=4.364 ac Flow Length=994' Tc=17.	0.00% Impervious Runoff Depth>2.39" 6 min CN=60 Runoff=8.37 cfs 0.869 af
	0.00% Impervious Runoff Depth>2.38" min CN=60 Runoff=16.69 cfs 2.091 af
Link EX DP 1: EX DP 1	Inflow=41.07 cfs 4.320 af Primary=41.07 cfs 4.320 af
Link EX DP 2: EX DP 2	Inflow=8.37 cfs 0.869 af Primary=8.37 cfs 0.869 af
Link EX DP 3: EX DP 3	Inflow=16.69 cfs 2.091 af Primary=16.69 cfs 2.091 af

Total Runoff Area = 32.374 acRunoff Volume = 7.279 afAverage Runoff Depth = 2.70"100.00% Pervious = 32.374 ac0.00% Impervious = 0.000 ac

Summary for Subcatchment ED-1: Existing Drainage Area 1

Runoff = 41.07 cfs @ 12.28 hrs, Volume= 4.320 af, Depth> 2.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

	Area	(ac) C	N Dese	cription		
*	17.	483 6	6			
	17.	483	83 100.00% Pervious Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.3	50	0.0300	0.08		Sheet Flow, A-B
						Grass: Bermuda n= 0.410 P2= 3.43"
	8.6	1,441	0.0300	2.79		Shallow Concentrated Flow, B-C
	0.6	293	0.0550	7.68	53.79	Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=4.00' D=1.00' Z= 3.0 '/' Top.W=10.00'
						n= 0.035 Earth, dense weeds

19.5 1,784 Total

Summary for Subcatchment ED-2: Existing Drainage Area 2

Runoff = 8.37 cfs @ 12.26 hrs, Volume= 0.869 af, Depth> 2.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

_	Area	(ac) C	N Dese	cription		
*	4.	364 6	50			
	4.364		4.364 100.00% Pervious		ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	12.2	50	0.0200	0.07		Sheet Flow, A-B
	5.4	944	0.0330	2.92		Grass: Bermuda n= 0.410 P2= 3.43" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
	176	004	Total			

17.6 994 Total

Summary for Subcatchment ED-3: Existing Drainage Area 3

Runoff = 16.69 cfs @ 12.41 hrs, Volume= 2.091 af, Depth> 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

CTA220027.00 - EDA and PDA

Type III 24-hr	25-Yr Rainfall=6.71"
	Printed 4/18/2023
LC	Page 10

Prepared by Bohler	-		
HydroCAD® 10.00-21	s/n 08311	© 2018 HydroCAD	Software Solutions LL

	Area	(ac) C	N Dese	cription		
*	10.	527 6	60			
	10.	527	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	20.7	50	0.0200	0.04		Sheet Flow, A-B
	2.2	133	0.0410	1.01		Woods: Dense underbrush n= 0.800 P2= 3.43" Shallow Concentrated Flow, B-C Woodland, Ky= 5.0 fpc
	4.8	1,043	0.0510	3.64		Woodland Kv= 5.0 fps Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
	27.7	1,226	Total			· · ·

Summary for Link EX DP 1: EX DP 1

Inflow Are	a =	17.483 ac,	0.00% Impervious, Inflo	w Depth > 2.96"	for 25-Yr event
Inflow	=	41.07 cfs @	12.28 hrs, Volume=	4.320 af	
Primary	=	41.07 cfs @	12.28 hrs, Volume=	4.320 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link EX DP 2: EX DP 2

Inflow Area	a =	4.364 ac,	0.00% Impervious, Inflo	w Depth > 2.39"	for 25-Yr event
Inflow	=	8.37 cfs @	12.26 hrs, Volume=	0.869 af	
Primary	=	8.37 cfs @	12.26 hrs, Volume=	0.869 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link EX DP 3: EX DP 3

Inflow Area =	10.527 ac,	0.00% Impervious, Ir	flow Depth > 2.38"	for 25-Yr event
Inflow =	16.69 cfs @	12.41 hrs, Volume=	2.091 af	
Primary =	16.69 cfs @	12.41 hrs, Volume=	2.091 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

CTA220027.00 - EDA and PDA Prepared by Bohler HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions	Type III 24-hr 100-Yr Rainfall=8.65" Printed 4/18/2023 S LLC Page 11
Time span=0.00-24.00 hrs, dt=0.01 hrs, Runoff by SCS TR-20 method, UH=SCS, Reach routing by Dyn-Stor-Ind method - Pond routir	, Weighted-CN
	c 0.00% Impervious Runoff Depth>4.53" 5 min CN=66 Runoff=63.39 cfs 6.596 af
SubcatchmentED-2: Existing Drainage Area Runoff Area=4.364 ac Flow Length=994' Tc=17.6	c 0.00% Impervious Runoff Depth>3.81" 6 min CN=60 Runoff=13.72 cfs 1.387 af
	c 0.00% Impervious Runoff Depth>3.80" 7 min CN=60 Runoff=27.37 cfs 3.337 af
Link EX DP 1: EX DP 1	Inflow=63.39 cfs 6.596 af Primary=63.39 cfs 6.596 af
Link EX DP 2: EX DP 2	Inflow=13.72 cfs 1.387 af Primary=13.72 cfs 1.387 af
Link EX DP 3: EX DP 3	Inflow=27.37 cfs 3.337 af Primary=27.37 cfs 3.337 af

Total Runoff Area = 32.374 acRunoff Volume = 11.319 af
100.00% Pervious = 32.374 acAverage Runoff Depth = 4.20"
0.00% Impervious = 0.000 ac

Summary for Subcatchment ED-1: Existing Drainage Area 1

Runoff = 63.39 cfs @ 12.28 hrs, Volume= 6.596 af, Depth> 4.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

	Area	(ac) C	N Dese	cription		
*	17.	483 6	6			
	17.	483	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.3	50	0.0300	0.08		Sheet Flow, A-B
						Grass: Bermuda n= 0.410 P2= 3.43"
	8.6	1,441	0.0300	2.79		Shallow Concentrated Flow, B-C
	0.6	293	0.0550	7.68	53.79	Unpaved Kv= 16.1 fps Trap/Vee/Rect Channel Flow, C-D Bot.W=4.00' D=1.00' Z= 3.0 '/' Top.W=10.00'
						n= 0.035 Earth, dense weeds

19.5 1,784 Total

Summary for Subcatchment ED-2: Existing Drainage Area 2

Runoff = 13.72 cfs @ 12.25 hrs, Volume= 1.387 af, Depth> 3.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

_	Area	(ac) C	N Dese	cription		
*	4.	364 6	50			
	4.	364	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	12.2	50	0.0200	0.07		Sheet Flow, A-B
	5.4	944	0.0330	2.92		Grass: Bermuda n= 0.410 P2= 3.43" Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
	176	004	Total			

17.6 994 Total

Summary for Subcatchment ED-3: Existing Drainage Area 3

Runoff = 27.37 cfs @ 12.40 hrs, Volume= 3.337 af, Depth> 3.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

CTA220027.00 - EDA and PDA Prepared by Bohler

A	rea	(ac) C	N Desc	cription		
*	10.	527 6	0			
10.527 100.00% Pervious Area			00% Pervi	ous Area		
	Тс	Length	Slope	Velocity	Capacity	Description
(m	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2	0.7	50	0.0200	0.04		Sheet Flow, A-B
						Woods: Dense underbrush n= 0.800 P2= 3.43"
:	2.2	133	0.0410	1.01		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	4.8	1,043	0.0510	3.64		Shallow Concentrated Flow, C-D
						Unpaved Kv= 16.1 fps
2	7.7	1,226	Total			

Summary for Link EX DP 1: EX DP 1

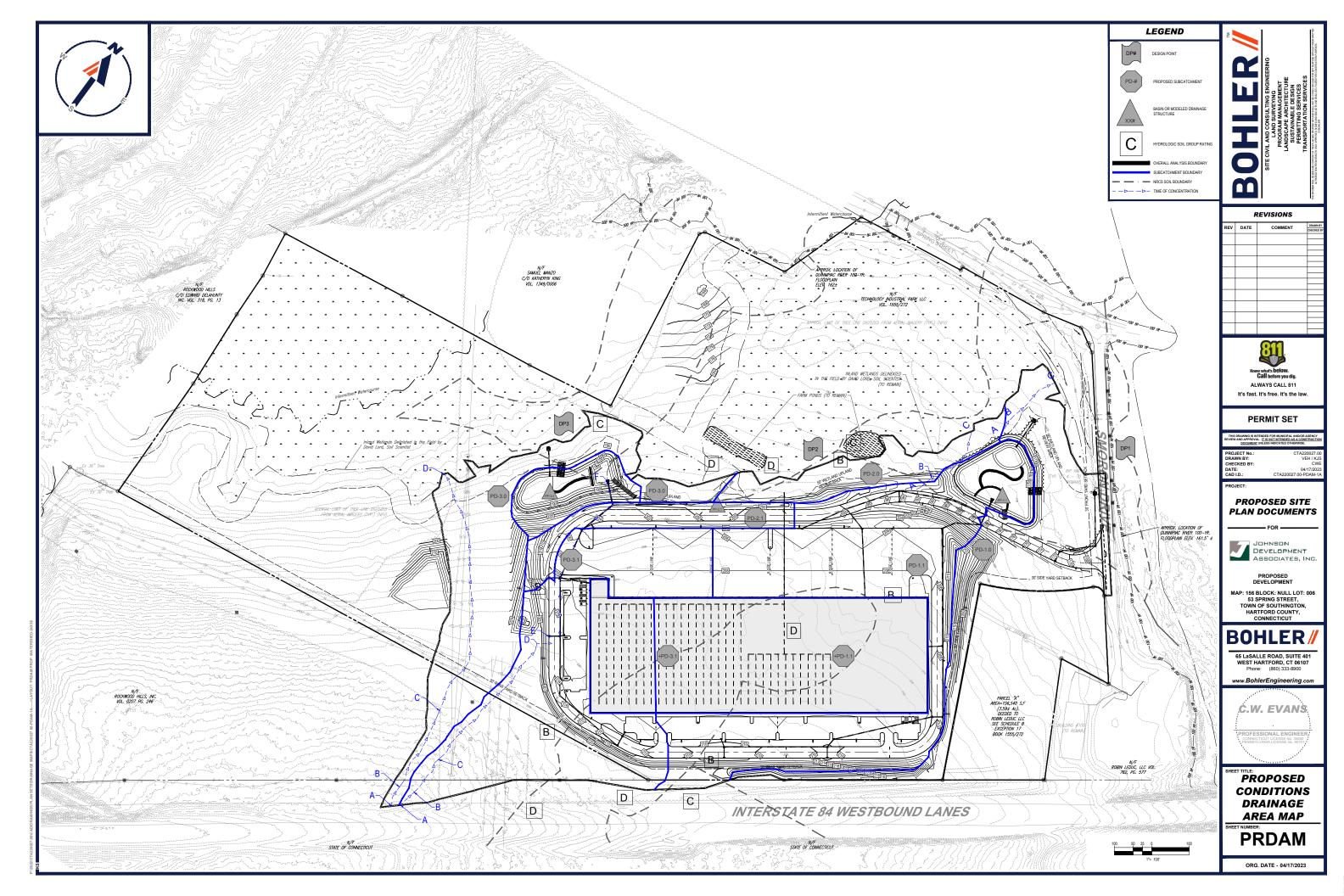
Inflow Are	ea =	17.483 ac,	0.00% Impervious, Inflow D	epth > 4.53"	for 100-Yr event
Inflow	=	63.39 cfs @	12.28 hrs, Volume=	6.596 af	
Primary	=	63.39 cfs @	12.28 hrs, Volume=	6.596 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link EX DP 2: EX DP 2

Inflow Area	a =	4.364 ac,	0.00% Impervious,	Inflow Depth > 3.8	31" for 100-Yr event
Inflow	=	13.72 cfs @	12.25 hrs, Volume=	= 1.387 af	
Primary	=	13.72 cfs @	12.25 hrs, Volume=	= 1.387 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs


Summary for Link EX DP 3: EX DP 3

Inflow Area	a =	10.527 ac,	0.00% Impervious, Inflo	ow Depth > 3.80"	for 100-Yr event
Inflow	=	27.37 cfs @	12.40 hrs, Volume=	3.337 af	
Primary	=	27.37 cfs @	12.40 hrs, Volume=	3.337 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

APPENDIX D: PROPOSED CONDITIONS HYDROLOGIC ANALYSIS

- PROPOSED CONDITIONS DRAINAGE MAP
- ➢ <u>PROPOSED CONDITIONS HYDROCAD CALCULATIONS</u>

Project: Johnson Development

Description: PD-1.0

Soil Group	hne	se Description	CN	% or Area	Product
Soil Group		se Description		(Acre)	(A x B)
			(A)	(B)	(C)
Α					
	Meadow		58	1.794	104.05
	Impervious		98	0.255	24.95
	Woods, Good Condition		55	0.003	0.16
В					
	Meadow Impervious		71	0.414 0.159	29.41 15.56
	Woods, Good Condition		70	1.277	89.38
С					
D					
water					
				3.901	263.51
C	N (weighted) = <u>Total (C)</u>	263.51	= 67.54		
	Total (B)	3.90		CN =	68

Project: Johnson Development

Description: PD-1.1

Soil Group	Land Use Description	CN	% or Area (Acre)	Product (A x B)
		(A)	(B)	(C)
Α				
	Meadow	58	1.291	74.86
	Open Space (Lawns), Good Condition	61	0.502	30.63
	Impervious (Roofs)	98	2.500	244.95
В	Impervious	98	4.490	439.98
	Meadow	71	1.014	71.99
	Impervious Woods, Good Condition	98	0.043 0.016	4.21 1.13
С				
	Meadow	78	0.088	6.89
	Open Space (Lawns), Good Condition	80	0.078	6.21
	Impervious (Roofs)	98	2.704	265.01
	Impervious	98	0.389	38.13
D	Woods, Good Condition	77	0.008	0.65
water				
			13.123	1184.65
Ci	N (weighted) = <u>Total (C)</u> 1184.65 Total (B) 13.12	= 90.27	CN =	90

Project: Johnson Development

Description: PD-2.0

Soil Group	Land Use Description	CN (A)	% or Area (Acre) (B)	Product (A x B) (C)
A		(^)		(0)
A	Meadow	58	0.661	38.34
В				
	Meadow	71	0.334	23.68
	Woods, Good Condition	70	0.229	16.04
С				
		70	0.400	40.04
	Meadow	78	0.162	12.64
D				
, D				
water				
	N (weighted) = <u>Total (C)</u> 90.70	= 65.45	1.386	90.70
01	Total (B) 1.39		CN =	65

Project: Johnson Development

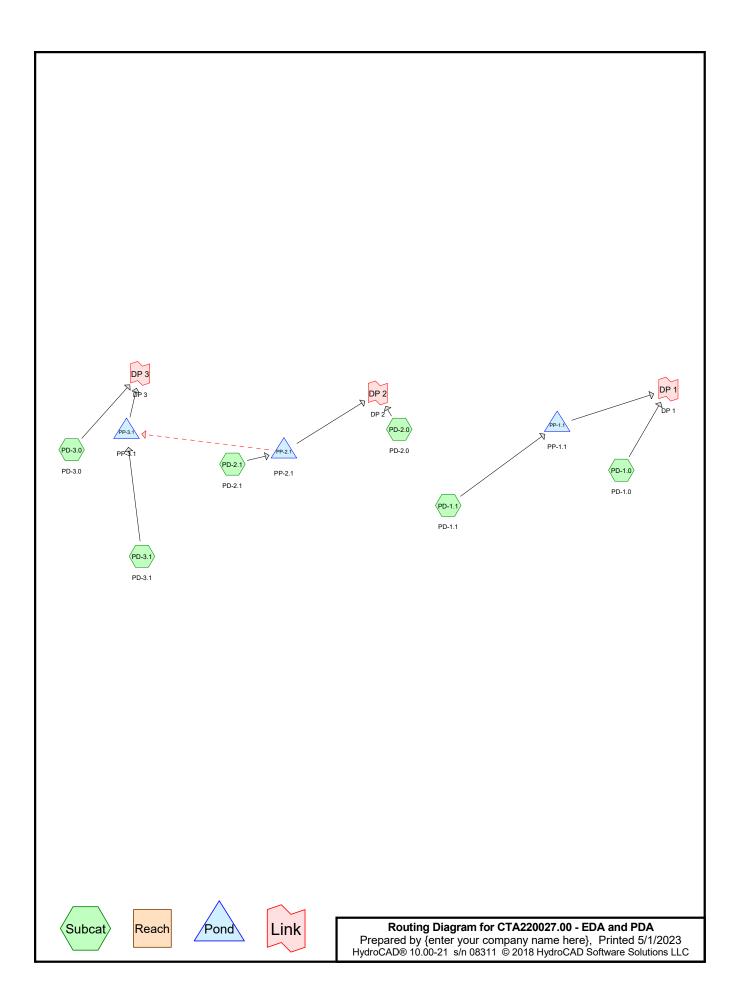
Description: PD-2.1

Soil Group		Land Use Des	cription	CN	% or Area (Acre) (B)	Product (A x B) (C)
A				(A)	(D)	(0)
A	Meadow			58	0.756	43.85
В	Impervious			98	0.750	45.95
					0.403	40.90
С						
				70	0.004	0.00
D	Meadow			78	0.004	0.29
water						
					1.229	90.09
	(weighted) -	Total (C)	otal (C) 90.09 = 73.3		1.229	90.09
CN (weighted) =		<u>Total (C)</u>		= 73.33		70
		Total (B)	1.23		CN = 73	

Runoff Calculations Cn Worksheet

Project: Johnson Development

Description: PD-3.0


Soil Group		Land Use Des	cription	CN (A)	% or Area (Acre) (B)	Product (A x B) (C)
Α				(A)	(B)	(0)
A	Meadow			58	3.085	178.93
	Woods, Good (Condition		55	0.373	20.54
В						
	Meadow			71	0.468	33.25
С						
D	Meadow			78	0.371	28.95
water						
					4.298	261.66
С	N (weighted) =	<u>Total (C)</u>	261.66	= 60.88		
		Total (B)	4.30		CN =	61

Runoff Calculations Cn Worksheet

Project: Johnson Development

Description: PD-3.1

Soil Group	Land Use Description	CN		Product
		(•)	(Acre)	(A x B)
		(A)	(B)	(C)
Α		50	0.005	474.00
	Meadow	58 61	2.965	171.96
	Open Space (Lawns), Good Condition		0.236	14.38
	Impervious (Roofs)	98	0.951	93.20
в	Impervious	98	2.233	218.85
Б	Woods, Good Condition	55	0.227	12.50
	Meadow	71	0.095	6.73
С				
	Meadow Open Space (Lawns), Good Condition	78	0.538	41.96 10.42
	Impervious (Roofs)	98	0.343	33.64
	Impervious	98	0.343	33.61
D	Woods, Good Condition	77	0.375	28.91
water				
	1		8.437	666.17
С	N (weighted) = <u>Total (C)</u> 666.17	= 78.96	I	
•				

Summary for Subcatchment PD-1.0: PD-1.0

Runoff = 3.12 cfs @ 12.14 hrs, Volume= 0.279 af, Depth> 0.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

_	A	rea (sf)	CN E	Description		
*	1	69,938	68			
	169,938		100.00% Pe		ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	8.4	50	0.0500	0.10		Sheet Flow, A-B Grass: Bermuda n= 0.410 P2= 3.43"
_	0.7	152	0.0455	3.43		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
_	9.1	202	Total			

Summary for Subcatchment PD-1.1: PD-1.1

Runoff = 36.14 cfs @ 12.09 hrs, Volume= 2.603 af, Depth> 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

	А	rea (sf)	CN E	Description		
*	5	71,628	90			
	5	71,628	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	(1	(1411)	(12-2-)	()	Direct Entry, Direct Entry

Summary for Subcatchment PD-2.0: PD-2.0

Runoff = 0.83 cfs @ 12.16 hrs, Volume= 0.082 af, Depth> 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

	Area (sf)	CN	Description	
*	60,362	65		
	60,362		100.00% Pervious Area	

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
9.2	50	0.0400	0.09		Sheet Flow, A-B
					Grass: Bermuda n= 0.410 P2= 3.43"
0.8	182	0.0500	3.60		Shallow Concentrated Flow, B-C
					Unpaved Kv= 16.1 fps

