

W00-20-0.056-0.46 Traffic Study

City of Perrysburg, Wood County, Ohio
Prepared for
City of Perrysburg
201 W Indiana Avenue
Perrysburg, Ohio 43551
P: 419-872-8010
September 21, 2022
DGL Consulting Engineers, LLC
3455 Briarfield Boulevard, Suite E Maumee, Ohio 43537
www.dgl-ltd.com

Table of Contents

1. Executive Summary C
1a. Background C
1b. Purpose \& Need C
1c. Overview of Possible Causes C
1d. Recommended Countermeasures \& Related Costs d
2. Purpose \& Need 1
3. Existing Conditions \& Background 1
3a. Study Area Speed Limits 2
3b. Existing Intersection Sight Distance 3
4. Traffic Volumes 8
5. Crash Data 10
6. Collision Diagrams 12
7. Probable Causes 15
8. Highway Safety Manual Existing Conditions 16
9. Recommended Countermeasures 16
9a. Short Term Countermeasures 17
9b. Medium Term Countermeasures 18
9c. Long Term Countermeasures 19
9d. Comparison of Alternatives 22
9e. Intersection Analysis 23
10. Recommendations 25
11. Potential Grant Opportunities 25
12. Project Information 26
12a. Previous Projects: 26
12b. Future Projects: 26

WOO-20-0.056-0.46 Traffic Study

Table of Figures

Figure 1 FEMA Firm Map. 2
Figure 2 Maumee Western Reserve Corridor Speed Limits 3
Figure 3 Orleans Park Driveway Sight Distance - Behind sidewalk, looking East 5
Figure 4 Orleans Park Drive Sight Distance - Behind sidewalk, looking West 5
Figure 5 Orleans Park Drive Sight Distance - On sidewalk, looking East 6
Figure 6 Orleans Park Drive Sight Distance - On sidewalk, looking West. 6
Figure 7 Orleans Park Driveway Intersection Sight Distance Summary 7
Figure 8 US-20 \& SR-25 2017-2021 Collision Diagram 12
Figure 9 US-20 \& Orleans Park Driveway 2017-2021 Collision Diagram. 13
Figure 10 US-20 \& Rapids Road 2017-2021 Collision Diagram 14
Figure 11 Alternative 1 ECAT 17
Figure 12 Alternative 2 ECAT 18
Figure 13 Alternative 3 ECAT 19
Figure 14 Alternative 4 ECAT 19
Figure 15 Alternative 5 ECAT 20
Figure 16 Alternative 6 ECAT 21
Table of Tables
Table 1 Orleans Park Driveway Sight Distance Data 4
Table 2 US-20 \& SR-25 Traffic Volumes 8
Table 3 US-20 \& Orleans Park Driveway Intersection Countermeasures 9
Table 4 US-20 \& SR-25 Crash Data 10
Table 5 US-20 (0.056-0.44) Crash Data 11
Table 6 HSM Analysis: Existing Conditions 16
Table 7 Comparison of Alternative Countermeasures 22
Table 8 Intersection Level Of Service And Delay 23
Table 9 LOS/Delay Analysis 24
Table 10 Potential Funding Sources 25
Appendices

Appendix A	Design Standards
Appendix B	Turning Movement Counts
Appendix C	Warrant Evaluations
Appendix D	HCS Evaluations
Appendix E	Roundabout Preliminary Design

1. EXECUTIVE SUMMARY

1a. Background

The study area lies within the City of Perrysburg, approximately one mile west of the downtown. The segment of US-20/SR-25 being studied is a four-lane, undivided roadway functionally classified as a Principal Arterial with a posted speed limit of 45 MPH . It serves as a regional connector linking the downtowns of the City of Perrysburg in Wood County to the City of Maumee across the Maumee River in Lucas County. US-20/SR-25 is commonly used as an alternative to other east-west routes such as I-80/I-90 and is one of the non-interstate routes that connect Wood and Lucas counties.