10.0 232 Total

Summary for Subcatchment PD-2.1: PD-2.1

Runoff = 1.55 cfs @ 12.10 hrs, Volume= 0.116 af, Depth> 1.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

_	A	rea (sf)	CN E	Description		
*		53,519	73			
		53,519	1	00.00% Pe	ervious Are	a
		Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	(min)	(feet)	(11/11)	(II/Sec)	(CIS)	
	6.0					Direct Entry,

Summary for Subcatchment PD-3.0: PD-3.0

Runoff = 1.18 cfs @ 12.50 hrs, Volume= 0.192 af, Depth> 0.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

_	A	rea (sf)	CN [Description		
*	1	87,213	61			
	1	87,213	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	20.7	50	0.0200	0.04		Sheet Flow, A-B
	3.8	230	0.0410	1.01		Woods: Dense underbrush n= 0.800 P2= 3.43" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	2.6	676	0.0700	4.26		Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
	27.1	956	Total			

Summary for Subcatchment PD-3.1: PD-3.1

Runoff 10.74 cfs @ 12.23 hrs, Volume= = 1.059 af, Depth> 1.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Yr Rainfall=3.43"

_	A	rea (sf)	CN	Description		
*	3	67,507	79			
	3	67,507		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description
	12.2	50	0.0200	0.07		Sheet Flow, A-B
						Grass: Bermuda n= 0.410 P2= 3.43"
	1.7	106	0.0410	1.01		Shallow Concentrated Flow, B-C
			0 0 - 1 0	0.04		Woodland Kv= 5.0 fps
	1.9	410	0.0510	3.64		Shallow Concentrated Flow, C-D
	0.1	25	0 2200	0.25		Unpaved Kv= 16.1 fps
	0.1	35	0.3300	9.25		Shallow Concentrated Flow, D-E Unpaved Kv= 16.1 fps
	0.7	430	0.0400	9.83	7.72	
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.012

16.6 1,031 Total

Summary for Pond PP-1.1: PP-1.1

Inflow Area	a =	13.123 ac,	0.00% Impervious,	Inflow Depth > 2	2.38" for	2-Yr event
Inflow	=	36.14 cfs @	12.09 hrs, Volume	= 2.603 at	f	
Outflow	=	6.51 cfs @	12.54 hrs, Volume	= 2.462 af	f, Atten= 8	2%, Lag= 27.5 min
Primary	=	6.51 cfs @	12.54 hrs, Volume	= 2.462 at	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 177.50' @ 12.54 hrs Surf.Area= 25,863 sf Storage= 48,012 cf

Plug-Flow detention time= 117.0 min calculated for 2.462 af (95% of inflow) Center-of-Mass det. time= 87.5 min (891.1 - 803.6)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	175.50'	175	5,762 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation		f.Area		.Store	Cum.Store	
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)	
175.50	2	2,150		0	0	
176.00	2	3,052	1	1,301	11,301	
178.00	2	6,797	4	9,849	61,150	
180.00	3	0,768	5	57,565	118,715	
181.75	3	4,429	5	57,047	175,762	

Type III 24-hr 2-Yr Rainfall=3.43" Printed 5/1/2023 C Page 5

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	175.50'	24.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 175.50' / 173.50' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	180.50'	20.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	178.40'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1	175.50'	8.0" Vert. Orifice-WQV and 2 yr control X 3.00 C= 0.600
#5	Device 1	177.70'	2.5' long Sharp-Crested Rectangular Weir X 2.00
			2 End Contraction(s)

Primary OutFlow Max=6.51 cfs @ 12.54 hrs HW=177.50' TW=0.00' (Dynamic Tailwater)

-**1=Culvert** (Passes 6.51 cfs of 15.13 cfs potential flow)

3=Riser (Controls 0.00 cfs)

-4=Orifice-WQV and 2 yr control (Orifice Controls 6.51 cfs @ 6.22 fps)

5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond PP-2.1: PP-2.1

Inflow Area =	1.229 ac,	0.00% Impervious, Inflow	Depth > 1.13" for 2-Yr event
Inflow =	1.55 cfs @	12.10 hrs, Volume=	0.116 af
Outflow =	0.18 cfs @	13.05 hrs, Volume=	0.083 af, Atten= 88%, Lag= 57.2 min
Discarded =	0.06 cfs @	13.05 hrs, Volume=	0.058 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af
Secondary =	0.12 cfs @	13.05 hrs, Volume=	0.026 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 197.71' @ 13.05 hrs Surf.Area= 2,240 sf Storage= 2,212 cf

Plug-Flow detention time= 236.9 min calculated for 0.083 af (72% of inflow) Center-of-Mass det. time= 137.3 min (997.4 - 860.1)

Volume	Invert	Avail.St	orage	Storage	Description	
#1	196.00'	4,	590 cf	Custom	Stage Data (Pris	smatic) Listed below (Recalc)
Elevation (feet)	• • • • • •	Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
196.00 198.00 198.60		354 2,566 3,000		0 2,920 1,670	0 2,920 4,590	

Type III 24-hr 2-Yr Rainfall=3.43" Printed 5/1/2023 C Page 6

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	194.80'	12.0" Round Culvert L= 198.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 194.80' / 193.00' S= 0.0091 '/' Cc= 0.900
#2 #3	Device 1 Device 1		n= 0.012, Flow Area= 0.79 sf 6.0" Vert. Orifice C= 0.600 24.0" Horiz. Riser C= 0.600 Limited to weir flow at low heads
#3 #4	Primary	198.30'	40.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
#5	Discarded	196 00'	2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32 1.000 in/hr Exfiltration over Surface area
<i>"</i> o	Diobalada	100.00	Conductivity to Groundwater Elevation = 192.00'

Discarded OutFlow Max=0.06 cfs @ 13.05 hrs HW=197.71' (Free Discharge) **5=Exfiltration** (Controls 0.06 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=196.00' TW=0.00' (Dynamic Tailwater) **4=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Secondary OutFlow Max=0.12 cfs @ 13.05 hrs HW=197.71' TW=187.62' (Dynamic Tailwater) 1=Culvert (Passes 0.12 cfs of 4.65 cfs potential flow) 2=Orifice (Orifice Controls 0.12 cfs @ 1.54 fps) 3=Riser (Controls 0.00 cfs)

Summary for Pond PP-3.1: PP-3.1

Inflow Area	a =	8.437 ac,	0.00% Impervious, I	nflow Depth > 1.5	54" for 2-Yr event
Inflow	=	10.74 cfs @	12.23 hrs, Volume=	1.085 af	
Outflow	=	1.14 cfs @	14.17 hrs, Volume=	: 0.911 af,	Atten= 89%, Lag= 116.1 min
Primary	=	1.14 cfs @	14.17 hrs, Volume=	: 0.911 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 187.70' @ 14.17 hrs Surf.Area= 15,558 sf Storage= 23,744 cf

Plug-Flow detention time= 260.8 min calculated for 0.911 af (84% of inflow) Center-of-Mass det. time= 194.2 min (1,044.3 - 850.1)

Volume	Invert	Avail.S	Avail.Storage		Storage Description			
#1	186.00'	114	114,987 cf		n Stage Data (Pri	smatic) Listed below (Recalc)		
Elevation (feet)		.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)			
186.00 188.00 190.00 192.25	10 20	12,438 16,117 20,021		0 28,555 36,138 50,294	0 28,555 64,693 114,987			

 Type III 24-hr
 2-Yr Rainfall=3.43"

 Printed
 5/1/2023

 C
 Page 7

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	185.50'	24.0" Round Culvert
			L= 57.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 185.50' / 184.50' S= 0.0175 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	191.00'	10.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	190.80'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1		6.0" Vert. Orifice-WQV and 2 yr control C= 0.600
#5	Device 1	187.90'	11.0" Vert. Orifice-10 yr control X 2.00 C= 0.600
#6	Device 1	189.70'	1.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=1.14 cfs @ 14.17 hrs HW=187.70' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 1.14 cfs of 16.54 cfs potential flow)

3=Riser (Controls 0.00 cfs)

-4=Orifice-WQV and 2 yr control (Orifice Controls 1.14 cfs @ 5.79 fps)

-5=Orifice-10 yr control (Controls 0.00 cfs)

6=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP 1: DP 1

Inflow Area =	17.024 ac,	0.00% Impervious,	Inflow Depth > 1.9	93" for 2-Yr event
Inflow =	8.74 cfs @	12.17 hrs, Volume	= 2.742 af	
Primary =	8.74 cfs @	12.17 hrs, Volume	= 2.742 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 2: DP 2

Inflow Area =	2.614 ac,	0.00% Impervious, Inflow	Depth > 0.38"	for 2-Yr event
Inflow =	0.83 cfs @	12.16 hrs, Volume=	0.082 af	
Primary =	0.83 cfs @	12.16 hrs, Volume=	0.082 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 3: DP 3

Inflow Area	a =	12.735 ac,	0.00% Impervious,	Inflow Depth > 1.0	04" for 2-Yr event
Inflow	=	2.16 cfs @	12.53 hrs, Volume	= 1.103 af	
Primary	=	2.16 cfs @	12.53 hrs, Volume	= 1.103 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment PD-1.0: PD-1.0

Runoff = 8.89 cfs @ 12.13 hrs, Volume= 0.716 af, Depth> 2.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

_	A	rea (sf)	CN E	Description			
*	1	69,938	68				
	169,938		100.00% Per		ervious Are	a	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	8.4	50	0.0500	0.10		Sheet Flow, A-B Grass: Bermuda n= 0.410 P2= 3.43"	_
	0.7	152	0.0455	3.43		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps	
_	9.1	202	Total				

Summary for Subcatchment PD-1.1: PD-1.1

Runoff = 63.63 cfs @ 12.08 hrs, Volume= 4.710 af, Depth> 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

_	A	rea (sf)	CN [Description		
*	5	71,628	90			
	571,628 100.00% Pervious Area			100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0					Direct Entry, Direct Entry

Summary for Subcatchment PD-2.0: PD-2.0

Runoff = 2.67 cfs @ 12.15 hrs, Volume= 0.226 af, Depth> 1.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

	Area (sf)	CN	Description	
*	60,362	65		
	60,362		100.00% Pervious Area	

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.2	50	0.0400	0.09		Sheet Flow, A-B
						Grass: Bermuda n= 0.410 P2= 3.43"
	0.8	182	0.0500	3.60		Shallow Concentrated Flow, B-C
_						Unpaved Kv= 16.1 fps
	10.0	232	Total			

Summary for Subcatchment PD-2.1: PD-2.1

Runoff = 3.79 cfs @ 12.09 hrs, Volume= 0.270 af, Depth> 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

_	A	rea (sf)	CN E	Description		
*		53,519	73			
	53,519 100.00% Pervious Area					a
		Length	Slope			Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.0					Direct Entry,

Summary for Subcatchment PD-3.0: PD-3.0

Runoff = 4.56 cfs @ 12.41 hrs, Volume= 0.585 af, Depth> 1.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

_	A	rea (sf)	CN [Description		
*	1	87,213	61			
	1	87,213	100.00% Pervious Area			a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	20.7	50	0.0200	0.04		Sheet Flow, A-B
	3.8	230	0.0410	1.01		Woods: Dense underbrush n= 0.800 P2= 3.43" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	2.6	676	0.0700	4.26		Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
	27.1	956	Total			

Summary for Subcatchment PD-3.1: PD-3.1

Runoff 23.01 cfs @ 12.23 hrs, Volume= = 2.237 af, Depth> 3.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Yr Rainfall=5.45"

16.6 1,031 Total

Summary for Pond PP-1.1: PP-1.1

Inflow Area	=	13.123 ac,	0.00% Impervious, Infl	low Depth > 4.31"	for 10-Yr event
Inflow	=	63.63 cfs @	12.08 hrs, Volume=	4.710 af	
Outflow	=	21.53 cfs @	12.37 hrs, Volume=	4.532 af, Att	en= 66%, Lag= 16.9 min
Primary	=	21.53 cfs @	12.37 hrs, Volume=	4.532 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 178.53' @ 12.37 hrs Surf.Area= 27,840 sf Storage= 75,507 cf

Plug-Flow detention time= 102.7 min calculated for 4.532 af (96% of inflow) Center-of-Mass det. time= 80.8 min (868.0 - 787.2)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	175.50'	17:	5,762 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)		Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
175.50		2,150	(cubit	0	0	
176.00		3,052		1,301	11,301	
178.00		6,797		19,849	61,150	
180.00 181.75		0,768 4,429		57,565 57,047	118,715 175,762	

 Type III 24-hr
 10-Yr Rainfall=5.45"

 Printed
 5/1/2023

 LC
 Page 11

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	175.50'	24.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 175.50' / 173.50' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	180.50'	20.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	178.40'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1		8.0" Vert. Orifice-WQV and 2 yr control X 3.00 C= 0.600
#5	Device 1	177.70'	2.5' long Sharp-Crested Rectangular Weir X 2.00 2 End Contraction(s)

Primary OutFlow Max=21.53 cfs @ 12.37 hrs HW=178.53' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 21.53 cfs @ 6.85 fps)

3=Riser (Passes < 2.03 cfs potential flow)

4=Orifice-WQV and 2 yr control (Passes < 8.27 cfs potential flow)

5=Sharp-Crested Rectangular Weir (Passes < 11.45 cfs potential flow)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond PP-2.1: PP-2.1

Inflow Area =	1.229 ac,	0.00% Impervious, Inflow D	epth > 2.64" for 10-Yr event
Inflow =	3.79 cfs @	12.09 hrs, Volume=	0.270 af
Outflow =	1.94 cfs @	12.25 hrs, Volume=	0.228 af, Atten= 49%, Lag= 9.6 min
Discarded =	0.08 cfs @	12.25 hrs, Volume=	0.067 af
Primary =	0.29 cfs @	12.25 hrs, Volume=	0.003 af
Secondary =	1.57 cfs @	12.25 hrs, Volume=	0.158 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 198.32' @ 12.25 hrs Surf.Area= 2,798 sf Storage= 3,779 cf

Plug-Flow detention time= 121.7 min calculated for 0.228 af (85% of inflow) Center-of-Mass det. time= 55.3 min (890.3 - 835.0)

Volume	Invert	Avail	Storage	Storage	Description	
#1	196.00'		4,590 cf	Custom	Stage Data (Pri	i smatic) Listed below (Recalc)
Elevation (feet)		Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
196.00 198.00 198.60		354 2,566 3,000		0 2,920 1,670	0 2,920 4,590	

 Type III 24-hr
 10-Yr Rainfall=5.45"

 Printed
 5/1/2023

 LC
 Page 12

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	194.80'	12.0" Round Culvert L= 198.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 194.80' / 193.00' S= 0.0091 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf
#2	Device 1	197.50'	
#3	Device 1	198.20'	24.0" Horiz. Riser C= 0.600 Limited to weir flow at low heads
#4	Primary	198.30'	40.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32
#5	Discarded	196.00'	1.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 192.00'

Discarded OutFlow Max=0.08 cfs @ 12.25 hrs HW=198.32' (Free Discharge) **5=Exfiltration** (Controls 0.08 cfs)

Primary OutFlow Max=0.29 cfs @ 12.25 hrs HW=198.32' TW=0.00' (Dynamic Tailwater) **4=Broad-Crested Rectangular Weir** (Weir Controls 0.29 cfs @ 0.36 fps)

Secondary OutFlow Max=1.57 cfs @ 12.25 hrs HW=198.32' TW=187.99' (Dynamic Tailwater) 1=Culvert (Passes 1.57 cfs of 5.02 cfs potential flow) 2=Orifice (Orifice Controls 0.71 cfs @ 3.64 fps) 3=Riser (Weir Controls 0.86 cfs @ 1.13 fps)

Summary for Pond PP-3.1: PP-3.1

Inflow Area	a =	8.437 ac,	0.00% Impervious, Inflo	w Depth > 3.41" for 10-Yr event	
Inflow	=	24.55 cfs @	12.23 hrs, Volume=	2.395 af	
Outflow	=	6.58 cfs @	12.75 hrs, Volume=	2.041 af, Atten= 73%, Lag= 31.1 mi	in
Primary	=	6.58 cfs @	12.75 hrs, Volume=	2.041 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 188.98' @ 12.75 hrs Surf.Area= 18,033 sf Storage= 45,315 cf

Plug-Flow detention time= 186.1 min calculated for 2.040 af (85% of inflow) Center-of-Mass det. time= 124.6 min (953.4 - 828.8)

Volume	Invert	Avail.S	Storage	Storage	e Description	
#1	186.00'	114	,987 cf	Custor	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)		Area (sq-ft)	Inc. cubic)	Store -feet)	Cum.Store (cubic-feet)	
186.00	1	2,438		0	0	
188.00	1	6,117	28	3,555	28,555	
190.00	2	0,021	36	5,138	64,693	
192.25	2	4,685	50),294	114,987	

 Type III 24-hr
 10-Yr Rainfall=5.45"

 Printed
 5/1/2023

 LC
 Page 13

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	185.50'	24.0" Round Culvert
	-		L= 57.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 185.50' / 184.50' S= 0.0175 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	191.00'	10.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	190.80'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1		6.0" Vert. Orifice-WQV and 2 yr control C= 0.600
#5	Device 1	187.90'	11.0" Vert. Orifice-10 yr control X 2.00 C= 0.600
#6	Device 1	189.70'	1.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=6.58 cfs @ 12.75 hrs HW=188.98' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 6.58 cfs of 23.83 cfs potential flow)

3=Riser (Controls 0.00 cfs)

-4=Orifice-WQV and 2 yr control (Orifice Controls 1.56 cfs @ 7.96 fps)

-5=Orifice-10 yr control (Orifice Controls 5.02 cfs @ 3.80 fps)

6=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP 1: DP 1

Inflow Area	a =	17.024 ac,	0.00% Impervious	, Inflow Depth > 3	.70" for 10-Yr event
Inflow	=	26.48 cfs @	12.33 hrs, Volum	e= 5.248 af	
Primary	=	26.48 cfs @	12.33 hrs, Volum	e= 5.248 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 2: DP 2

Inflow Area =	2.614 ac,	0.00% Impervious, Inflow I	Depth > 1.05"	for 10-Yr event
Inflow =	2.67 cfs @	12.15 hrs, Volume=	0.228 af	
Primary =	2.67 cfs @	12.15 hrs, Volume=	0.228 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 3: DP 3

Inflow Area	a =	12.735 ac,	0.00% Impervious,	Inflow Depth >	2.47" for 10-Yr event
Inflow	=	10.21 cfs @	12.55 hrs, Volume	e= 2.626 a	af
Primary	=	10.21 cfs @	12.55 hrs, Volume	e= 2.626 a	af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment PD-1.0: PD-1.0

Runoff = 12.99 cfs @ 12.13 hrs, Volume= 1.031 af, Depth> 3.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

_	A	rea (sf)	CN E	Description		
*	1	69,938	68			
	169,938 100.00% Pervious Area				ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	8.4	50	0.0500	0.10		Sheet Flow, A-B Grass: Bermuda n= 0.410 P2= 3.43"
	0.7	152	0.0455	3.43		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
_	9.1	202	Total			

Summary for Subcatchment PD-1.1: PD-1.1

Runoff = 80.62 cfs @ 12.08 hrs, Volume= 6.052 af, Depth> 5.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

	А	rea (sf)	CN [Description		
*	5	71,628	90			
	5	71,628	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0				Y/	Direct Entry, Direct Entry

Summary for Subcatchment PD-2.0: PD-2.0

Runoff = 4.03 cfs @ 12.14 hrs, Volume= 0.332 af, Depth> 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

	Area (sf)	CN	Description	
*	60,362	65		
	60,362		100.00% Pervious Area	

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	9.2	50	0.0400	0.09		Sheet Flow, A-B	_
						Grass: Bermuda	
	0.8	182	0.0500	3.60		Shallow Concentrated Flow, B-C	
_						Unpaved Kv= 16.1 fps	_
	10.0	232	Total				

Summary for Subcatchment PD-2.1: PD-2.1

Runoff = 5.31 cfs @ 12.09 hrs, Volume= 0.377 af, Depth> 3.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

_	A	rea (sf)	CN [Description		
*		53,519	73			
		53,519	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0					Direct Entry,

Summary for Subcatchment PD-3.0: PD-3.0

Runoff	=	7.19 cfs @	12.40 hrs.	Volume=	0.887 af, Dep	oth> 2.48"
1 (drion		1.10 010 (0)	12.101110,	voianio	0.001 al, Do	2010 2.10