DGL Consulting Engineers, LLC (DGL) was commissioned by the City of Perrysburg to analyze the safety performance of US-20, Maumee Western Reserve Road, from the intersection of SR25 to the city's corporation limits on the Maumee River. The primary focus of the study is to evaluate the safety performance of US-20 at the driveway entrance to Orleans Park on the north side of the roadway while also evaluating the safety performance of the intersection of US-20, SR-25, and W Front Street. The city has expressed interest in improving the existing park by increasing the number of amenities offered while preserving portions of the existing woodlands and wetland area. To confirm that the proposed park improvements will be an efficient use of available funds, the city wanted to pursue a study to ensure that traffic movements entering and exiting the park were safe for road users.

1b. Purpose \& Need

According to the HSIP Priority Location List provided by ODOT, the only location within the study area that is listed is the intersection of US-20 and SR-25. This signalized intersection is ranked \#881 for suburban intersections.

From 2017-2021, a total of 96 crashes occurred within the study area. According to ODOT's Economic Crash Analysis Tool (ECAT) the study area has a predicted crash frequency of 13.6 and an expected crash frequency of 17.1. Therefore, there is the potential for safety improvement.

1c. Overview of Possible Causes

Throughout the corridor, rear end crashes make up a majority of the crashes that occurred from 2017 to 2021 with a majority of crashes having a contributing factor of following too close. In terms of crash severity, the entire corridor had a crash result in injury approximately 30% of the time. One notable statistic is the intersection of US-20 \& SR- 25 had 46% of crashes occur on wet pavement, a higher percentage than dry pavement.

The travel lanes in the study area are 13 feet wide for the curb lanes and 12 feet for the inside travel lane. The intersections of Rapids Road and Orleans Park are minor road stop controlled while the intersection of US-20 \& SR-25 is signalized.

The most prevalent contributing factor for crashes in the study area was following too close. This may be caused by the high-speed limit or the amount of traffic traveling through the corridor on a daily basis. There is a permanent counter, supplied by ODOT, on US-20 just west of the driveway for Orleans Park. Traffic count data was gathered for May $18^{\text {th }}, 2022$, with an AADT of 25,586 .

1d. Recommended Countermeasures \& Related Costs

Based on the results outlined in this study, the alternative that was found to offer the most positive outcomes is a Multi-Lane Roundabout at the intersection of US-20, SR-25, and W Front with the proposed connection to Southbound W Boundary. With this alternative, it can also be supplemented with pavement resurfacing to reduce the number of crashes that occur on wet pavement. This combination of alternatives offers the best results as it improves the average crash frequency of the corridor the most out of all of the alternatives presented and is the only alternative that is projected to operate at an acceptable Level of Service (LOS) for the intersection in the year 2042. While this alternative is projected to cost approximately $\$ 5.8$ million and is the most expensive out of the alternatives presented, it offers the most operational and safety benefits for the corridor.

2. PURPOSE \& NEED

DGL Consulting Engineers, LLC (DGL) was commissioned by the City of Perrysburg to analyze the safety performance of US-20, Maumee Western Reserve Road, from the intersection of SR25 to the city's corporation limits on the Maumee River. The primary focus of the study is to evaluate the safety performance of US-20 at the driveway entrance to Orleans Park on the north side of the roadway while also evaluating the safety performance of the intersection of US-20, SR-25, and W Front Street.

The city has expressed interest to improve the existing park by increasing the number of amenities offered while preserving portions of the existing woodlands and wetland area. To confirm that the proposed park improvements will be an efficient use of available funds, the city wanted to pursue a study to ensure that traffic movements entering and exiting the park were safe for road users. In terms of the entrance to Orleans Park on US-20, the city expressed concerns regarding sight distance issues to the East and West of the park driveway as the segment being studied transitions from a mainly east-west travel direction at the driveway to a northeast-southwest travel direction to the east, and mainly a north-south travel direction to the west at the bridge.

Another concern brought forward by the city is the ability for vehicles to exit the park driveway given the amount of traffic present on US-20, especially during peak hours. Orleans Park currently has a boat launch onto the Maumee River toward the back of the park, behind the water treatment plant. Therefore, the likelihood of trucks with trailers entering and exiting this driveway is greater than the average study location and will be a major consideration throughout the study.

According to ODOT's GIS Crash Analysis Tool, a total of 96 crashes occurred within the stated study area from 2017-2021. The high frequency of crashes has contributed to the intersection of Maumee Western Reserve (US-20/SR-25), W Front, and W Boundary (SR-25) being ranked as the \#881 suburban intersection on ODOT's HSIP Priority Location List. Using ODOT's Economic Crash Analysis Tool (ECAT), the study area has a predicted crash frequency of 13.6 and an expected crash frequency of 17.1 which suggests that there is the potential for safety improvement.

3. EXISTING CONDITIONS \& BACKGROUND

The study area lies within the City of Perrysburg, approximately one mile west of the downtown. The segment of US-20/SR-25 being studied is a four-lane, undivided roadway functionally classified as a Principal Arterial with a posted speed limit of 45 MPH . It serves as a regional connector linking the downtowns of the City of Perrysburg to the City of Maumee across the Maumee River in Lucas County. US-20/SR-25 is commonly used as an alternative to other eastwest routes such as I-80/I-90 and is one of the non-interstate routes that connect Wood and Lucas counties. The City of Perrysburg is one of the areas within the TMACOG region that continues to experience growth in business, population, and industrial development.

Included in the study area, is the intersection of US-20 and SR-25 which is a four-leg, signalized intersection. Similar to US-20, SR-25 is functionally classified as a Principal Arterial but has a posted speed limit of 40 MPH . While SR-25 primarily serves residential neighborhoods near the intersection with US-20, further south SR-25 serves a major commercial corridor which includes three car dealerships, a hospital, restaurants, and the Town Center at Levis Commons. According to ODOT's Highway Safety Improvement Program, this intersection ranks \#881 for priority locations.

It should be noted that due to the study area's proximity to the Maumee River, portions of the roadway, most notably north of the US-20/SR-25, are as close as 50 feet to flood zones, according to FEMA. The boundaries of these flood zones are shown in the following figure.

Figure 1 FEMA Firm Map

3a. Study Area Speed Limits

One aspect of the study that should be noted is the number of times a driver will experience changes in speed limits when entering, exiting, and traveling through the study area. East of the US-20 and SR-25 intersection, US-20 has a posted speed limit of 35 MPH and connects to the downtown of Perrysburg. As noted previously, the SR-25 approach to the intersection has a posted speed limit of 40 MPH and the western segment of the US-20 approach has a posted speed limit of 45 MPH. When driving westbound on US-20 toward the City of Maumee, the speed limit drops to 35 MPH on the bridge and then drops again to 25 MPH at Maumee's Downtown District where the city has pursued a streetscape projects that reduced the previous four lane roadway to three The speed limit sign locations can be seen in Figure 2 to give added context.

Figure 2 Maumee Western Reserve Corridor Speed Limits

3b. Existing Intersection Sight Distance

Prior to conducting the study, it was noted by the City of Perrysburg personnel that sight distance, particularly to the east, is an issue when drivers try to exit Orleans Park onto US-20. While the western half of the corridor doesn't have any notable sight distance concerns besides limited overgrowth, the eastern portion of US-20 slightly curves to the north when approaching the intersection with SR-25. This curve, when coupled with dense vegetation on the northern side of US-20 close to the sidewalk, creates sight distance issues and may inhibit a driver's ability to adequately judge gaps for the westbound, oncoming traffic. Therefore, DGL conducted a sight distance analysis for the driveway to Orleans Park to determine if the existing conditions are adequate based on standards outlined in the Location \& Design Manual.