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

_	A	rea (sf)	CN [Description		
*	1	87,213	61			
	187,213 100.00% Pervious Area				ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	20.7	50	0.0200	0.04		Sheet Flow, A-B
	3.8	230	0.0410	1.01		Woods: Dense underbrush n= 0.800 P2= 3.43" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	2.6	676	0.0700	4.26		Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
	27.1	956	Total			

Type III 24-hr 25-Yr Rainfall=6.71" Printed 5/1/2023 HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC Page 16

Summary for Subcatchment PD-3.1: PD-3.1

Runoff 31.01 cfs @ 12.23 hrs, Volume= = 3.028 af, Depth> 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Yr Rainfall=6.71"

16.6 1,031 Total

Summary for Pond PP-1.1: PP-1.1

Inflow Area	=	13.123 ac,	0.00% Impervious,	Inflow Depth > 5	.53" for 25-Yr event
Inflow =	=	80.62 cfs @	12.08 hrs, Volume	= 6.052 af	
Outflow =	=	24.73 cfs @	12.40 hrs, Volume	= 5.854 af	, Atten= 69%, Lag= 18.8 min
Primary =	=	24.73 cfs @	12.40 hrs, Volume	= 5.854 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 179.17' @ 12.40 hrs Surf.Area= 29,126 sf Storage= 93,950 cf

Plug-Flow detention time= 95.2 min calculated for 5.852 af (97% of inflow) Center-of-Mass det. time= 75.8 min (856.4 - 780.6)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	175.50'	17	5,762 cf	Custor	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)		f.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
175.50 176.00	2	2,150 3,052	1	0 1,301	0 11,301	
178.00 180.00 181.75	2 3	6,797 0,768 4,429	4	19,849 57,565 57,047	61,150 118,715 175,762	

Type III 24-hr 25-Yr Rainfall=6.71" Printed 5/1/2023 Page 17

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	175.50'	24.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 175.50' / 173.50' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	180.50'	20.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	178.40'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1		8.0" Vert. Orifice-WQV and 2 yr control X 3.00 C= 0.600
#5	Device 1	177.70'	2.5' long Sharp-Crested Rectangular Weir X 2.00 2 End Contraction(s)

Primary OutFlow Max=24.73 cfs @ 12.40 hrs HW=179.17' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 24.73 cfs @ 7.87 fps)

3=Riser (Passes < 31.11 cfs potential flow)

-4=Orifice-WQV and 2 yr control (Passes < 9.21 cfs potential flow)

5=Sharp-Crested Rectangular Weir (Passes < 25.78 cfs potential flow)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond PP-2.1: PP-2.1

Inflow Area =	1.229 ac,	0.00% Impervious, Inflow D	epth > 3.68" for 25-Yr event
Inflow =	5.31 cfs @	12.09 hrs, Volume=	0.377 af
Outflow =	5.05 cfs @	12.12 hrs, Volume=	0.333 af, Atten= 5%, Lag= 1.6 min
Discarded =	0.09 cfs @	12.12 hrs, Volume=	0.072 af
Primary =	2.56 cfs @	12.12 hrs, Volume=	0.034 af
Secondary =	2.40 cfs @	12.12 hrs, Volume=	0.228 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 198.39' @ 12.12 hrs Surf.Area= 2,845 sf Storage= 3,964 cf

Plug-Flow detention time= 96.3 min calculated for 0.333 af (88% of inflow) Center-of-Mass det. time= 42.5 min (867.8 - 825.4)

Volume	Invert	Avail.St	orage	Storage	Description	
#1	196.00'	4,	590 cf	Custom	Stage Data (Pris	smatic) Listed below (Recalc)
Elevation (feet)	• • • • • •	Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
196.00 198.00 198.60		354 2,566 3,000		0 2,920 1,670	0 2,920 4,590	

 Type III 24-hr
 25-Yr Rainfall=6.71"

 Printed
 5/1/2023

 LC
 Page 18

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	194.80'	12.0" Round Culvert L= 198.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 194.80' / 193.00' S= 0.0091 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf
#2 #3 #4	Device 1 Device 1 Primary		6.0" Vert. Orifice C= 0.600 24.0" Horiz. Riser C= 0.600 Limited to weir flow at low heads 40.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
#5	Discarded	196.00'	2.85 3.07 3.20 3.32 1.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 192.00'

Discarded OutFlow Max=0.09 cfs @ 12.12 hrs HW=198.39' (Free Discharge) **5=Exfiltration** (Controls 0.09 cfs)

Secondary OutFlow Max=2.40 cfs @ 12.12 hrs HW=198.39' TW=187.92' (Dynamic Tailwater) 1=Culvert (Passes 2.40 cfs of 5.06 cfs potential flow) 2=Orifice (Orifice Controls 0.75 cfs @ 3.84 fps) 3=Riser (Weir Controls 1.65 cfs @ 1.41 fps)

Summary for Pond PP-3.1: PP-3.1

Inflow Area =	8.437 ac,	0.00% Impervious, Ir	nflow Depth > 4.63"	for 25-Yr event
Inflow =	32.92 cfs @	12.23 hrs, Volume=	3.255 af	
Outflow =	9.40 cfs @	12.71 hrs, Volume=	2.826 af, Atte	en= 71%, Lag= 29.3 min
Primary =	9.40 cfs @	12.71 hrs, Volume=	2.826 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 189.77' @ 12.71 hrs Surf.Area= 19,568 sf Storage= 60,095 cf

Plug-Flow detention time= 158.1 min calculated for 2.825 af (87% of inflow) Center-of-Mass det. time= 101.1 min (922.6 - 821.5)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	186.00'	114	,987 cf	Custor	n Stage Data (Pri	i smatic) Listed below (Recalc)
Elevation (feet)		.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
186.00	1	2,438		0	0	
188.00	1	6,117	2	28,555	28,555	
190.00	2	0,021	3	86,138	64,693	
192.25	2	4,685	5	50,294	114,987	

 Type III 24-hr
 25-Yr Rainfall=6.71"

 Printed
 5/1/2023

 LC
 Page 19

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	185.50'	24.0" Round Culvert
			L= 57.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 185.50' / 184.50' S= 0.0175 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	191.00'	10.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	190.80'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1	186.00'	6.0" Vert. Orifice-WQV and 2 yr control C= 0.600
#5	Device 1	187.90'	11.0" Vert. Orifice-10 yr control X 2.00 C= 0.600
#6	Device 1	189.70'	1.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=9.40 cfs @ 12.71 hrs HW=189.77' TW=0.00' (Dynamic Tailwater)

-**1=Culvert** (Passes 9.40 cfs of 27.34 cfs potential flow)

3=Riser (Controls 0.00 cfs)

-4=Orifice-WQV and 2 yr control (Orifice Controls 1.77 cfs @ 9.03 fps)

-5=Orifice-10 yr control (Orifice Controls 7.54 cfs @ 5.72 fps)

6=Sharp-Crested Rectangular Weir (Weir Controls 0.09 cfs @ 0.85 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP 1: DP 1

Inflow Area	a =	17.024 ac,	0.00% Impervious,	Inflow Depth > 4.8	85" for 25-Yr event
Inflow	=	35.56 cfs @	12.15 hrs, Volume	e= 6.885 af	
Primary	=	35.56 cfs @	12.15 hrs, Volume	e= 6.885 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 2: DP 2

Inflow Area =	2.614 ac,	0.00% Impervious, Inf	low Depth > 1.68"	for 25-Yr event
Inflow =	6.48 cfs @	12.12 hrs, Volume=	0.366 af	
Primary =	6.48 cfs @	12.12 hrs, Volume=	0.366 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 3: DP 3

Inflow Area	a =	12.735 ac,	0.00% Impervious, Inf	flow Depth > 3.50"	for 25-Yr event
Inflow	=	15.57 cfs @	12.47 hrs, Volume=	3.714 af	
Primary	=	15.57 cfs @	12.47 hrs, Volume=	3.714 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Subcatchment PD-1.0: PD-1.0

Runoff = 19.69 cfs @ 12.13 hrs, Volume= 1.553 af, Depth> 4.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

_	A	rea (sf)	CN E	Description		
*	1	69,938	68			
	169,938 100.00% Pervious Area		ervious Are	a		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	8.4	50	0.0500	0.10		Sheet Flow, A-B Grass: Bermuda n= 0.410 P2= 3.43"
	0.7	152	0.0455	3.43		Shallow Concentrated Flow, B-C Unpaved Kv= 16.1 fps
_	9.1	202	Total			

Summary for Subcatchment PD-1.1: PD-1.1

Runoff = 106.55 cfs @ 12.08 hrs, Volume= 8.136 af, Depth> 7.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

_	A	rea (sf)	CN E	Description		
*	5	71,628	90			
	5	71,628	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	(1661)	(1711)	(11/380)	(015)	Direct Entry, Direct Entry

Summary for Subcatchment PD-2.0: PD-2.0

Runoff = 6.27 cfs @ 12.14 hrs, Volume= 0.510 af, Depth> 4.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

	Area (sf)	CN	Description	
*	60,362	65		
	60,362		100.00% Pervious Area	

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.2	50	0.0400	0.09		Sheet Flow, A-B
						Grass: Bermuda n= 0.410 P2= 3.43"
	0.8	182	0.0500	3.60		Shallow Concentrated Flow, B-C
_						Unpaved Kv= 16.1 fps
	10.0	232	Total			

Summary for Subcatchment PD-2.1: PD-2.1

Runoff = 7.74 cfs @ 12.09 hrs, Volume= 0.551 af, Depth> 5.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

_	А	rea (sf)	CN E	Description		
*		53,519	73			
		53,519	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	(ieet)	(1011)	(17560)	(015)	Direct Entry,

Summary for Subcatchment PD-3.0: PD-3.0

Runoff	=	11.67 cfs @	12.38 hrs, Volume	= 1.405 af.	Depth> 3.92"
1 toni on					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

	A	rea (sf)	CN [Description		
*	1	87,213	61			
	1	87,213	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	20.7	50	0.0200	0.04		Sheet Flow, A-B
	3.8	230	0.0410	1.01		Woods: Dense underbrush n= 0.800 P2= 3.43" Shallow Concentrated Flow, B-C Woodland Kv= 5.0 fps
	2.6	676	0.0700	4.26		Shallow Concentrated Flow, C-D Unpaved Kv= 16.1 fps
	27.1	956	Total			

Summary for Subcatchment PD-3.1: PD-3.1

Runoff 43.49 cfs @ 12.23 hrs, Volume= = 4.287 af, Depth> 6.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Yr Rainfall=8.65"

	Area (sf)		CN	Description		
*	3	67,507	79			
	3	67,507		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	12.2	50	0.0200	0.07		Sheet Flow, A-B
						Grass: Bermuda
	1.7	106	0.0410) 1.01		Shallow Concentrated Flow, B-C
						Woodland Kv= 5.0 fps
	1.9	410	0.0510	3.64		Shallow Concentrated Flow, C-D
	0.4	05	0 0000	0.05		Unpaved Kv= 16.1 fps
	0.1	35	0.3300	9.25		Shallow Concentrated Flow, D-E
	07	420	0.0400	0.02	7 70	Unpaved Kv= 16.1 fps
	0.7	430	0.0400	9.83	7.72	Pipe Channel, E-F 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
						n= 0.012

16.6 1,031 Total

Summary for Pond PP-1.1: PP-1.1

Inflow Are	ea =	13.123 ac,	0.00% Impervious,	Inflow Depth > 7	.44" for	100-Yr event
Inflow	=	106.55 cfs @	12.08 hrs, Volume	= 8.136 af		
Outflow	=	29.31 cfs @	12.43 hrs, Volume	= 7.910 af	, Atten=7	72%, Lag= 20.7 min
Primary	=	29.31 cfs @	12.43 hrs, Volume	= 7.910 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 180.25' @ 12.43 hrs Surf.Area= 31,301 sf Storage= 126,619 cf

Plug-Flow detention time= 90.4 min calculated for 7.910 af (97% of inflow) Center-of-Mass det. time= 73.6 min (846.7 - 773.1)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	175.50'	17	5,762 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)		f.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
175.50	2	2,150		0	0	
176.00 178.00		3,052 6,797		1,301 9,849	11,301 61,150	
180.00 181.75		0,768 4,429		57,565 57,047	118,715 175,762	

Type III 24-hr 100-Yr Rainfall=8.65" Printed 5/1/2023 Page 23

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	175.50'	24.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 175.50' / 173.50' S= 0.0333 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	180.50'	20.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	178.40'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1		8.0" Vert. Orifice-WQV and 2 yr control X 3.00 C= 0.600
#5	Device 1	177.70'	2.5' long Sharp-Crested Rectangular Weir X 2.00 2 End Contraction(s)

Primary OutFlow Max=29.31 cfs @ 12.43 hrs HW=180.25' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 29.31 cfs @ 9.33 fps)

3=Riser (Passes < 78.69 cfs potential flow)

-4=Orifice-WQV and 2 yr control (Passes < 10.60 cfs potential flow)

5=Sharp-Crested Rectangular Weir (Passes < 53.12 cfs potential flow)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond PP-2.1: PP-2.1

Inflow Area =	1.229 ac,	0.00% Impervious, Inflow D	epth > 5.38" for 100-Yr event
Inflow =	7.74 cfs @	12.09 hrs, Volume=	0.551 af
Outflow =	7.66 cfs @	12.10 hrs, Volume=	0.506 af, Atten= 1%, Lag= 0.7 min
Discarded =	0.09 cfs @	12.10 hrs, Volume=	0.079 af
Primary =	4.58 cfs @	12.10 hrs, Volume=	0.093 af
Secondary =	2.99 cfs @	12.10 hrs, Volume=	0.334 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 198.43' @ 12.10 hrs Surf.Area= 2,875 sf Storage= 4,081 cf

Plug-Flow detention time= 76.0 min calculated for 0.505 af (92% of inflow) Center-of-Mass det. time= 34.3 min (848.8 - 814.5)

Volume	Invert	Avai	I.Storage	Storage	Description	
#1	196.00'		4,590 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)		.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
196.00 198.00 198.60		354 2,566 3,000		0 2,920 1,670	0 2,920 4,590	

 Type III 24-hr
 100-Yr Rainfall=8.65"

 Printed
 5/1/2023

 LLC
 Page 24

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Secondary	194.80'	12.0" Round Culvert L= 198.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 194.80' / 193.00' S= 0.0091 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	197.50'	6.0" Vert. Orifice C= 0.600
#3	Device 1	198.20'	24.0" Horiz. Riser C= 0.600 Limited to weir flow at low heads
#4	Primary	198.30'	40.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32
#5	Discarded	196.00'	1.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 192.00'

Discarded OutFlow Max=0.09 cfs @ 12.10 hrs HW=198.43' (Free Discharge) **5=Exfiltration** (Controls 0.09 cfs)

Secondary OutFlow Max=2.99 cfs @ 12.10 hrs HW=198.43' TW=188.73' (Dynamic Tailwater) 1=Culvert (Passes 2.99 cfs of 5.09 cfs potential flow) 2=Orifice (Orifice Controls 0.78 cfs @ 3.96 fps) 3=Riser (Weir Controls 2.22 cfs @ 1.56 fps)

Summary for Pond PP-3.1: PP-3.1

Inflow Area	ı =	8.437 ac,	0.00% Impervious, Ir	nflow Depth > 6.57"	for 100-Yr event
Inflow	=	45.70 cfs @	12.22 hrs, Volume=	4.622 af	
Outflow	=	16.66 cfs @	12.63 hrs, Volume=	4.098 af, Att	en= 64%, Lag= 24.6 min
Primary	=	16.66 cfs @	12.63 hrs, Volume=	4.098 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 190.79' @ 12.63 hrs Surf.Area= 21,651 sf Storage= 81,072 cf

Plug-Flow detention time= 133.7 min calculated for 4.098 af (89% of inflow) Center-of-Mass det. time= 82.2 min (895.1 - 813.0)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	186.00'	114	l,987 cf	Custor	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
186.00	1:	2,438		0	0	
188.00	10	6,117	2	28,555	28,555	
190.00	20	0,021	3	36,138	64,693	
192.25	24	4,685	Ę	50,294	114,987	

 Type III 24-hr
 100-Yr Rainfall=8.65"

 Printed
 5/1/2023

 LLC
 Page 25

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	185.50'	24.0" Round Culvert
			L= 57.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 185.50' / 184.50' S= 0.0175 '/' Cc= 0.900
			n= 0.012, Flow Area= 3.14 sf
#2	Primary	191.00'	10.0' long x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	190.80'	36.0" x 48.0" Horiz. Riser C= 0.600
			Limited to weir flow at low heads
#4	Device 1		6.0" Vert. Orifice-WQV and 2 yr control C= 0.600
#5	Device 1	187.90'	11.0" Vert. Orifice-10 yr control X 2.00 C= 0.600
#6	Device 1	189.70'	1.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=16.66 cfs @ 12.63 hrs HW=190.79' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 16.66 cfs of 31.32 cfs potential flow)

3=Riser (Controls 0.00 cfs)

-4=Orifice-WQV and 2 yr control (Orifice Controls 2.01 cfs @ 10.25 fps)

-5=Orifice-10 yr control (Orifice Controls 9.90 cfs @ 7.50 fps)

6=Sharp-Crested Rectangular Weir (Weir Controls 4.75 cfs @ 3.41 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP 1: DP 1

Inflow Area	a =	17.024 ac,	0.00% Impervious	, Inflow Depth > 6	6.67" for 100-Yr event
Inflow	=	46.20 cfs @	12.14 hrs, Volum	e= 9.464 a	f
Primary	=	46.20 cfs @	12.14 hrs, Volum	e= 9.464 a	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 2: DP 2

Inflow Area =	2.614 ac,	0.00% Impervious,	Inflow Depth > 2.7	77" for 100-Yr event
Inflow =	10.53 cfs @	12.12 hrs, Volume=	= 0.603 af	
Primary =	10.53 cfs @	12.12 hrs, Volume=	= 0.603 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Summary for Link DP 3: DP 3

Inflow Are	a =	12.735 ac,	0.00% Impervious,	Inflow Depth > 5.	19" for 100-Yr event
Inflow	=	26.64 cfs @	12.49 hrs, Volume	= 5.503 af	
Primary	=	26.64 cfs @	12.49 hrs, Volume	= 5.503 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

CTA220027.00 - EDA and PDA	Type III 24-hr	100-Yr Rainfall=8.65"
Prepared by {enter your company name here}		Printed 5/1/2023
HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions	LLC	Page 1
		-

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond PP-1.1: PP-1.1	Peak Elev=180.25' Storage=126,619 cf Inflow=106.55 cfs 8.136 af Outflow=29.31 cfs 7.910 af
Pond PP-2.1: PP-2.1 Discarded=0.09 cfs 0.079 af P	Peak Elev=198.43' Storage=4,081 cf Inflow=7.74 cfs 0.551 af Primary=4.58 cfs 0.093 af Secondary=2.99 cfs 0.334 af Outflow=7.66 cfs 0.506 af
Pond PP-3.1: PP-3.1	Peak Elev=190.79' Storage=81,072 cf Inflow=45.70 cfs 4.622 af

Outflow=16.66 cfs 4.022 af Outflow=16.66 cfs 4.098 af

Summary for Pond PP-1.1: PP-1.1

Inflow Area	a =	13.123 ac,	0.00% Impervious, Inflow	Depth > 7.44"	for 100-Yr event
Inflow	=	106.55 cfs @	12.08 hrs, Volume=	8.136 af	
Outflow	=	29.31 cfs @	12.43 hrs, Volume=	7.910 af, Atte	n= 72%, Lag= 20.7 min
Primary	=	29.31 cfs @	12.43 hrs, Volume=	7.910 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 180.25' @ 12.43 hrs Surf.Area= 31,301 sf Storage= 126,619 cf

Plug-Flow detention time= 90.4 min calculated for 7.910 af (97% of inflow) Center-of-Mass det. time= 73.6 min (846.7 - 773.1)

Volume	Inve	rt Avail.Stor	rage Storage D	escription	
#1	175.5	0' 175,76	62 cf Custom S	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	,	(sq-ft)	(cubic-feet)	(cubic-feet)	
175.5		22,150	0	0	
176.0		23,052	11,301	11,301	
178.0		26,797	49,849	61,150	
180.0		30,768	57,565	118,715	
181.7	′5	34,429	57,047	175,762	
Device	Routing	Invert	Outlet Devices		
#1	Primary	175.50'	24.0" Round C	ulvert	
#2	Primary	180.50'	L= 60.0' CPP, Inlet / Outlet Inv n= 0.012, Flow 20.0' long x 8.0 Head (feet) 0.2 2.50 3.00 3.50	square edge h /ert= 175.50' / / Area= 3.14 sf 0' breadth Bro 20 0.40 0.60 0 4.00 4.50 5 2.43 2.54 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .00 5.50 70 2.69 2.68 2.68 2.66 2.64 2.64
#3	Device 1	178.40'	36.0" x 48.0" H Limited to weir	oriz. Riser	≈ 0.600
#4	Device 1	175.50'	8.0" Vert. Orific	ce-WQV and 2	yr control X 3.00 C= 0.600
#5	Device 1	177.70'	2.5' long Sharp 2 End Contracti		tangular Weir X 2.00

Primary OutFlow Max=29.31 cfs @ 12.43 hrs HW=180.25' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 29.31 cfs @ 9.33 fps)

-3=Riser (Passes < 78.69 cfs potential flow)

-4=Orifice-WQV and 2 yr control (Passes < 10.60 cfs potential flow)

5=Sharp-Crested Rectangular Weir (Passes < 53.12 cfs potential flow)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond PP-1.1: PP-1.1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
175.50	22,150	0	180.70	32,232	140,765
175.60	22,330	2,224	180.80	32,442	143,998
175.70	22,511	4,466	180.90	32,651	147,253
175.80	22,691	6,726	181.00	32,860	150,529
175.90	22,872	9,004	181.10	33,069	153,825
176.00	23,052	11,301	181.20	33,278	157,142
176.10	23,239	13,615	181.30	33,488	160,481
176.20	23,426	15,948	181.40	33,697	163,840
176.30	23,614	18,300	181.50	33,906	167,220
176.40	23,801	20,671	181.60	34,115	170,621
176.50	23,988	23,061	181.70	34,324	174,043
176.60	24,175	25,469			
176.70	24,363	27,896			
176.80	24,550	30,341			
176.90	24,737	32,806			
177.00	24,925	35,289			
177.10	25,112	37,791			
177.20	25,299	40,311			
177.30	25,486	42,850			
177.40	25,674	45,408			
177.50	25,861	47,985			
177.60	26,048	50,580			
177.70	26,235	53,195			
177.80	26,423	55,828			
177.90	26,610	58,479			
178.00	26,797				
		61,150			
178.10	26,996	63,839			
178.20	27,194	66,549			
178.30	27,393	69,278			
178.40	27,591	72,027			
178.50	27,790	74,796			
178.60	27,988	77,585			
178.70	28,187	80,394			
178.80	28,385	83,222			
178.90	28,584	86,071			
179.00	28,783	88,939			
179.10	28,981	91,827			
179.20	29,180	94,735			
179.30	29,378	97,663			
179.40	29,577	100,611			
179.50	29,775	103,579			
179.60	29,974	106,566			
179.70	30,172	109,573			
179.80	30,371	112,601			
179.90	30,569	115,648			
180.00	30,768	118,715			
180.10	30,977	121,802			
180.20	31,186	124,910			
180.30	31,396	124,910			
180.40	31,605	131,189			
180.50	31,814	134,360			
180.60	31,014				
100.00	32,023	137,552			
			I		

Summary for Pond PP-2.1: PP-2.1

Inflow A Inflow Outflow Discarde Primary Seconda	= 7. = 7.0 ed = 0.0 = 4.0	74 cfs @ 12 66 cfs @ 12 09 cfs @ 12 58 cfs @ 12	00% Impervious 2.09 hrs, Volum 2.10 hrs, Volum 2.10 hrs, Volum 2.10 hrs, Volum 2.10 hrs, Volum	ne= 0.8 ne= 0.8 ne= 0.6 ne= 0.6	551 af	for 100-Yr event en= 1%, Lag= 0.7 min			
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 198.43' @ 12.10 hrs Surf.Area= 2,875 sf Storage= 4,081 cf								
			n calculated for in (848.8 - 814.		of inflow)				
Volume	Invert	Avail.Stor	rage Storage I	Description					
#1	196.00'				rismatic) L	isted below (Recalc)			
Elevatio	on Sur	f.Area	Inc.Store	Cum.Store					
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)					
196.0	00	354	0	0					
198.0		2,566	2,920	2,920					
198.6		3,000	1,670	4,590					
Device	Routing	Invert	Outlet Devices	6					
#1	Secondary	194.80'	12.0" Round	Culvert					
	,		L= 198.0' CP	P, square edg	e headwall,	, Ke= 0.500			
						S= 0.0091 '/' Cc= 0.900			
			n= 0.012, Flov	<i>w</i> Area= 0.79 s	sf				
#2	Device 1	197.50'	6.0" Vert. Orif	ice C= 0.600)				
#3	Device 1	198.20'	24.0" Horiz. R	iser C= 0.60	0 Limited	to weir flow at low heads			
#4	Primary	198.30'				ed Rectangular Weir			
					0.80 1.00	0 1.20 1.40 1.60 1.80 2.00	0		
			2.50 3.00 3.5						
					2.61 2.60 2	2.66 2.70 2.77 2.89 2.88			
	D	100.001	2.85 3.07 3.2		~ ~				
#5	Discarded	196.00'	1.000 in/hr Ex						
			Conductivity to	Groundwater	Elevation =	= 192.00			

Discarded OutFlow Max=0.09 cfs @ 12.10 hrs HW=198.43' (Free Discharge) **5=Exfiltration** (Controls 0.09 cfs)

Primary OutFlow Max=4.58 cfs @ 12.10 hrs HW=198.43' TW=0.00' (Dynamic Tailwater) **4=Broad-Crested Rectangular Weir** (Weir Controls 4.58 cfs @ 0.90 fps)

Secondary OutFlow Max=2.99 cfs @ 12.10 hrs HW=198.43' TW=188.73' (Dynamic Tailwater) -1=Culvert (Passes 2.99 cfs of 5.09 cfs potential flow)

2=Orifice (Orifice Controls 0.78 cfs @ 3.96 fps) **3=Riser** (Weir Controls 2.22 cfs @ 1.56 fps)

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond PP-2.1: PP-2.1

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
196.00	354	0	198.60	3,000	4,590
196.05	409	19		-,	.,
196.10	465	41			
196.15	520	66			
196.20	575	93			
196.25	631	123			
	686				
196.30		156			
196.35	741	192			
196.40	796	230			
196.45	852	271			
196.50	907	315			
196.55	962	362			
196.60	1,018	411			
196.65	1,073	464			
196.70	1,128	519			
196.75	1,184	577			
196.80	1,239	637			
196.85	1,294	700			
196.90	1,349	767			
196.95	1,405	835			
197.00	1,460	907			
197.05	1,515	981			
197.10	1,571	1,059			
197.15	1,626	1,138			
197.20	1,681	1,221			
197.25	1,737	1,307			
197.30	1,792	1,395			
197.35	1,847	1,486			
197.40	1,902	1,579			
197.45	1,958	1,676			
197.50	2,013	1,775			
197.55	2,068	1,877			
197.60	2,124	1,982			
197.65	2,179	2,090			
197.70	2,234	2,200			
197.75	2,290	2,313			
197.80	2,345	2,429			
197.85	2,400	2,548			
197.90	2,455	2,669			
197.95	2,511	2,793			
198.00	2,566	2,920			
198.05	2,602	3,049			
198.10	2,638	3,180			
198.15	2,675	3,313			
198.20	2,711	3,448			
198.25	2,747	3,584			
198.30	2,783	3,722			
198.35	2,819	3,862			
198.40	2,855	4,004			
198.45	2,891	4,148			
198.50	2,928	4,293			
198.55	2,964	4,441			
	_,	-,			
			I		

Summary for Pond PP-3.1: PP-3.1

Inflow Area =	8.437 ac,	0.00% Impervious, Infle	ow Depth > 6.57"	for 100-Yr event
Inflow =	45.70 cfs @	12.22 hrs, Volume=	4.622 af	
Outflow =	16.66 cfs @	12.63 hrs, Volume=	4.098 af, Atte	en= 64%, Lag= 24.6 min
Primary =	16.66 cfs @	12.63 hrs, Volume=	4.098 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 190.79' @ 12.63 hrs Surf.Area= 21,651 sf Storage= 81,072 cf

Plug-Flow detention time= 133.7 min calculated for 4.098 af (89% of inflow) Center-of-Mass det. time= 82.2 min (895.1 - 813.0)

Volume	Inve	ert Avail.Sto	rage Storage	e Description
#1	186.0	0' 114,98	37 cf Custon	m Stage Data (Prismatic) Listed below (Recalc)
_		~ ~		
Elevatio		Surf.Area	Inc.Store	Cum.Store
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)
186.0		12,438	0	0
188.0	00	16,117	28,555	28,555
190.0	00	20,021	36,138	64,693
192.2	25	24,685	50,294	114,987
Device	Routing	Invert	Outlet Device	ces
#1	Primary	185.50'	24.0" Round	
				PP, square edge headwall, Ke= 0.500
			Inlet / Outlet	t Invert= 185.50' / 184.50' S= 0.0175 '/' Cc= 0.900
			n= 0.012, Fl	low Area= 3.14 sf
#2	Primary	191.00'	10.0' long x	x 8.0' breadth Broad-Crested Rectangular Weir
			Head (feet)	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3	3.50 4.00 4.50 5.00 5.50
			Coef. (Englis	sh) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
			2.64 2.65 2	2.65 2.66 2.66 2.68 2.70 2.74
#3	Device 1	190.80'	36.0" x 48.0'	" Horiz. Riser C= 0.600
			Limited to we	eir flow at low heads
#4	Device 1	186.00'	6.0" Vert. Or	rifice-WQV and 2 yr control C= 0.600
#5	Device 1	187.90'	11.0" Vert. C	Drifice-10 yr control X 2.00 C= 0.600
#6	Device 1	189.70'		arp-Crested Rectangular Weir 2 End Contraction(s)
			•	
Primary	OutFlow	Max=16.66 cfs	@ 12.63 hrs	HW=190.79' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 16.66 cfs of 31.32 cfs potential flow)

3=Riser (Controls 0.00 cfs)

-4=Orifice-WQV and 2 yr control (Orifice Controls 2.01 cfs @ 10.25 fps)

5=Orifice-10 yr control (Orifice Controls 9.90 cfs @ 7.50 fps)

6=Sharp-Crested Rectangular Weir (Weir Controls 4.75 cfs @ 3.41 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by {enter your company name here} HydroCAD® 10.00-21 s/n 08311 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond PP-3.1: PP-3.1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
186.00	12,438	0	191.20	22,508	90,211
186.10	12,622	1,253	191.30	22,716	92,472
186.20	12,806	2,524	191.40	22,923	94,754
186.30	12,990	3,814	191.50	23,130	97,057
186.40	13,174	5,122	191.60	23,338	99,380
186.50	13,358	6,449	191.70	23,545	101,724
186.60	13,542	7,794	191.80	23,752	104,089
186.70	13,726	9,157	191.90	23,959	106,474
186.80	13,910	10,539	192.00	24,167	108,881
186.90	14,094	11,939	192.10	24,374	111,308
187.00	14,278	13,358	192.20	24,581	113,756
187.10	14,461	14,795	102.20	24,001	110,700
187.20	14,645	16,250			
187.30	14,829	17,724			
187.40	15,013	19,216			
187.50	15,197	20,726			
187.60	15,381	20,720			
	,	,			
187.70	15,565	23,803			
187.80	15,749	25,368			
187.90	15,933	26,952			
188.00	16,117	28,555			
188.10	16,312	30,176			
188.20	16,507	31,817			
188.30	16,703	33,478			
188.40	16,898	35,158			
188.50	17,093	36,858			
188.60	17,288	38,577			
188.70	17,483	40,315			
188.80	17,679	42,073			
188.90	17,874	43,851			
189.00	18,069	45,648			
189.10	18,264	47,465			
189.20	18,459	49,301			
189.30	18,655	51,157			
189.40	18,850	53,032			
189.50	19,045	54,927			
189.60	19,240	56,841			
189.70	19,435	58,775			
189.80	19,631	60,728			
189.90	19,826	62,701			
190.00	20,021	64,693			
190.10	20,228	66,705			
190.20	20,436	68,739			
190.30	20,643	70,793			
190.40	20,850	72,867			
190.50	21,057	74,963			
190.60	21,265	77,079			
190.70	21,472	79,216			
190.80	21,679	81,373			
190.90	21,887	83,551			
191.00	22,094	85,750			
191.10	22,301	87,970			

APPENDIX E: STORMWATER CALCULATIONS

- NOAA RAINFALL DATA
- > <u>POLLUTANT REDUCTION</u>
- ➢ <u>CONVEYANCE PROTECTION CALCULATIONS</u>

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Southington, Connecticut, USA* Latitude: 41.6271°, Longitude: -72.8862° Elevation: 194.53 ft** * source: ESRI Maps ** source: USGS

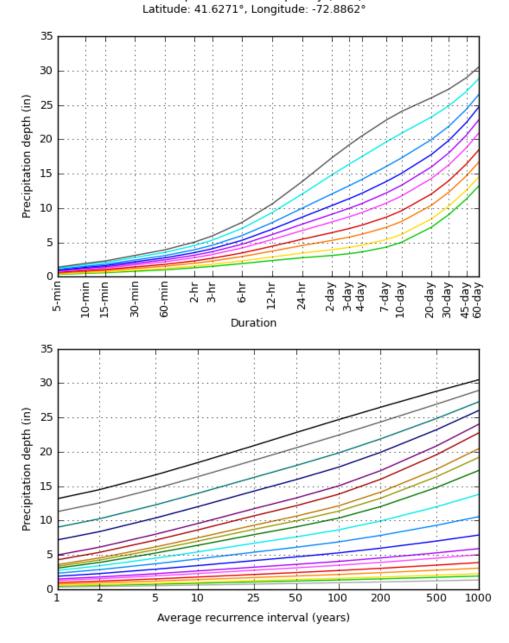
POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

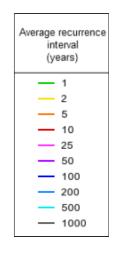
NOAA, National Weather Service, Silver Spring, Maryland

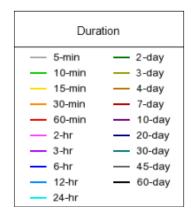
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS-I	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average I	recurrence	interval (y	ears)			
Duration	1	<mark>2</mark>	5	<mark>10</mark>	<mark>25</mark>	50	<mark>100</mark>	200	500	1000
5-min	0.345 (0.267-0.441)	0.416 (0.322-0.532)	0.532 (0.410-0.683)	0.627 (0.481-0.810)	0.759 (0.564-1.03)	0.859 (0.626-1.19)	0.962 (0.681-1.39)	1.08 (0.724-1.59)	1.24 (0.802-1.90)	1.37 (0.865-2.15)
10-min	0.489 (0.379-0.624)	0.589 (0.456-0.753)	0.753 (0.581-0.965)	0.888 (0.682-1.15)	1.08 (0.799-1.46)	1.22 (0.886-1.68)	1.36 (0.964-1.96)	1.53 (1.02-2.26)	1.75 (1.14-2.70)	1.94 (1.23-3.04)
15-min	0.575 (0.446-0.735)	0.693 (0.537-0.886)	0.886 (0.683-1.14)	1.05 (0.802-1.35)	1.26 (0.940-1.71)	1.43 (1.04-1.98)	1.60 (1.14-2.31)	1.79 (1.21-2.66)	2.06 (1.34-3.17)	2.28 (1.44-3.58)
30-min	0.785 (0.609-1.00)	0.944 (0.731-1.21)	1.20 (0.928-1.54)	1.42 (1.09-1.83)	1.71 (1.27-2.32)	1.94 (1.41-2.68)	2.17 (1.54-3.13)	2.43 (1.63-3.59)	2.79 (1.81-4.29)	3.09 (1.95-4.85)
60-min	0.995 (0.771-1.27)	1.19 (0.925-1.53)	1.52 (1.17-1.95)	1.79 (1.37-2.31)	2.16 (1.61-2.93)	2.44 (1.78-3.39)	2.74 (1.94-3.94)	3.06 (2.06-4.53)	3.52 (2.28-5.42)	3.90 (2.47-6.13)
2-hr	1.30 (1.01-1.65)	1.55 (1.21-1.97)	1.96 (1.52-2.51)	2.31 (1.78-2.96)	2.78 (2.08-3.74)	3.13 (2.30-4.32)	3.50 (2.50-5.03)	3.93 (2.65-5.78)	4.54 (2.95-6.95)	5.05 (3.20-7.89)
3-hr	1.51 (1.18-1.90)	1.80 (1.41-2.28)	2.28 (1.77-2.89)	2.68 (2.07-3.42)	3.22 (2.42-4.33)	3.63 (2.67-5.00)	4.07 (2.91-5.84)	4.57 (3.09-6.71)	5.31 (3.46-8.10)	5.93 (3.77-9.24)
6-hr	1.91 (1.50-2.40)	2.29 (1.80-2.89)	2.93 (2.29-3.70)	3.46 (2.69-4.39)	4.18 (3.16-5.60)	4.72 (3.50-6.48)	5.30 (3.83-7.61)	5.99 (4.07-8.76)	7.03 (4.59-10.7)	7.91 (5.04-12.3)
12-hr	2.35 (1.86-2.93)	2.87 (2.27-3.59)	3.72 (2.93-4.67)	4.43 (3.47-5.59)	5.40 (4.11-7.21)	6.12 (4.57-8.38)	6.90 (5.03-9.90)	7.86 (5.35-11.4)	9.32 (6.10-14.1)	10.6 (6.77-16.3)
24-hr	2.75 (2.19-3.41)	<mark>3.43</mark> (2.72-4.26)	4.53 (3.59-5.65)	5.45 (4.29-6.84)	<mark>6.71</mark> (5.14-8.93)	7.63 (5.74-10.4)	<mark>8.65</mark> (6.37-12.5)	9.95 (6.79-14.4)	12.0 (7.88-18.1)	13.8 (8.87-21.2)
2-day	3.09 (2.47-3.81)	3.92 (3.13-4.84)	5.28 (4.21-6.54)	6.41 (5.07-7.99)	7.96 (6.15-10.6)	9.09 (6.90-12.4)	10.4 (7.72-15.0)	12.0 (8.24-17.4)	14.8 (9.75-22.2)	17.3 (11.1-26.5)
3-day	3.35 (2.69-4.12)	4.27 (3.43-5.25)	5.77 (4.61-7.12)	7.01 (5.57-8.72)	8.73 (6.76-11.6)	9.97 (7.60-13.6)	11.4 (8.51-16.4)	13.3 (9.09-19.1)	16.4 (10.8-24.5)	19.2 (12.4-29.3)
4-day	3.60 (2.90-4.41)	4.58 (3.68-5.61)	6.17 (4.95-7.60)	7.50 (5.97-9.30)	9.32 (7.24-12.3)	10.6 (8.13-14.5)	12.1 (9.10-17.5)	14.1 (9.72-20.3)	17.5 (11.5-26.1)	20.5 (13.2-31.1)
7-day	4.29 (3.47-5.23)	5.38 (4.35-6.57)	7.17 (5.77-8.78)	8.65 (6.92-10.7)	10.7 (8.32-14.0)	12.2 (9.31-16.5)	13.8 (10.4-19.7)	16.0 (11.0-22.9)	19.6 (13.0-29.1)	22.8 (14.7-34.5)
10-day	4.99 (4.05-6.06)	6.14 (4.98-7.47)	8.02 (6.48-9.79)	9.58 (7.69-11.8)	11.7 (9.14-15.3)	13.3 (10.2-17.9)	15.0 (11.2-21.3)	17.3 (11.9-24.6)	20.9 (13.9-30.9)	24.0 (15.6-36.3)
20-day	7.19 (5.87-8.68)	8.40 (6.85-10.2)	10.4 (8.44-12.6)	12.0 (9.71-14.7)	14.3 (11.2-18.4)	16.0 (12.2-21.1)	17.8 (13.2-24.6)	19.9 (13.9-28.2)	23.2 (15.5-34.1)	26.0 (16.9-39.1)
30-day	9.04 (7.40-10.9)	10.3 (8.40-12.4)	12.3 (10.0-14.9)	14.0 (11.3-17.0)	16.3 (12.7-20.8)	18.0 (13.8-23.6)	19.8 (14.7-27.1)	21.9 (15.3-30.8)	24.9 (16.6-36.4)	27.3 (17.8-40.9)
45-day	11.3 (9.30-13.5)	12.6 (10.3-15.1)	14.7 (12.0-17.7)	16.4 (13.3-19.9)	18.8 (14.7-23.8)	20.6 (15.7-26.7)	22.4 (16.5-30.2)	24.4 (17.1-34.1)	26.9 (18.1-39.3)	29.0 (18.9-43.3)
60-day	13.2 (10.9-15.8)	14.5 (11.9-17.3)	16.7 (13.7-20.0)	18.4 (15.0-22.3)	20.9 (16.4-26.3)	22.8 (17.4-29.4)	24.7 (18.1-32.9)	26.5 (18.6-36.9)	28.8 (19.4-41.9)	30.5 (19.9-45.5)

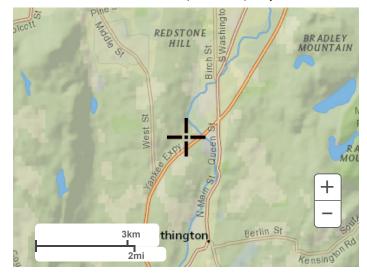
¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.


Back to Top

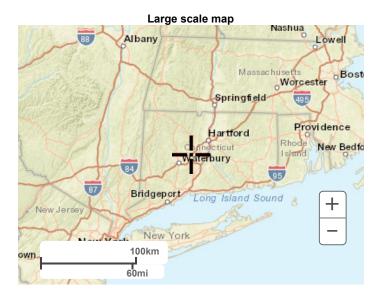
PF graphical

PDS-based depth-duration-frequency (DDF) curves


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue May 24 14:54:02 2022

Back to Top


Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

NOAA Atlas 14, Volume 10, Version 3 Location name: Southington, Connecticut, USA* Latitude: 41.6271°, Longitude: -72.8862° Elevation: m/ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

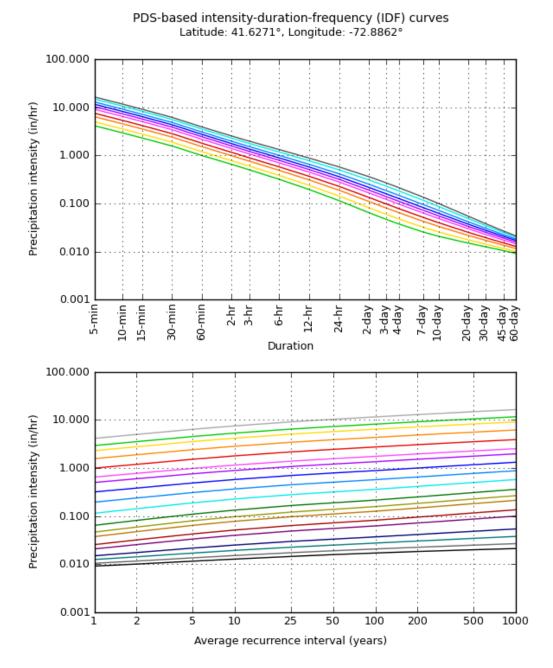
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

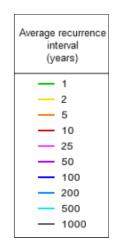
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	ased poir	nt precipit	ation freq	uency es	timates w	ith 90% co	onfidence	intervals	(in inche	s/hour) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.14 (3.20-5.29)	4.99 (3.86-6.38)	6.38 (4.92-8.20)	7.52 (5.77-9.72)	9.11 (6.77-12.3)	10.3 (7.51-14.3)	11.5 (8.17-16.6)	12.9 (8.69-19.1)	14.8 (9.62-22.8)	16.4 (10.4-25.8)
10-min	2.93 (2.27-3.74)	3.53 (2.74-4.52)	4.52 (3.49-5.79)	5.33 (4.09-6.88)	6.45 (4.79-8.73)	7.30 (5.32-10.1)	8.18 (5.78-11.8)	9.15 (6.15-13.5)	10.5 (6.82-16.2)	11.6 (7.36-18.3)
15-min	2.30 (1.78-2.94)	2.77 (2.15-3.54)	3.54 (2.73-4.55)	4.18 (3.21-5.40)	5.06 (3.76-6.85)	5.72 (4.17-7.93)	6.42 (4.54-9.23)	7.18 (4.83-10.6)	8.25 (5.34-12.7)	9.11 (5.77-14.3)
30-min	1.57	1.89	2.41	2.84	3.43	3.87	4.34	4.85	5.58	6.18
	(1.22-2.01)	(1.46-2.41)	(1.86-3.09)	(2.18-3.66)	(2.55-4.64)	(2.82-5.37)	(3.07-6.25)	(3.27-7.19)	(3.62-8.59)	(3.91-9.71)
60-min	0.995	1.19	1.52	1.79	2.16	2.44	2.74	3.06	3.52	3.90
	(0.771-1.27)	(0.925-1.53)	(1.17-1.95)	(1.37-2.31)	(1.61-2.93)	(1.78-3.39)	(1.94-3.94)	(2.06-4.53)	(2.28-5.42)	(2.47-6.13)
2-hr	0.650	0.776	0.982	1.15	1.39	1.56	1.75	1.96	2.27	2.52
	(0.506-0.824)	(0.604-0.986)	(0.762-1.25)	(0.890-1.48)	(1.04-1.87)	(1.15-2.16)	(1.25-2.52)	(1.33-2.89)	(1.48-3.47)	(1.60-3.95)
3-hr	0.501	0.599	0.759	0.891	1.07	1.21	1.35	1.52	1.77	1.97
	(0.392-0.634)	(0.468-0.758)	(0.591-0.964)	(0.690-1.14)	(0.806-1.44)	(0.890-1.67)	(0.970-1.95)	(1.03-2.24)	(1.15-2.70)	(1.25-3.08)
6-hr	0.318	0.383	0.489	0.577	0.698	0.788	0.885	1.00	1.17	1.32
	(0.250-0.400)	(0.301-0.482)	(0.383-0.618)	(0.449-0.734)	(0.528-0.935)	(0.584-1.08)	(0.639-1.27)	(0.679-1.46)	(0.766-1.78)	(0.842-2.05)
12-hr	0.195 (0.154-0.243)	0.238 (0.188-0.298)	0.309 (0.243-0.388)	0.368 (0.288-0.464)	0.448 (0.341-0.598)	0.508 (0.379-0.696)	0.573 (0.417-0.822)	0.652 (0.444-0.949)	0.774 (0.507-1.17)	0.878 (0.562-1.36)
24-hr	0.115	0.143	0.189	0.227	0.279	0.318	0.361	0.415	0.501	0.576
	(0.091-0.142)	(0.113-0.177)	(0.150-0.235)	(0.179-0.285)	(0.214-0.372)	(0.239-0.435)	(0.265-0.519)	(0.283-0.601)	(0.329-0.753)	(0.370-0.885)
2-day	0.064	0.082	0.110	0.133	0.166	0.189	0.216	0.251	0.309	0.361
	(0.051-0.079)	(0.065-0.101)	(0.088-0.136)	(0.106-0.166)	(0.128-0.220)	(0.144-0.259)	(0.161-0.312)	(0.172-0.362)	(0.203-0.463)	(0.232-0.551)
3-day	0.047	0.059	0.080	0.097	0.121	0.138	0.158	0.184	0.228	0.267
	(0.037-0.057)	(0.048-0.073)	(0.064-0.099)	(0.077-0.121)	(0.094-0.161)	(0.106-0.189)	(0.118-0.228)	(0.126-0.265)	(0.150-0.340)	(0.172-0.407)
4-day	0.037	0.048	0.064	0.078	0.097	0.111	0.126	0.147	0.182	0.213
	(0.030-0.046)	(0.038-0.058)	(0.052-0.079)	(0.062-0.097)	(0.075-0.128)	(0.085-0.151)	(0.095-0.182)	(0.101-0.211)	(0.120-0.271)	(0.138-0.324)
7-day	0.026	0.032	0.043	0.051	0.064	0.072	0.082	0.095	0.117	0.136
	(0.021-0.031)	(0.026-0.039)	(0.034-0.052)	(0.041-0.063)	(0.050-0.084)	(0.055-0.098)	(0.062-0.117)	(0.066-0.136)	(0.077-0.173)	(0.088-0.205)
10-day	0.021	0.026	0.033	0.040	0.049	0.055	0.063	0.072	0.087	0.100
	(0.017-0.025)	(0.021-0.031)	(0.027-0.041)	(0.032-0.049)	(0.038-0.064)	(0.042-0.074)	(0.047-0.089)	(0.050-0.102)	(0.058-0.129)	(0.065-0.151)
20-day	0.015	0.018	0.022	0.025	0.030	0.033	0.037	0.042	0.048	0.054
	(0.012-0.018)	(0.014-0.021)	(0.018-0.026)	(0.020-0.031)	(0.023-0.038)	(0.025-0.044)	(0.028-0.051)	(0.029-0.059)	(0.032-0.071)	(0.035-0.082)
30-day	0.013	0.014	0.017	0.019	0.023	0.025	0.028	0.030	0.035	0.038
	(0.010-0.015)	(0.012-0.017)	(0.014-0.021)	(0.016-0.024)	(0.018-0.029)	(0.019-0.033)	(0.020-0.038)	(0.021-0.043)	(0.023-0.050)	(0.025-0.057)
45-day	0.010	0.012	0.014	0.015	0.017	0.019	0.021	0.023	0.025	0.027
	(0.009-0.013)	(0.010-0.014)	(0.011-0.016)	(0.012-0.018)	(0.014-0.022)	(0.015-0.025)	(0.015-0.028)	(0.016-0.032)	(0.017-0.036)	(0.018-0.040)
60-day	0.009	0.010	0.012	0.013	0.015	0.016	0.017	0.018	0.020	0.021
	(0.008-0.011)	(0.008-0.012)	(0.009-0.014)	(0.010-0.015)	(0.011-0.018)	(0.012-0.020)	(0.013-0.023)	(0.013-0.026)	(0.013-0.029)	(0.014-0.032)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

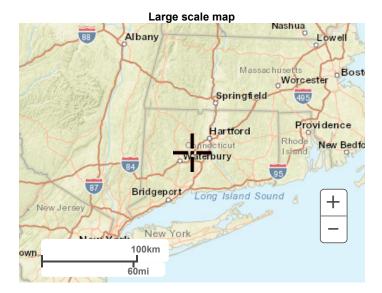
PF graphical

Dura	ition
5-min	2-day
10-min	— 3-day
- 15-min	— 4-day
30-min	- 7-day
- 60-min	— 10-day
— 2-hr	— 20-day
— 3-hr	— 30-day
— 6-hr	— 45-day
- 12-hr	- 60-day
24-hr	

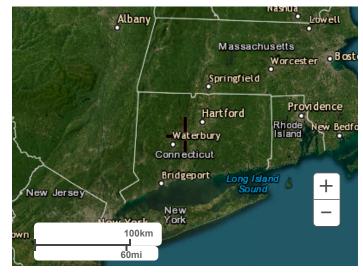
NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Mar 29 12:11:30 2023

Back to Top


Maps & aerials

Small scale terrain



Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Groundwater Recharge Volume Calculations

Beguired Becharge Volume A Saile (0.40 in)	
Required Recharge Volume - A Soils (0.40 in.) Area (ac)	0.000
Proposed Site Impervious Area (ac)	0.000
Percent impervious area	0.000
Recharge Volume Required (cf)	0.000
	V
Required Recharge Volume - B Soils (0.25 in.)	
Area (ac)	22.790
Proposed Site Impervious Area (ac)	10.900
Percent impervious area	0.478
Recharge Volume Required (cf)	9,892
Required Recharge Volume - C Soils (0.10 in.)	
Area (ac)	3.820
Proposed Site Impervious Area (ac)	0.200
Percent impervious area	0.052
Recharge Volume Required (cf)	73
Required Recharge Volume - D Soils (0.0 inwaived)	
Total Recharge Volume Required (cf)	9,964
Provided Recharge Volume*	
PP-2.1	1,775
	1,110
Total Recharge Volume Provided (cf)	1,775

*Volume provided below lowest outlet in cubic feet (cf)

Water Quality Calculations - Water Quality Volume

From CT 2004 Stormwater Quality Manual:

12

$$WQV = \frac{(1")(R)(A)}{12}$$

WQV = water quality volume (ac-ft)

- R = volumetric runoff coefficient
- I = percent impervious cover

A = site area in acres

630.079

63.47%

R = 0.05 + 0.009(I)

Water Quality Volumetric Pretreatment Pretreatment Watershed Structur Impervious WQV **Total Area** Impervious Area Runoff Volume Volume Volume Notes provided Area е Cover Coefficient (WQV) Provided Required¹ ft² ft² ft³ ft³ ft³ acre-feet ft³ ID ID ac ac % R -Pretreatment via Forebay -Micropool volume=8,060 cf PP-1.1 10.125 PD-1.1 13.123 571.628 441,060 77.16 0.744 0.814 35.461 3.546 3.810 35,870 -WQV @ elev 176.5 -Pretreatment via check dams PD-2.1 PP-2.1 1.229 53,519 0.469 20,425 0.393 0.040 1.755 439 439 1,775 in bioswale 38.16 -OCS Low orifice @ 197.5 -Pretreatment via Forebay PP-3.1 3.870 16.553 -Micropool volume=3,430 cf PD-3.1 8.437 367,507 168.594 45.88 0.463 0.325 14.176 1.418 4.688 -WQV @ elev 186.6

51,392

1- 10% of WQV for Stormwater ponds, 25% for infiltration practice

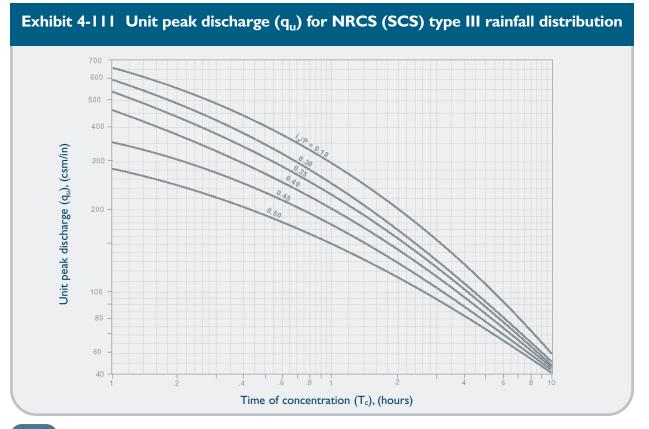
992.654

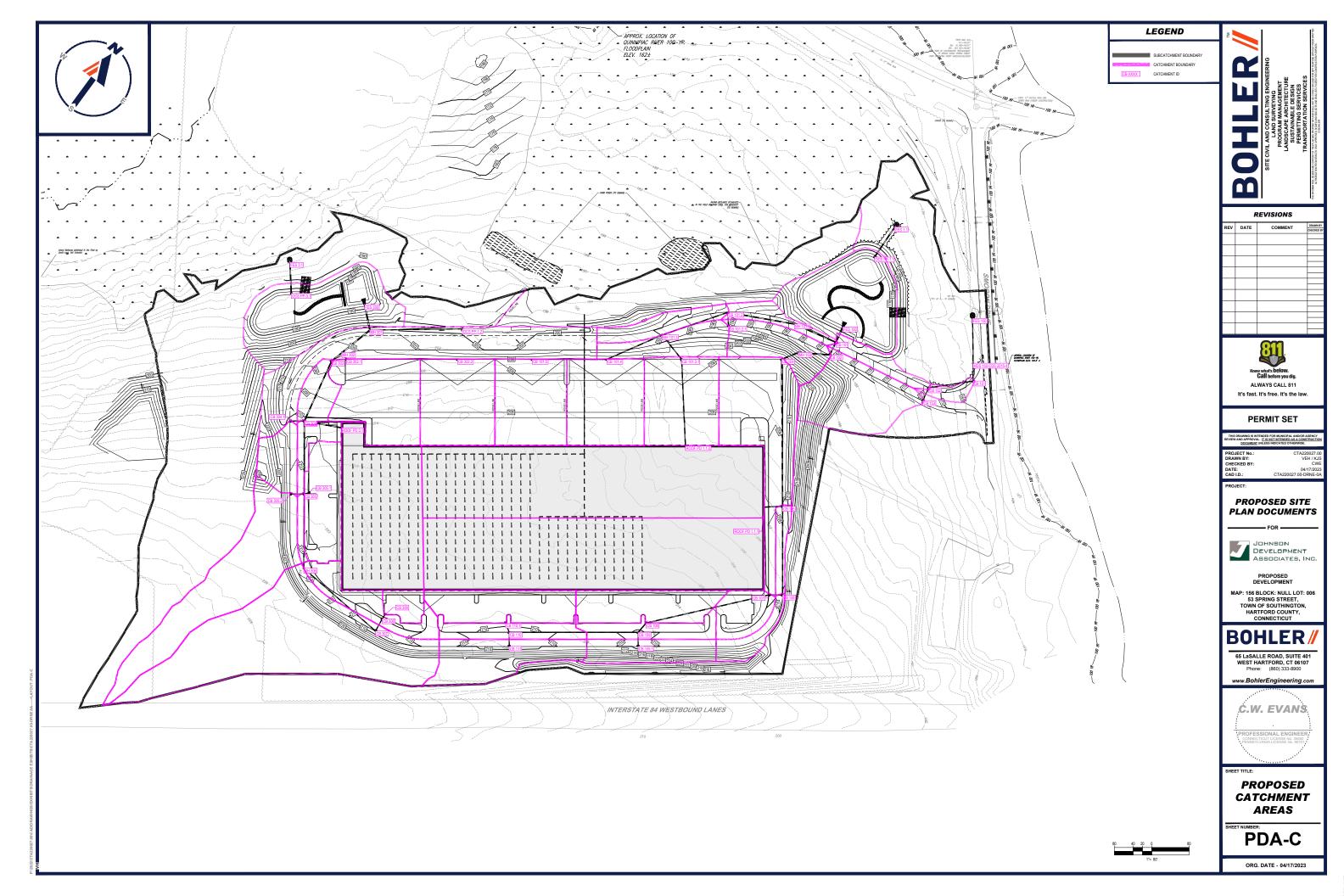
TOTALS

54,198

								Water Qua	ality Calc	ulations ·	Water Q	uality Flov	w							
From CT 20	04 Stormwa	iter Quality Ma	anual:			water qual							(1'')(R)	(A)		water qua				
WQF	$= (q_u)(A)(a)$	Q)				unit peak o						WQV =	$=\frac{(1'')(R)}{12}$	<u> </u>		volumetric				
ſı	NOV(acro	$f_{aat} \propto [1]$) (inchas/	foot)]]		Area (sq.)										percent im		over		
$Q = \frac{\Gamma}{2}$	NQV (ULTE	– feet) × [1] ainageArea	$\frac{2(incnes)}{2}$	[001]		Runoff Cu		rshed inche	es)			P = 0.05	+0.009(I)	A =	site area i	n acres			
								er inches, (1" i	for water a	uality etorn	-)	K = 0.05	+ 0.009(1)						
$CN = \cdot$	r	$\frac{1000}{10Q - 10(Q)}$		1]		time of col			ioi watei q	juality storn	1)									
	10 + 5P +	10Q - 10(Q	$^{2} + 1.25Q$	$P)^{\frac{1}{2}}$				ches, from ⊺	Table 4-1,	Chapter 4,	TR-55									
										-										
Watershed		Proprietary		Total Area			Area	Imp Cover	R	WQV	q	Р	CN	1	Г _с	la	I _a /P			WQF Provided
Area	ID	Structure	ft ²	ac	mi ²	ft ²	ac	%	-	acre-feet	in	in	-	mins	hours	in	-	cfs/mi ² /in	cfs	cfs
PD-1.1 to FES 150	HDS 150	CDS 2015-4	61,500	1.412	0.0022	10,000	0.230	16.26	0.196	0.023	0.20	1.00	86	6.0	0.1	0.326	0.326	650	0.28	1.40
																				1

1- From Exhibit 4-III: Unit peak discharge (q.,) for SCS type III rainfall distribution, Urban Hydrology for Small Watersheds (TR-55), USDS< SCS, June 1986.

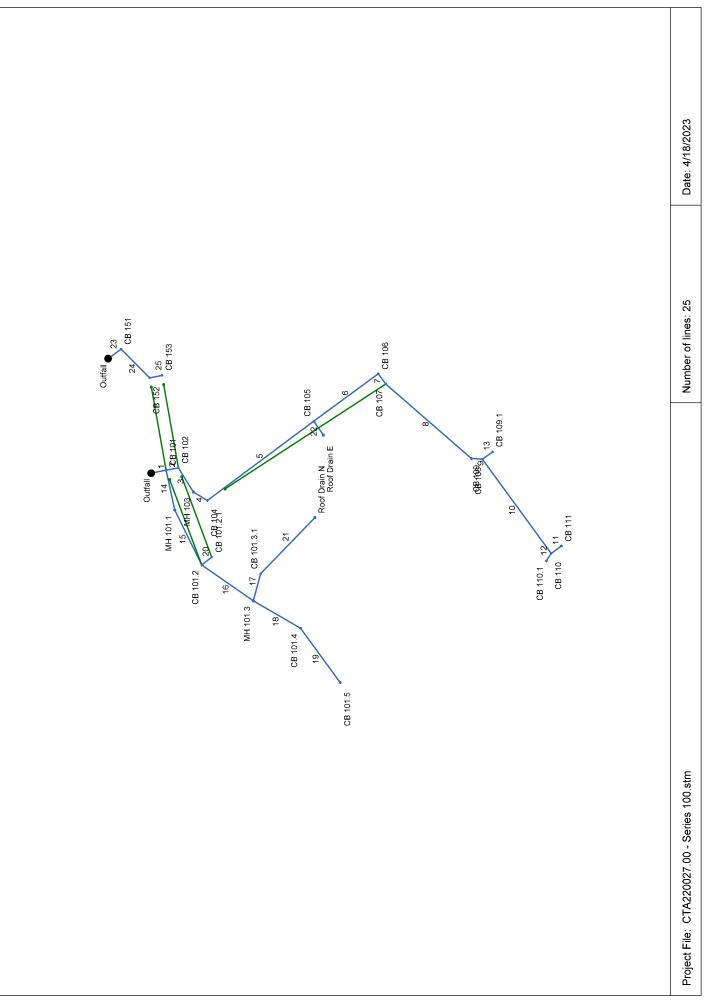



- 2. Compute the time of concentration (t_c) based on the methods described in Chapter 3 of TR-55. A minimum value of 0.167 hours (10 minutes) should be used. For sheet flow, the flow path should not be longer than 300 feet.
- 3. Using the computed CN, t_c, and drainage area (A) in acres, compute the peak discharge for the water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.

	٦	able 4-1 I _a	values for	runoff curve	e number	S	
Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)
40 41 42 43 44 45 46 47 48 49 50		55 56 57 58 59 60 61 62 63 64 65		70 71 72 73 74 75 76 77 78 79 80	0.817 0.778 0.740 0.703 0.667 0.632 0.597 0.564 0.532	85 86 87 88 89 90 91 92 93 94 95	0.326 0.299 0.273 0.247 0.247 0.222 0.198 0.174 0.151 0.128
51 52 53 54	1.922 1.846 1.774 1.704	66 67 68 69	0.985 0.941	81 82 83 84	0.439	96 97 98	

O Read initial abstraction (I_a) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); compute I_a/P

O Read the unit peak discharge (q_u) from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below) for appropriate t_c



Proposed Rational Method Runoff Coefficients Summary

		Land	l Use		1			
	Woods (sf)	Grassed	Impervious	Other (sf)	1			
	woous (si)	(sf)	(sf)					
Rational Runoff Coefficient	0.15	0.3	0.9	0	Total Drainage Area (sf)	Total Drainage Area (A, ac)	Composite Runoff Coefficient	Time of Conc. (tc, min)
Structure ID								
System 100								
CB 101	0	3,397	3,740	0	7,137	0.16	0.61	6
CB 102	0	13,521	3,619	0	17,140	0.39	0.43	6
MH 103	-	-	-	-	-	-	-	-
CB 104	0	15,080	28,967	0	44,047	1.01	0.69	6
CB 105	0	1,722	2,935	0	4,657	0.11	0.68	6
CB 106	0	3,755	3,016	0	6,771	0.16	0.57	6
CB 107	0	3,553	7,264	0	10,817	0.25	0.70	6
CB 108	0	3,361	17,225	0	20,586	0.47	0.80	6
CB 109	0	5,684	5,251	0	10,935	0.25	0.59	6
CB 110	0	6,085	5,115	0	11,200	0.26	0.57	6
CB 111	989	17,226	4,903	0	23,118	0.53	0.42	6
CB 110.1	0	3,370	18,045	0	21,415	0.49	0.81	6
CB 109.1	0	9,650	4,294	0	13,944	0.32	0.48	6
MH 101.1 CB 101.2	- 0	- 5,889	- 4,357	0	-	- 0.24		6
MH 101.3	0	5,669	4,357	-	10,246	- 0.24	0.56 -	-
CB 101.3.1	0	716	29,685	0	30,401	0.70	0.89	6
CB 101.3.1	0	369	30,464	0	30,833	0.70	0.89	6
CB 101.5	0	296	28,244	0	28,540	0.66	0.89	6
CB 101.2.1	0	10,314	4,366	0	14,680	0.34	0.48	6
Roof Drain N-PD 1.1.2	õ	0	113,483	0	113,483	2.61	0.90	6 6
Roof Drain E-PD 1.1.1	Õ	Ő	113,168	Õ	113,168	2.60	0.90	6
CB 151	Ő	1,150	2,115	Õ	3,265	0.07	0.69	6
CB 152	0	3,861	3,354	0	7,215	0.17	0.58	6
CB 153	0	27,085	3,380	0	30,465	0.70	0.37	6
System 300								
MH 301	-	-	-	-	-	-	-	-
MH 302	-	-	-	-	-	-	-	-
CB 303	0	644	7,842	0	8,486	0.19	0.85	6
CB 304	0	1,403	4,978	0	6,381	0.15	0.77	6
CB 305	0	0	2,148	0	2,148	0.05	0.90	6
CB 305.2	5,911	35,620	7,892	0	49,423	1.13	0.38	6 6
CB 305.1	0	4,371	15,452	0	19,823	0.46	0.77	6
CB 304.1	0	8,042	2,380	0	10,422	0.24	0.44	6
MH 306	-	-	-	-	-	-	-	-
CB 307	29,438	53,564	5,657	0	88,659	2.04	0.29	6
CB 308	0	8,220	6,816	0	15,036	0.35	0.57	6
CB 309	0	1,128	4,263	0	5,391	0.12	0.77	6
CB 302.1	0	3,073	28,032	0	31,105	0.71	0.84	6
CB 302.2	0	0	29,680	0	29,680	0.68	0.90	6
Roof Drain PP-3.1	0	0	56,377	0	56,377	1.29	0.90	6

Storm Sewer Inventory Report

) 					· · · · · · · · · · · · · · · · · · ·											
Line		Align	Alignment			Flow Data	Data					Physical Data	Data				Line ID
	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
~	End	36	78	Comb	00.0	0.16	0.61	6.0	176.00	2.22	176.80	30	Cir	0.012	1.50	182.52	FES 100-CB 101
2	~	30	7	Comb	00.0	0.39	0.43	6.0	176.80	0.67	177.00	30	Cir	0.012	1.41	182.52	CB 101-CB 102
ო	7	67	68	ΗM	0.00	0.00	00.0	0.0	177.00	9.70	183.50	30	Cir	0.012	0.50	193.99	CB 102-MH 103
4	ю	39	-27	Comb	0.00	1.01	0.69	6.0	183.50	9.76	187.30	30	Cir	0.012	1.41	204.32	MH 103-CB 104
2	4	315	-68	Comb	0.00	0.11	0.69	6.0	198.90	0.52	200.53	30	Cir	0.012	1.50	207.58	CB 104-CB 105
9	S	190	0	Comb	0.00	0.16	0.57	6.0	200.53	09.0	201.67	18	Cir	0.012	1.50	209.64	CB 105-CB 106
2	9	30	06	Comb	0.00	0.25	0.70	6.0	201.67	09.0	201.85	18	Cir	0.012	0.50	209.64	CB 106-CB 107
œ	7	269	-13	Comb	0.00	0.47	0.80	6.0	201.85	09.0	203.47	18	Cir	0.012	0.97	210.03	CB 107-CB 108
ი	ø	26	-36	Comb	0.00	0.25	0.59	6.0	203.47	0.61	203.63	18	Cir	0.012	1.57	209.40	CB 108-CB 109
10	б	276	49	Comb	0.00	0.26	0.57	6.0	203.63	09.0	205.28	18	Cir	0.012	2.13	208.83	CB 109-CB 110
1	10	30	06-	Comb	0.00	0.53	0.42	6.0	205.28	0.73	205.50	15	Cir	0.012	1.00	208.83	CB 110-CB 111
12	10	21	69	Comb	0.00	0.49	0.81	6.0	205.28	5.62	206.48	12	Cir	0.012	1.00	210.03	CB 110-CB 110.1
13	o	30	-41	Comb	0.00	0.32	0.48	6.0	203.63	7.23	205.80	15	Cir	0.012	1.00	209.40	CB 109-CB 109.1
14		97	89	НМ	0.00	0.00	0.00	0.0	176.86	4.14	180.87	24	Cir	0.012	0.28	187.34	CB 101-MH 101.1
15	14	145	-14	Comb	0.00	0.24	0.56	6.0	180.87	4.15	186.89	24	Cir	0.012	1.50	194.32	MH 101.1-CB 101.2
16	15	149	-29	HM	0.00	00.0	0.00	0.0	186.89	6.12	196.00	18	Cir	0.012	1.00	199.95	CB 101.2-MH 101.3
17	16	67	-110	Comb	0.00	0.70	0.89	6.0	196.00	7.07	200.72	18	Cir	0.012	0.81	205.00	MH 101.3-CB 101.3.
18	16	129	-5	Comb	00.0	0.71	0.89	6.0	196.00	1.16	197.50	18	Cir	0.012	0.69	205.00	MH 101.3-CB 101.4
19	18	160	24	Comb	0.00	0.66	0.89	6.0	200.50	0.59	201.45	15	Cir	0.012	1.00	205.00	CB 101.4-CB 101.5
20	15	30	-102	Comb	0.00	0.34	0.48	6.0	190.50	1.00	190.80	15	Cir	0.012	1.00	194.32	CB 101.2-CB 101.2.
21	17	185	29	НМ	0.00	2.61	06.0	6.0	200.72	2.28	204.94	18	Cir	0.012	1.00	209.00	CB 101.3.1-Roof dr
22	S	40	92	ΗM	00.0	2.60	06.0	6.0	200.53	9.15	204.19	18	Cir	0.012	1.00	209.00	CB 105-Roof drain
23	End	38	54	Comb	00.0	0.07	0.69	6.0	161.00	6.54	163.50	15	Cir	0.012	1.49	167.10	FES 150-CB 151
Project	Project File: CTA220027.00 - Series 100.stm	220027.00	- Series 1(00.stm								Number of lines: 25	f lines: 25			Date: 4/18/2023	18/2023

Storm Sewers v2022.00

Page 1

Stol	Storm Sewer Inventory Report	ewel	r Inv	entoi	Y R	hodę	فعلد											Page 2
Line		Aligr	Alignment			Flow	Flow Data					Physical Data	Data				Line ID	
	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)		
24	23	96	81	Comb	0.00	0.17	0.58	6.0	163.50	4.05	167.40	15	Ci	0.012	1.30	171.41	CB 151-CB 152	
25	24	30	-57	Comb	00.0	0.70	0.37	6.0	167.40	1.67	167.90	15	Cir	0.012	1.00	171.41	CB 152-CB 153	
Project	Project File: CTA220027.00 - Series 100.stm	220027.00) - Series 1	00.stm								Number (Number of lines: 25			Date: 4/	Date: 4/18/2023	

Storm Sewers v2022.00

Storm Sewer Tabulation

	L)	5	-																		
Station		Len	Drng Area		Rnoff	Area x C	U	Tc		Rain 1	Total 6	Cap V	Vel	Pipe	<u> </u>	Invert Elev	2	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID
Line	To		Incr	Total		Incr	Total	Inlet	Syst			5	_ 0)	Size	Slope E	Du	Up	Dn	٩N	D	Чр	
		(ft)	(ac)	(ac)	(c)			(min)	(min) ((in/hr) ((cfs) ((cfs) ((ft/s) ((in) ((%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	36	0.16	12.26	0.61	0.10	9.58	0.9	10.8	5.2	50.03	66.19	10.39	30	2.22	176.00	176.80	178.51	179.10	177.13	182.52	FES 100-CB 101
7		30	0.39	6.84	0.43	0.17	4.99	6.0	10.7	5.2	26.18	36.28	6.35	30	0.67	176.80	177.00	179.10	178.74	182.52	182.52	CB 101-CB 102
ო	N	67	00.0	6.45	0.00	00.0	4.82	0.0	10.5	5.3	25.50	138.4	7.03	30	9.70	177.00	183.50	178.74	185.22	182.52	193.99	CB 102-MH 103
4	ო	39	1.01	6.45	0.69	0.70	4.82	6.0	10.4	5.3	25.62	138.8	7.11	30	9.76	183.50	187.30	185.22	189.02	193.99	204.32	MH 103-CB 104
5	4	315	0.11	5.44	0.69	0.08	4.13	6.0	9.7	5.5	22.80	31.96	6.91	30	0.52	198.90	200.53	200.46	202.15	204.32	207.58	CB 104-CB 105
9	£	190	0.16	2.73	0.57	0.09	1.71	6.0	9.1	5.7	9.75	8.81	5.52	18	0.60	200.53	201.67	202.15	203.55	207.58	209.64	CB 105-CB 106
7	9	30	0.25	2.57	0.70	0.18	1.62	6.0	9.0	5.7	9.28	8.81	5.25	18	0.60	201.67	201.85	204.26	204.46	209.64	209.64	CB 106-CB 107
ω	2	269	0.47	2.32	0.80	0.38	1.44	6.0	8.1	6.0	8.73	8.82	4.94	18	0.60	201.85	203.47	204.67	206.26	209.64	210.03	CB 107-CB 108
თ	ω	26	0.25	1.85	0.59	0.15	1.07	6.0	8.0	6.1	6.50	8.86	3.68	18	0.61	203.47	203.63	206.63	206.71	210.03	209.40	CB 108-CB 109
10	ი	276	0.26	1.28	0.57	0.15	0.77	6.0	6.4	6.7	5.18	8.79	2.93	18	0.60	203.63	205.28	207.04	207.62	209.40	208.83	CB 109-CB 110
11	10	30	0.53	0.53	0.42	0.22	0.22	6.0	6.0	6.9	1.54	5.99	1.26	15	0.73	205.28	205.50	207.90	207.91	208.83	208.83	CB 110-CB 111
12	10	21	0.49	0.49	0.81	0.40	0.40	6.0	6.0	6.9	2.75	9.14	3.51	12	5.62	205.28	206.48	207.90	208.01	208.83	210.03	CB 110-CB 110.1
13	б	30	0.32	0.32	0.48	0.15	0.15	6.0	6.0	6.9	1.07	18.81	0.87	15	7.23	203.63	205.80	207.04	207.05	209.40	209.40	CB 109-CB 109.1
14	~	97	0.00	5.26	00.0	0.00	4.49	0.0	7.4	6.3	28.33	49.89	9.21	24	4.14	176.86	180.87	179.10	182.70	182.52	187.34	CB 101-MH 101.1
15	14	145	0.24	5.26	0.56	0.13	4.49	6.0	7.1	6.4	28.80	49.90	9.53	24	4.15	180.87	186.89	182.70	188.73	187.34	194.32	MH 101.1-CB 101
16	15	149	0.00	4.68	00.0	0.00	4.19	0.0	7.0	6.5	27.18	28.14	15.39	18	6.12	186.89	196.00	188.73	197.49	194.32	199.95	CB 101.2-MH 101
17	16	67	0.70	3.31	0.89	0.62	2.97	6.0	6.3	6.8	20.13	30.25	11.43	18	7.07	196.00	200.72	197.49	202.19	199.95	205.00	MH 101.3-CB 101
18	16	129	0.71	1.37	0.89	0.63	1.22	6.0	6.6	6.7	8.13	12.25	5.22	18	1.16	196.00	197.50	197.49	198.60	199.95	205.00	MH 101.3-CB 101
19	18	160	0.66	0.66	0.89	0.59	0.59	6.0	6.0	6.9	4.07	5.39	4.81	15	0.59	200.50	201.45	201.31	202.27	205.00	205.00	CB 101.4-CB 101.
20	15	30	0.34	0.34	0.48	0.16	0.16	6.0	6.0	6.9	1.13	7.00	3.66	15	1.00	190.50	190.80	190.84	191.22	194.32	194.32	CB 101.2-CB 101.
21	17	185	2.61	2.61	06.0	2.35	2.35	6.0	6.0	6.9	16.29	17.18	9.33	18	2.28	200.72	204.94	202.19	206.37	205.00	209.00	CB 101.3.1-Roof
22	ي ا	40	2.60	2.60	06.0	2.34	2.34	6.0	6.0	6.9	16.23	34.41	9.27	18	9.15	200.53	204.19	202.15	205.62	207.58	209.00	CB 105-Roof drai
Proje	Project File: 0	CTA220	CTA220027.00	- Series 100.stm	100.stm											Number	Number of lines: 25	2		Run Date:	te: 4/18/2023	23

Page 1

NOTES:Intensity = 37.23 / (Inlet time + 4.00) ^ 0.73; Return period = Yrs. 10 ; c = cir e = ellip b = box

		5		5)]	╸│								ľ							
Station		Len	Drng Area		Rnoff	Area x C	υ	Tc		Rain	Total	Cap	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID
Line	To Line	•	Incr	Total		Incr	Total	Inlet	Syst	E		5		Size	Slope I	Dn	Чp	Ð	dD	Dn	dŊ	
		(tt)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(tt)	(L t)	(tt)	(ft)	(ft)	
23	End	38	0.07	0.94	0.69	0.05	0.41	6.0	6.6	6.7	2.70	17.90	7.28	15	6.54	161.00	163.50	161.33	164.16	167.96	167.10	FES 150-CB 151
24	23	96	0.17	0.87	0.58	0.10	0.36	6.0	6.2	6.9	2.45	14.08	3.86	15	4.05	163.50	167.40	164.16	168.03	167.10	171.41	CB 151-CB 152
25	24	30	0.70	0.70	0.37	0.26	0.26	6.0	6.0	6.9	1.80	9.03	3.26	15	1.67	167.40	167.90	168.03	168.43	171.41	171.41	CB 152-CB 153
Proje	Project File: CTA220027.00 - Series 100.stm	:TA220	0027.00	- Series	100.stm											Number	Number of lines: 25	10		Run Dat	Run Date: 4/18/2023	123
NOTI	NOTES:Intensity = 37.23 / (Inlet time + 4.00) ^ 0.73; Return period =Yrs. 10 ;	ity = 3	7.23 / (lr	let time	+ 4.00)	^ 0.73; F	≷eturn p€	eriod =∖	'rs. 10 ;	c = cir	e = ellip b = box	xod = d										

Storm Sewers v2022.00

Page 2

Storm Sewer Tabulation

Report	Inlet ID
Inlet	Line No

Line	Inlet ID	= d 0 0	Q	cant Cant	Q Bvn	Junc	Curb Inlet	et	Grat	Grate Inlet				Gu	Gutter				-	Inlet		Byp Line
2		(cfs)	(cfs)	(cfs)			(in) (in)	(ft)	Area I (sqft) (<u> </u>	۲) (ft	So (ft/ft)	<u>(</u> ئې	Sw Sw (ft/ft) (Sx (ft/ft)	<u>د</u>	Depth S (ft)	Spread (ft)	Depth (ft) (Spread [(ft) (Depr (in)	No
	CB 101	0.68	0.39	0.60	0.46	Comb	4.0	2.73	00.00	2.31	1.35 0	0.050	2.53	0.020	0.020	0.013	0.10	5.06	0.07	3.70	0.0	24
N	CB 102	1.16	0.50	0.84	0.83	Comb	4.0	2.73	0.00	2.31	1.35 0	0.050	2.53	0.020	0.020	0.013	0.12	5.98	0.09	4.60	0.0	25
ო	MH 103	00.0	00.0	00.0	0.00	НМ	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	00.0	0.00	0.00	0.00	0.0	Off
4	CB 104	4.83	06.0	5.74	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53	0.020	0.020	0.000	0.40	20.14	0.40	20.14	0.0	Off
S	CB 105	0.53	0.24	0.45	0.32	Comb	4.0	2.73	00.0	2.31	1.35 0	0.011	2.53	0.020	0.020	0.013	0.12	5.95	0.09	4.28	0.0	
9	CB 106	0.63	00.0	0.39	0.24	Comb	4.0	2.73	0.00	2.31	1.35 0	0.011	2.53	0.020	0.020	0.013	0.11	5.52	0.08	3.87	0.0	5
7	CB 107	1.21	00.0	0.63	0.58	Comb	4.0	2.73	0.00	2.31	1.35 0	0.011	2.53	0.020	0.020	0.013	0.14	7.05	0.11	5.35	0.0	4
80	CB 108	2.61	0.00	2.61	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53	0.020	0.020	0.000	0.25	12.37	0.25	12.37	0.0	Off
ŋ	CB 109	1.02	00.0	1.02	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.020	0.020	0.000	0.18	9.07	0.18	9.07	0.0	Off
10	CB 110	1.03	00.0	1.03	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.020	0.020	0.000	0.18	9.09	0.18	9.09	0.0	Off
11	CB 111	1.54	00.0	1.54	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.020	0.020	0.000	0.23	11.56	0.23	11.56	0.0	Off
12	CB 110.1	2.75	0.00	2.75	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.020	0.020	0.000	0.33	16.45	0.33	16.45	0.0	Off
13	CB 109.1	1.07	0.00	1.07	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53	0.020	0.020	0.000	0.19	9.29	0.19	9.29	0.0	Off
14	MH 101.1	00.0	0.00	00.0	0.00	НМ	0.0	0.00	00.0	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	00.0	00.0	00.0	0.0	Off
15	CB 101.2	0.93	0.00	0.54	0.39	Comb	4.0	2.73	0.00	2.31	1.35 0	0.050	2.53	0.020	0.020	0.013	0.10	4.81	0.07	3.47	0.0	_
16	MH 101.3	00.0	0.00	0.00	0.00	НМ	0.0	0.00	00.0	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	00.0	00.0	00.0	0.0	Off
17	CB 101.3.1	4.32	0.00	4.32	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53	0.020	0.020	0.000	0.34	16.87	0.34	16.87	0.0	Off
18	CB 101.4	4.38	0.00	4.38	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53	0.020	0.020	0.000	0.34	17.02	0.34	17.02	0.0	Off
19	CB 101.5	4.07	0.00	4.07	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53	0.020	0.020	0.000	0.33	16.26	0.33	16.26	0.0	Off
20	CB 101.2.1	1.13	0.00	0.63	0.50	Comb	4.0	2.73	00.0	2.31	1.35 0	0.050	2.53	0.020	0.020	0.013	0.10	5.17	0.08	3.81	0.0	0
21	Roof Drain N	16.29	0.00	0.00	16.29	НМ	0.0	0.00	00.0	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	00.0	00.0	00.0	0.0	Off
22	Roof Drain E	16.23	0.00	0.00	16.23	НМ	0.0	0.00	00.0	0.00	0.00	Sag	00.0	0.000	0.000	0.000	0.00	0.00	00.0	00.0	0.0	Off
23	CB 151	0.34	0.00	0.24	0.09	Comb	4.0	2.73	0.00	2.31	1.35 0	0.050	2.53	0.020	0.020	0.013	0.07	3.28	0.04	2.02	0.0	Off
Proje	Project File: CTA220027.00 - Series 100.stm)0 - Series	100.stm											Number of lines:	of lines:	25		- Bu	Run Date:	4/18/2023		

Storm Sewers v2022.00

NOTES: Inlet N-Values = 0.016; Intensity = 37.23 / (Inlet time + 4.00) ^ 0.73; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

Page 1

Line	Inlet ID	" 0	a	ď	a	Junc	Curb Inlet	et	Grate	Grate Inlet				Gu	Gutter					Inlet		Byp
o		CIA (cfs)	carry (cfs)	capt (cfs)			(in)	L É	Area L (sqft) (ر (#)	So (ft/ft)	∧£	Sw (ft/ft)	Sx (ft/ft)	c	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
24	CB 152	0.68	0.46	0.64	0.51	Comb	4.0	2.73	0.00	2.31	1.35 0	0.050	2.53	0.020	0.020	0.013	0.10	5.20	0.08	3.84	0.0	Off
25	CB 153	1.80	0.83	1.12	1.50	Comb	4.0	2.73	0.00	2.31	1.35 0	0.030	2.53	0.020	0.020	0.013	0.16	7.80	0.13	6.32	0.0	Off
Projec	Project File: CTA220027.00 - Series 100.stm)0 - Series	100.stm											Number of lines: 25	of lines:	25		<u>د</u>	Run Date:	4/18/2023	~	
NOTE	NOTES: Inlet N-Values = 0.016; Intensity = 37.23 / (Inlet time + 4.00) ^ 0.73;	0.016; Inte	nsity = 3	7.23 / (Ir	let time -	+ 4.00) ^		Return pe	period = 10 Yrs. ; * Indicates Known Q added.All curb inlets are throat.) Yrs.; '	* Indicate	s Knowr	n Q adde	ed.All cu	rb inlets	are thro	at.	-				
																				5	orm Sewer	Storm Sewers v2022.00

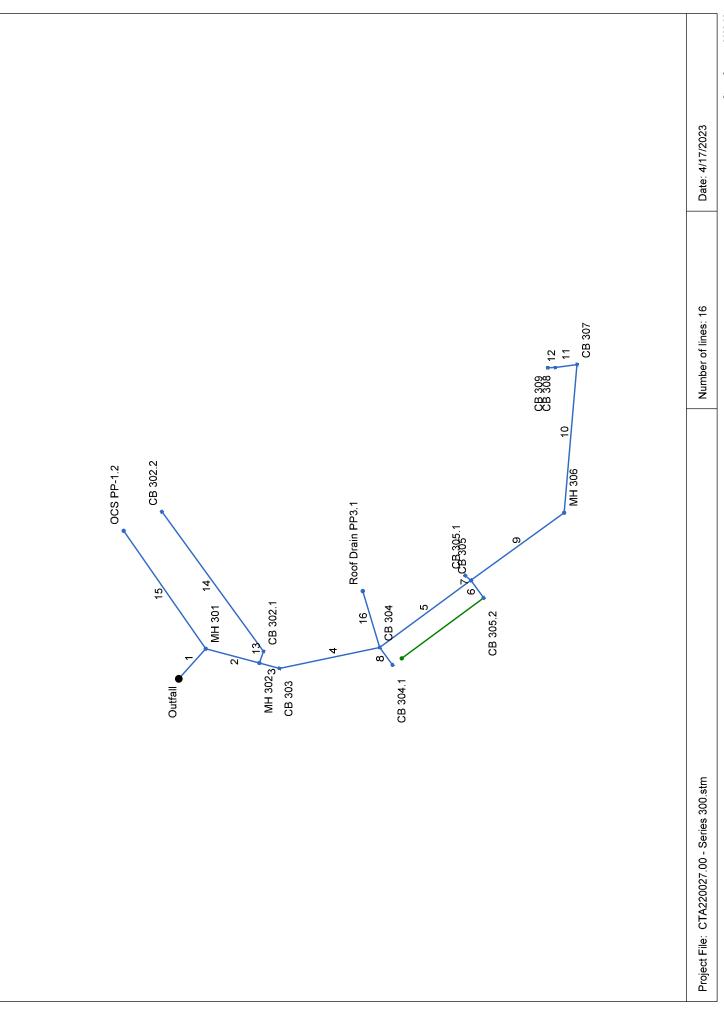
Page 2

Inlet Report

draulic Grade Line Computations	
c Grade Line Computat	S
c Grade Line Computat	
c Grade Line Computat	0
c Grade Line Com	1
c Grade Line Com	D.
c Grade Line Com	Ľ,
c Grade Line Com	
c Grade Line (Q
c Grade Line (
c Grade Line (
c Grade Line (Ö
c Grade Lin	O
c Grade Lin	4
c Grade Lin	¥
c Grade I	المبطر
c Gra	
c Gra	
c Gra	
С С	Q
С С	<u> a</u>
С U	
draulic	U
draulid	0
draul	Ĭ
draı	
qr	
	2
	σ

Hyc	Hydraulic	lic (Grade	e Lir	Je C	, on	Line Computations	atio	SU														Page 1
Line S	Size	σ			Ď	Downstream	am				Len				Upstream	eam				Check		یال 2004	Minor
Ü	(ii)	(cfs) (Invert elev (ft)	HGL elev (ft)	Depth / (ft) (Area (sqft)	Vel V (ft/s)	Vel E head (ft) ((EGL elev (ft)	Sf (%)	(H)	Invert elev (ft)	HGL elev (ft)	Depth /	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	(K)	(ft)
~	30	50.03	176.00	178.51	2.50	4.72	10.19	1.62	180.13	1.269	36	176.80	179.10	2.30**	4.72	10.59	1.74	180.84	1.101	1.185	n/a	1.50	n/a
7	30	26.18	176.80	179.10	2.30	3.65	5.54	0.80	179.90	0.000	30	177.00	178.74	1.74**	3.65	7.16	0.80	179.54	0.000	0.000	n/a	1.41	n/a
ო	30	25.50	177.00	178.74	1.74	3.60	6.98	0.78	179.52	0.000	67	183.50	185.22 j	1.72**	3.60	7.08	0.78	186.00	0.000	0.000	n/a	0.50	n/a
4	30	25.62	183.50	185.22	1.72	3.60	7.12	0.78	186.00	0.000	39	187.30	189.02	1.72**	3.61	7.10	0.78	189.81	0.000	0.000	n/a	1.41	1.10
S	30	22.80	198.90	200.46	1.56*	3.22	7.07	0.71	201.17	0.000	315	200.53	202.15	1.62**	3.37	6.76	0.71	202.86	0.000	0.000	n/a	1.50	n/a
Q	18	9.75	200.53	202.15	1.50	1.77	5.52	0.47	202.63	0.735	190	201.67	203.55	1.50	1.77	5.52	0.47	204.02	0.735	0.735	1.396	1.50	0.71
2	18	9.28	201.67	204.26	1.50	1.77	5.25	0.43	204.69	0.666	30	201.85	204.46	1.50	1.77	5.25	0.43	204.89	0.666	0.666	0.200	0.50	0.21
ø	18	8.73	201.85	204.67	1.50	1.77	4.94	0.38	205.05	0.589	269	203.47	206.26	1.50	1.77	4.94	0.38	206.64	0.589	0.589	1.585	0.97	0.37
თ	18	6.50	203.47	206.63	1.50	1.77	3.68	0.21	206.84	0.327	26	203.63	206.71	1.50	1.77	3.68	0.21	206.92	0.327	0.327	0.086	1.57	0.33
10	18	5.18	203.63	207.04	1.50	1.77	2.93	0.13	207.18	0.207	276	205.28	207.62	1.50	1.77	2.93	0.13	207.75	0.207	0.207	0.572	2.13	0.28
11	15	1.54	205.28	207.90	1.25	1.23	1.26	0.02	207.92	0.049	30	205.50	207.91	1.25	1.23	1.26	0.02	207.94	0.049	0.049	0.015	1.00	0.02
12	12	2.75	205.28	207.90	1.00	0.79	3.51	0.19	208.09	0.510	21	206.48	208.01	1.00	0.79	3.51	0.19	208.20	0.509	0.509	0.109	1.00	0.19
13	15	1.07	203.63	207.04	1.25	1.23	0.87	0.01	207.06	0.023	30	205.80	207.05	1.25	1.23	0.87	0.01	207.06	0.023	0.023	0.007	1.00	0.01
14	24	28.33	176.86	179.10	2.00	3.02	9.02	1.26	180.36	1.338	97	180.87	182.70 j	1.83**	3.02	9.39	1.37	184.07	1.163	1.250	n/a	0.28	n/a
15	24	28.80	180.87	182.70	1.83	3.02	9.55	1.41	184.11	0.000	145	186.89	188.73	1.84**	3.03	9.52	1.41	190.14	0.000	0.000	n/a	1.50	2.11
16	18	27.18	186.89	188.73	1.50	1.77	15.38	3.68	192.41	5.711	149	196.00	197.49 j	1.49**	1.77	15.39	3.68	201.18	5.338	5.525	n/a	1.00	3.68
17	18	20.13	196.00	197.49	1.49	1.76	11.40	2.04	199.53	0.000	67	200.72	202.19 j	1.47**	1.76	11.45	2.04	204.23	0.000	0.000	n/a	0.81	n/a
18	18	8.13	196.00	197.49	1.49	1.39	4.61	0.53	198.02	0.000	129	197.50	198.60 j	1.10**	1.39	5.83	0.53	199.13	0.000	0.000	n/a	0.69	0.37
19	15	4.07	200.50	201.31	0.81*	0.84	4.83	0.36	201.67	0.000	160	201.45	202.27	0.82**	0.85	4.80	0.36	202.62	0.000	0.000	n/a	1.00	n/a
20	15	1.13	190.50	190.84	0.34*	0.27	4.19	0.15	190.99	0.000	30	190.80	191.22	0.42**	0.36	3.14	0.15	191.37	0.000	0.000	n/a	1.00	0.15
21	18	16.29	200.72	202.19	1.47	1.74	9.27	1.37	203.56	0.000	185	204.94	206.37 j	1.43**	1.74	9.38	1.37	207.74	0.000	0.000	n/a	1.00	1.37
22	18	16.23	200.53	202.15	1.50	1.74	9.19	1.31	203.47	2.037	40	204.19	205.62 j	1.43**	1.74	9.35	1.36	206.98	1.765	1.901	n/a	1.00	1.36
Projec	Project File: C1	TA22002	7.00 - Ser	CTA220027.00 - Series 100.stm	۲									N	mber o	Number of lines: 25	5		Run	Run Date: 4	4/18/2023	~	

Storm Sewers v2022.00


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

Ł	Hydraulic Grade Line Computations	ilic (Grad	e Lir	Je C	b m o	puté	atio	ns														Page 2
Line	Line Size	a			Ď	Downstream	m				Len				Upstream	eam				Check		JL 500ff	Minor
	(ii)	(cfs)	Invert elev (ft)	HGL [elev (ft)	Depth Area (ft) (sqft)	-	Vel V h (ft/s) (f	Vel E head e (ft) (f	EGL S elev ((Sf (%)	(tt)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)		(ft)
23	15	2.70	161.00	161.33	0.33	0.26	10.44 0	0.26	161.59	0.00	38	163.50	164.16	0.66**	0.66	4.12	0.26	164.42	0.000	0.000	n/a	1.49	n/a
24	15	2.45	163.50	164.16	0.66	0.62	3.74 0	0.25	164.41	0.000	96	167.40	168.03 j	0.63**	0.62	3.99	0.25	168.27	0.000	0.000	n/a	1.30	n/a
25	15	1.80	167.40	168.03	0.63	0.50	2.92 0	0.20	168.23	0.000	30	167.90	168.43 j	0.53**	0.50	3.61	0.20	168.63	0.000	000.0	n/a	1.00	n/a
Pro	Project File: CTA220027.00 - Series 100.stm	:TA22002	27.00 - Ser	ies 100.stn	 _									Ż	umber o	Number of lines: 25	2		Run	Run Date: 4/18/2023	/18/2023		
Not	Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ;	1 assume	ad; ** Critica	al depth.; j-	Line con	tains hy	d. jump	c = cir	e = ellip t	b = box				-					-				

Storm Sewers v2022.00

Page 2

Storm Sewer Inventory Report

																	<u>c</u>
No.		Align	Alignment			Flow Data	Jata					Physical Data	uata			-	
	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
	End	56	42	ΗМ	00.0	0.00	0.00	0.0	186.00	2.70	187.50	30	Ci	0.012	0.98	200.93	FES 300-MH 301
2	. 	77	63	ΗМ	00.0	00.0	00.0	0.0	195.00	3.00	197.30	30	Cir	0.012	1.00	204.50	MH 301-MH 302
ო	7	29	0	Comb	00.0	0.19	0.85	6.0	197.36	3.06	198.24	24	Cir	0.012	0.76	204.64	MH 302-CB 303
4	ო	141	-27	Comb	0.00	0.15	0.77	6.0	198.24	3.08	202.60	24	ci	0.012	1.50	210.27	CB 303-CB 304
5	4	156	-24	Comb	0.00	0.05	06.0	6.0	202.60	0.50	203.38	24	Cir	0.012	2.25	212.54	CB 304-CB 305
9	2ı	30	06	Comb	0.00	1.13	0.38	6.0	208.50	1.67	209.00	15	ci	0.012	1.00	212.54	CB 305-CB 305.2
7	2ı	10	-105	Comb	00.0	0.46	0.77	6.0	206.50	4.83	207.00	15	Cir	0.012	1.00	210.73	CB 305-CB 305.1
ø	4	30	66	Comb	0.00	0.24	0.44	6.0	206.50	0.73	206.72	15	ci	0.012	1.00	210.27	CB 304-CB 304.1
б	2ı	159	0	НМ	0.00	00.0	00.0	0.0	203.38	0.50	204.17	18	Cir	0.012	0.79	214.33	CB 305-MH 306
10	0	204	49	Comb	00.0	2.04	0.29	6.0	204.17	0.50	205.19	15	Cir	0.012	1.50	208.89	MH 306-CB 307
11	10	30	-103	Comb	00.0	0.35	0.57	6.0	205.19	0.50	205.34	15	Cir	0.012	0.50	208.89	CB 307-CB 308
12	11	11	5ı	Comb	00.0	0.12	0.77	6.0	205.34	19.70	207.45	12	Cir	0.012	1.00	211.00	CB 308-CB 309
13	7	17	-85	Comb	0.00	0.71	0.84	6.0	199.50	2.94	200.00	18	Cir	0.012	1.28	204.77	MH 302-CB 302.1
14	13	238	-56	Comb	0.00	0.68	06.0	6.0	200.00	0.63	201.50	15	ci	0.012	1.00	205.00	CB 302.1-CB 302.2
15	÷	198	-77	ΗM	1.57	0.00	00.0	0.0	193.00	0.91	194.80	12	Ċ	0.012	1.00	198.20	MH 301-OCS PP1.2
16	4	81	-95	ΗM	0.00	1.29	06.0	6.0	202.60	7.16	208.40	24	Ci	0.012	1.00	209.00	CB 304-Roof Drain
Project	Project File: CTA220027.00 - Series 300.stm	20027.00	- Series 3	00.stm								Number c	Number of lines: 16			Date: 4/	Date: 4/17/2023

Storm Sewers v2022.00

Page 1

0
Ť
D
_
5
Ω
at
F
5
Φ
- Ž
2
Ð
S
~
0

Sto)rm	Se	wer	Storm Sewer Tabulation	bula	atio	C															Page 1
Station		Len	Drng Area		Rnoff	Area x C	U	Тс		Rain 1	Total (Cap V	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	im Elev	Line ID
Line	To		Incr	Total		Incr	Total	Inlet	Syst			5	,	Size	Slope [Dn	Чр	Du	đ	D	dŊ	
		(ft)	(ac)	(ac)	(c)			(min)	(min) ((in/hr) ((cfs) ((cfs) ((ft/s) ((in) (') (%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
·	Бnd	99	00.0	7 41	00.0	00.0	4 46	υυ	88	5.8	27 48	72 96	6 46	30	0 2 U	186.00	187 50	188.89	189.29	188.67	200 93	FES 300-MH 301
~ ~				7 41			4 46		9	0 00		76 95	10.66			195.00	197 30	196.00	199.04	200 93	204 50	MH 301-MH 302
V	_	-	0.00	- - -	0.00	0.0	4.40	0	0.0			10.93	00.01			00.08	00.181	00.061	133.04	CB.002	204.30	
ო	7	29	0.19	6.02	0.85	0.16	3.26	6.0	8.6	5.9	19.10	42.85	7.00	24	3.06	197.36	198.24	199.04	199.81	204.50	204.64	MH 302-CB 303
4	ო	141	0.15	5.83	0.77	0.12	3.09	6.0	8.2	6.0	18.52	43.02	7.05	24	3.08	198.24	202.60	199.81	204.15	204.64	210.27	CB 303-CB 304
5	4	156	0.05	4.15	06.0	0.05	1.71	6.0	7.7	6.2	10.59	17.31	4.82	24	0.50	202.60	203.38	204.15	204.54	210.27	212.54	CB 304-CB 305
9	S	30	1.13	1.13	0.38	0.43	0.43	6.0	6.0	6.9	2.98	9.03	5.43	15	1.67	208.50	209.00	208.99	209.69	212.54	212.54	CB 305-CB 305.2
7	5	10	0.46	0.46	0.77	0.35	0.35	6.0	6.0	6.9	2.46	15.38	6.58	15	4.83	206.50	207.00	206.84	207.63	212.54	210.73	CB 305-CB 305.1
ø	4	30	0.24	0.24	0.44	0.11	0.11	6.0	6.0	6.9	0.73	5.99	3.04	15	0.73	206.50	206.72	206.80	207.05	210.27	210.27	CB 304-CB 304.1
თ	S	159	00.0	2.51	0.00	00.0	0.88	0.0	7.1	6.4	5.68	8.02	4.43	18	0.50	203.38	204.17	204.54	205.09	212.54	214.33	CB 305-MH 306
10	თ	204	2.04	2.51	0.29	0.59	0.88	6.0	6.4	6.7	5.95	4.94	4.85	15	0.50	204.17	205.19	205.42	206.90	214.33	208.89	MH 306-CB 307
11	10	30	0.35	0.47	0.57	0.20	0.29	6.0	6.1	6.9	2.01	4.95	1.64	15	0.50	205.19	205.34	207.45	207.48	208.89	208.89	CB 307-CB 308
12	11	11	0.12	0.12	0.77	0.09	60.0	6.0	6.0	6.9	0.64	17.12	1.81	12	19.70	205.34	207.45	207.50	207.78	208.89	211.00	CB 308-CB 309
13	2	17	0.71	1.39	0.84	09.0	1.21	6.0	6.9	6.5	7.86	19.52	8.09	18	2.94	199.50	200.00	200.16	201.09	204.50	204.77	MH 302-CB 302.1
14	13	238	0.68	0.68	06.0	0.61	0.61	6.0	6.0	6.9	4.25	5.55	4.32	15	0.63	200.00	201.50	201.09	202.33	204.77	205.00	CB 302.1-CB 302.
15		198	00.0	00.0	00.0	00.0	0.00	0.0	0.0	0.0	1.57	3.68	4.10	12	0.91	193.00	194.80	193.46	195.33	200.93	198.20	MH 301-OCS PP1
16	4	81	1.29	1.29	06.0	1.16	1.16	6.0	6.0	6.9	8.05	65.57	4.08	24	7.16	202.60	208.40	204.15	209.41	210.27	209.00	CB 304-Roof Drai
Proje	ct File:	CTA22(0027.00	Project File: CTA220027.00 - Series 300.stm	300.stm											Number	Number of lines: 16	. u		Run Da	Run Date: 4/17/2023	123

Storm Sewers v2022.00

NOTES:Intensity = 37.23 / (Inlet time + 4.00) ^ 0.73; Return period = Yrs. 10 ; c = cir e = ellip b = box

ã
Re
₩

Inlet	et Report																				Ъ.	Page 1
Line	Inlet ID	= v	Q Carny	Q Cant	Q Bvn	Junc (Curb Inlet	let	Grat	Grate Inlet				Gu	Gutter					Inlet		Byp Line
		(cfs)		cept (cfs)			(in)	(it)	Area L (sqft) ((ff)	(ft)	So (ft/ft) ((ft)	Sw Sw (ft/ft) (Sx (ft/ft)		Depth (ft) (Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
	MH 301	0.00	0.00	0.00	0.00	ΗW	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	00.0	0.00	0.00	0.0	Off
7	MH 302	00.0	00.0	00.0	00.0	НМ	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	00.0	00.0	00.0	00.0	0.0	Off
ო	CB 303	1.12	0.37	0.76	0.73	Comb	4.0	2.73	0.00	2.31	1.35 0	0.038	2.53 (0.020	0.020	0.013	0.12	6.04	0.09	4.63	0.0	Off
4	CB 304	0.80	0.09	0.52	0.37	Comb	4.0	2.73	0.00	2.31	1.35 0	0.038	2.53 (0.020	0.020	0.013	0.10	4.98	0.07	3.60	0.0	ო
£	CB 305	0.31	0.00	0.22	0.09	Comb	4.0	2.73	0.00	2.31	1.35 0	0.011	2.53 (0.020	0.020	0.013	0.08	4.24	0.05	2.65	0.0	4
9	CB 305.2	2.98	0.00	1.20	1.78	Comb	4.0	2.73	0.00	2.31	1.35 0	0.011	2.53 (0.020	0.020	0.013	0.20	9.87	0.16	8.14	0.0	Ø
7	CB 305.1	2.46	0.00	2.46	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53 (0.020	0.020	0.000	0.24	11.94	0.24	11.94	0.0	Off
ø	CB 304.1	0.73	1.78	1.10	1.41	Comb	4.0	2.73	0.00	2.31	1.35 0	0.038	2.53 (0.020	0.020	0.013	0.15	7.34	0.12	5.91	0.0	Off
ი	MH 306	0.00	0.00	00.0	0.00	НМ	0.0	00.0	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	00.0	0.00	0.00	0.0	Off
10	CB 307	4.10	0.00	4.10	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53 (0.020	0.020	0.000	0.33	16.33	0.33	16.33	0.0	Off
11	CB 308	1.38	0.00	1.38	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53 (0.020	0.020	0.000	0.22	10.83	0.22	10.83	0.0	Off
12	CB 309	0.64	0.00	0.64	0.00	Comb	4.0	2.73	3.12	2.31	1.35	Sag	2.53 (0.020	0.020	0.000	0.14	6.95	0.14	6.95	0.0	Off
13	CB 302.1	4.14	0.00	4.14	0.00	Comb	4.0	5.46	6.24	4.62	1.35	Sag	2.53 (0.020	0.020	0.000	0.33	16.42	0.33	16.42	0.0	Off
14	CB 302.2	4.25	00.0	4.25	0.00	Comb	4.0	5.46	6.24	4.62	1.35 6	Sag	2.53 (0.020	0.020	0.000	0.33	16.68	0.33	16.68	0.0	Off
15	OCS PP-1.2	1.57*	00.0	0.00	1.57	ΗМ	0.0	00.0	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	00.0	0.00	00.0	0.0	Off
6	Roof Drain PP3.1	8 0.05	0.0	00.0	8.05	Η	0.0	00.0	0.00	00.0	00.0	а С С С	00.00	000.0	000.0	000.0	00.00	00.0	0.0	00.0	0.0	Off
Projec	Project File: CTA220027.00 - Series 300.stm	0 - Series	300.stm											Number of lines: 16	of lines: `	9		<u>۳</u>	un Date:	Run Date: 4/17/2023	m	
NOTE	NOTES: Inlet N-Values = 0.016; Intensity = 37.23 / (Inlet time + 4.00) ^ 0.73;	0.016; Inte	nsity = 3	7.23 / (lr	let time	+ 4.00) ^		leturn pe	riod = 10	Yrs. : *	Indicate	Return period = 10 Yrs. ; * Indicates Known Q added. All curb inlets are throat.	1 Q adde	d.All cui	b inlets	are thro	át.	-				

Computations
Line
Grade
ydraulic
Hy

Line	e Size	a			Ď	Downstream	eam				Len				Upstream	eam				Check		JL	Minor	
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(#)	Invert elev (ft)	HGL elev (ft)	Depth /	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)		20 (£)	
-	30	27.48	186.00	188.89	2.50	3.75	5.60	0.49	189.38	0.383	56	187.50	189.29 j	1.79**	3.75	7.32	0.83	190.12	0.518	0.450	n/a	0.98	n/a	
2	30	26.09	195.00	196.00	1.00*	1.84	14.16	0.80	196.80	0.000	77	197.30	199.04	1.74**	3.65	7.15	0.80	199.84	0.000	0.000	n/a	1.00	n/a	
ო	24	19.10	197.36	199.04	1.68	2.65	6.78	0.81	199.85	0.000	29	198.24	199.81 j	1.57**	2.65	7.22	0.81	200.62	0.000	0.000	n/a	0.76	n/a	
4	24	18.52	198.24	199.81	1.57	2.61	6.99	0.78	200.59	0.000	141	202.60	204.15 j	1.55**	2.61	7.10	0.78	204.93	0.000	0.000	n/a	1.50	1.17	
2	24	10.59	202.60	204.15	1.55	1.90	4.06	0.48	204.63	0.000	156	203.38	204.54 j	1.16**	1.90	5.58	0.48	205.03	0.000	0.000	n/a	2.25	1.09	
9	15	2.98	208.50	208.99	0.49*	0.45	6.60	0.28	209.28	0.000	30	209.00	209.69	0.69**	0.70	4.26	0.28	209.98	0.000	0.000	n/a	1.00	n/a	
2	15	2.46	206.50	206.84	0.34*	0.27	9.18	0.25	207.09	0.000	10	207.00	207.63	0.63**	0.62	3.99	0.25	207.87	0.000	0.000	n/a	1.00	n/a	
ø	15	0.73	206.50	206.80	0.30*	0.22	3.31	0.12	206.91	0.000	30	206.72	207.05	0.33**	0.26	2.77	0.12	207.17	0.000	0.000	n/a	1.00	n/a	
თ	18	5.68	203.38	204.54	1.16	1.13	3.86	0.23	204.78	0.277	159	204.17	205.09 j	0.92**	1.13	5.01	0.39	205.48	0.519	0.398	n/a	0.79	0.31	
10	15	5.95	204.17	205.42	1.25*	1.23	4.85	0.37	205.79	0.725	204	205.19	206.90	1.25	1.23	4.85	0.37	207.27	0.724	0.725	1.482	1.50	0.55	
1	15	2.01	205.19	207.45	1.25	1.23	1.64	0.04	207.49	0.083	30	205.34	207.48	1.25	1.23	1.64	0.04	207.52	0.083	0.083	0.025	0.50	0.02	
12	12	0.64	205.34	207.50	1.00	0.23	0.82	0.01	207.51	0.028	11	207.45	207.78	0.33**	0.23	2.80	0.12	207.91	0.482	0.255	n/a	1.00	n/a	
13	18	7.86	199.50	200.16	0.66*	0.75	10.44	0.51	200.68	0.000	17	200.00	201.09	1.09**	1.37	5.74	0.51	201.60	0.000	0.000	n/a	1.28	n/a	
14	15	4.25	200.00	201.09	1.09	0.87	3.75	0.37	201.46	0.000	238	201.50	202.33 j	0.83**	0.87	4.88	0.37	202.70	0.000	0.000	n/a	1.00	0.37	
15	12	1.57	193.00	193.46	0.46*	0.35	4.50	0.21	193.67	0.000	198	194.80	195.33	0.53**	0.42	3.70	0.21	195.54	0.000	0.000	n/a	1.00	n/a	
16	24	8.05	202.60	204.15	1.55	1.59	3.09	0.40	204.55	000.0	81	208.40	209.41 j	1.01**	1.59	5.06	0.40	209.81	0.000	0.000	n/a	1.00	n/a	
^ב	Project File:	CTA220	CTA220027.00 - Series 300.stm	ries 300.st	E									_ ¬²	mber of	Number of lines: 16	0		Run	Run Date: 4/17/2023	/17/2023			_

Page 1

Storm Sewers v2022.00

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

Rip Rap Sizing Calculations

Design Period Storms: 25 year, except 100 year out of detention basins

				Rip F	ap Apron Si	zing Calcula	tions				
Location	Pipe Size (in.)	Pipe Size (ft.)	Q (cfs)	TW (ft.)	V (fps)	W1 (ft.)	La (ft.)	W2 (ft.)	W3 (ft.)	Apron Type	Rip Rap Type
FES 150	15	1.3	3.29	0.36	7.76	3.75	10	11	NA	A	Modified

Based ConnDOT Drainage Manual - Type A, B, and C Riprap Aprons

Outlet Velocity (fps)
0-8 - Modified
8-10 - Intermediate

Scour Hole Sizing Calculations										
	Pipe Size/	Pipe Size/	Q	TW	Scour Hole	D ₅₀	F	С	В	Rip Rap Type
Location	Span (in)	Span (ft)	(cfs)	(ft.)	Туре	(ft)	(ft)	(ft)	(ft)	кір кар туре
FES 100	30	2.5	62.95	3.14	Type 1	0.29	1.25	15	13	Modified
FES 300	30	2.5	33.40	3.66	Type 1	0.11	1.25	15	13	Modified
FES 1.1	24	2.0	29.18	1.18	Type 1	0.38	1.00	12	10	Modified
FES 3.1	24	2.0	16.01	0.99	Type 1	0.20	1.00	12	10	Modified

Based on ConnDOT Drainage Manual - Type 1 and 2 Scour Holes

$D_{50} < 0.42 \text{ ft} - \text{Modified}$	<u>Riprap Type</u> D ₅₀ (inches)
0.42 ft < $D_{50} < 0.67 \text{ ft} - \text{Intermediate}$	Modified - 5
0.67 ft < $D_{50} < 1.25 \text{ ft} - \text{Standard}$	Intermediate - 8

APPENDIX F: STORMWATER OPERATION & MAINTENANCE PLAN

➢ <u>O & M PLAN</u>

STORMWATER OPERATION AND MAINTENANCE PLAN

Johnson Development Associates 53 Spring Street Southington, CT

RESPONSIBLE PARTY DURING CONSTRUCTION:

Contractor - TBD

RESPONSIBLE PARTY POST CONSTRUCTION:

Owner - TBD

Construction Phase

During the construction phase, all erosion control devices and measures shall be maintained in accordance with the final record plans, local/state approvals and conditions, and the CT General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities, if applicable. Additionally, the maintenance of all erosion / siltation control measures during construction shall be the responsibility of the general contractor. Contact information of the OWNER and CONTRACTOR shall be listed in the Stormwater Pollution Control Plan (SWPCP) for this site. The SWPCP also includes information regarding construction period allowable and illicit discharges, housekeeping and emergency response procedures. Upon proper notice to the property owner, the Town or its authorized designee shall be allowed to enter the property at a reasonable time and in a reasonable manner for the purposes of inspection.

Post Development Controls

Once construction is completed, the post development stormwater controls are to be operated and maintained in compliance with the following permanent procedures (note that the continued implementation of these procedures shall be the responsibility of the Owner or its assignee):

- Parking lots: Sweep at least 2 times per year and on a more frequent basis depending on sanding operations. Swept areas shall include all parking, drive aisles, and access aisles. All resulting sweepings shall be collected and properly disposed of offsite in accordance with local, state, federal, and other applicable requirements.
- 2. Roadways: Sweep at least 2 times per year and on a more frequent basis depending on sanding operations. All resulting sweepings shall be collected and properly disposed of off site in accordance with local, state, federal, and other applicable requirements.
- 3. Catch basins, yard drains, trench drains, manholes and piping: Inspect 2 times per year and at the end of foliage and snow-removal seasons. These features shall be cleaned 2 times per year. or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the catch basin or underground system. Accumulated sediment and hydrocarbons present must be removed and properly disposed of off-site in accordance with local, state, federal, and other applicable requirements.

- 4. Riprap apron / Scour Hole: Riprap and scour holes should be checked at least annually and after every major storm event (generally equal or greater to 3.0 inches in 24 hours) for displaced stones, slumping, and erosion at edges, especially downstream or downslope. If the riprap is damaged, it should be repaired before further damage can take place. Note and repair any erosion, stone displacement or low spots in the areas. Woody vegetation should be removed from the riprap annually.
- 5. Water Quality Unit (Proprietary Separator): Follow manufacturer's recommendations (attached).
- 6. Water Quality Swale: Inspect swales for the first few months after construction and at least twice a year thereafter to make sure vegetation is adequate and slopes are not eroding. Check for rilling and gullying. Repair eroded areas and revegetate. Mow dry swales as needed. Do not cut the grass shorter than three to four inches, and do not let the grass height exceed six inches. Regular maintenance includes mowing, fertilizing, liming, watering, pruning, weeding, and pest control as necessary. Remove sediment and debris manually at least once a year. Re-seed as necessary. Any sediment removed shall be disposed of in accordance with local, state, federal, and other applicable requirements.
- 7. Infiltration Basin: Preventative maintenance after every major storm event during the first three (3) months of operation and at least twice per year thereafter. Inspect structure and pretreatment BMP to ensure proper operation after every major storm event (generally equal or greater to 3.0 inches in 24 hours) for the first three months. Mow the buffer area, side slopes and basin bottom if grassed floor, rake if stone or sand bottom, remove trash and debris, remove grass clippings and accumulated organic matter. Any sediment removed shall be disposed of in accordance with local, state, federal, and other applicable requirements.
- 8. Forebays: The sediment forebay areas shall be inspected for the first few months after construction to ensure they are operating as intended and that all components are stable and in working order. Inspections shall be by qualified personnel. All vegetation (i.e. tree saplings) will be removed from embankments and the forebay bottom. The inlet to the forebay shall be inspected for erosion and sedimentation, and riprap shall be promptly repaired as needed. Sediment forebays shall be inspected quarterly and sediment removed when sediment depth reaches half the height of the stone weir and at a minimum every 5 years. After sediment is removed, replace any vegetation damaged during the clean out by either reseeding or re-sodding. Any sediment removed shall be disposed of in accordance with local, state, federal, and other applicable requirements.
- 9. Stormwater Ponds:
 - a. Annually: Inspect for damage; note signs of hydrocarbon build-up (and remove if detected); Monitor for sediment accumulation in the facility beyond the forebay; Examine to ensure that inlet and outlet devices are free of debris and operational.
 - b. Repair undercut or eroded areas as needed.
 - c. Monthly: Clean and remove debris from inlet and outlet structures. Mow side slopes. High grass along pond edge will discourage waterfowl from taking up residence and serve to filter pollutants.
 - d. 10 year: Remove sediment when the pool volume has become reduced significantly, or when significant algal growth is observed.

All components of the stormwater system will be accessible by the owner or their assignee.

STORMWATER MANAGEMENT SYSTEM

POST-CONSTRUCTION INSPECTION REPORT

LOCATION:

Johnson Development Associates 53 Spring Street Southington, CT

RESPONSIBLE PARTY:

Owner - TBD

NAME OF INSPECTOR:	INSPECTION DATE:
Note Condition of the Following (sediment depth, debris, stand	ding water, damage, etc.):
Catch Basins:	
Discharge Points/ Flared End Sections / Rip Rap:	
Stormwater Basin:	
Water Quality Units:	
Other:	

Note Recommended Actions to be taken on the Following (sediment and/or debris removal, repairs, etc.):
Catch Basins:
Discharge Points / Flared End Sections / Rip Rap:
Stormwater Basin:

Water Quality Units:

Other:

Comments:

STORMWATER INSPECTION AND MAINTENANCE LOG FORM

Johnson Development Associates 53 Spring Street Southington, CT Stormwater Management Responsible Date Maintenance Activity						
Stormwater Management Practice	Responsible Party	Date	Maintenance Activity Performed			

CDS® Inspection and Maintenance Guide

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.

CDS Model	Dian	Diameter Distance from Water Surface to Top of Sediment Pile			Sediment Storage Capacity		
	ft	m	ft	m	У³	m³	
CDS1515	3	0.9	3.0	0.9	0.5	0.4	
CDS2015	4	1.2	3.0	0.9	0.9	0.7	
CDS2015	5	1.3	3.0	0.9	1.3	1.0	
CDS2020	5	1.3	3.5	1.1	1.3	1.0	
CDS2025	5	1.3	4.0	1.2	1.3	1.0	
CDS3020	6	1.8	4.0	1.2	2.1	1.6	
CDS3025	6	1.8	4.0	1.2	2.1	1.6	
CDS3030	6	1.8	4.6	1.4	2.1	1.6	
CDS3035	6	1.8	5.0	1.5	2.1	1.6	
CDS4030	8	2.4	4.6	1.4	5.6	4.3	
CDS4040	8	2.4	5.7	1.7	5.6	4.3	
CDS4045	8	2.4	6.2	1.9	5.6	4.3	
CDS5640	10	3.0	6.3	1.9	8.7	6.7	
CDS5653	10	3.0	7.7	2.3	8.7	6.7	
CDS5668	10	3.0	9.3	2.8	8.7	6.7	
CDS5678	10	3.0	10.3	3.1	8.7	6.7	

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Support

- Drawings and specifications are available at www.contechstormwater.com.
- Site-specific design support is available from our engineers.
- ©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, earth stabilization and wastewater treament products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. SEE THE CONTECH STANDARD CONDITION OF SALES (VIEWABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; 7,517,450 related foreign patents or other patents pending.

CDS Inspection & Maintenance Log

CDS Mode	l:		Lo	ocation:	
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.