This analysis utilized the Intersection Sight Distance (ISD) metric that is included in the Location \& Design Manual. As stated on ODOT's website, ISD is "the distance a motorist should be able to see other traffic operating on the intersecting roadway in order to enter or cross the roadway safely and to avoid or stop short of any unexpected conflicts in the intersection area

Because of the roadway geometry and the vegetation along the north side of US-20, there are two locations on the driveway that will be analyzed. It should be noted that there is no stop bar present on the driveway to Orleans Park. From an engineering perspective, vehicles should stop to check for gaps in traffic before the sidewalk. However, it was observed, through video and site visits, that almost every vehicle that exits Orleans Park onto US-20 stops in the driveway apron after the sidewalk. The existing sight distances for these two locations are included in the table below which also shows the ISD for various design speeds provided in the Location \& Design Manual. Images taken by DGL staff are also included to provide added context to the sight distances for the existing conditions at Orleans Park. The sections of the Location \& Design Manual used for this analysis, as well as other design standards used throughout this report, can be found in Appendix A.

Table 1Orleans Park Driveway Sight Distance Data Existing Conditions	
West Leg Approach	
Location	Sight Distance (feet)
Behind Sidewalk (20 ft. from edge)	982
On Sidewalk (14 ft. from edge)	1,180
East Leg Approach	
Location	Sight Distance (feet)
Behind Sidewalk (20 ft. from edge)	245
On Sidewalk (14 ft. from edge)	465

Location \& Design Standards		
Major Road Design Speed (MPH)	ISD (feet) for Left Turn	ISD (feet) for Right Turn
35	390	335
40	445	385
$\mathbf{4 5}$ (Posted Speed Limit)	500	430
$\mathbf{5 0}$ (85 ${ }^{\text {th }}$ Percentile Speed)	555	$\mathbf{4 8 0}$

WOO-20-0.056-0.46 Traffic Study

Figure 3 Orleans Park Driveway Sight Distance - Behind sidewalk, looking East

Figure 4 Orleans Park Drive Sight Distance - Behind sidewalk, looking West

WOO-20-0.056-0.46 Traffic Study

Figure 5 Orleans Park Drive Sight Distance - On sidewalk, looking East

Figure 6 Orleans Park Drive Sight Distance - On sidewalk, looking West

City of Perrysburg

WOO-20-0.056-0.46 Traffic Study

WOO-20-0.273 (Maumee Western Reserve)
Intersection Sight Distance Summary

Nores.
Criteria from L\&D Vol. 1 , Sec. 201.3 \& Fig. 201-4E state measurements are to be taken 14 feet behind the edgeline, however due to the sidewalk being in the area, measurements were taken 20 feet behind the edgeline
to allow pedestrians to cross. Minimum sight distances (from L\&D Fig. 201-5E) are based on statutory speed limits (45 MPH) and design speed (5 MPH above statutory).

Figure 7 Orleans Park Driveway Intersection Sight Distance Summary

4. TRAFFIC VOLUMES

According to ODOT's Transportation Data Management System (TDMS, or MS2), Annual Average Daily Traffic (AADT) information for each leg of the intersection of US-20 \& SR-25, as well as the segment of US-20/SR-25 being studied, is shown in the table below during the most recent year traffic volume data was collected.
\(\left.$$
\begin{array}{|c|c|c|c|}\hline & \text { Table 2 US-20 \& SR-25 Traffic Volumes } \\
\text { US-20 } \\
\text { West Leg }\end{array}
$$ \quad $$
\begin{array}{c}\text { SR-25 } \\
\text { South Leg }\end{array}
$$ \quad \begin{array}{c}US-20

East Leg\end{array}\right]\)| Year | 2022 | 2021 | 12,789 |
| :---: | :---: | :---: | :---: |
| AADT | 25,586 | 15,996 | 1% |
| \% Trucks | 2% | 2% | |

Turning movement counts were also conducted by DGL for the intersection of US-20 \& SR-25 and the intersection of US-20 and the driveway for Orleans Park on Wednesday, 5/18/2022 to collect the traffic count data for the 9 highest hourly volumes (7:00-9:00, 11:00-13:00, and 15:0020:00). The drive to the Wastewater Treatment Plant was included in the US-20 \& SR-25 intersection count. It was desired to collect the traffic count data before the end of the school year so that school traffic was included. A summary of this traffic count data can be found in Appendix B.

Traffic was expanded to the Design Year 2042 using an annual growth rate of 0.6% collected from the ODOT SHIFT Tool.

Since the intersection of US-20 \& SR-25 is already signalized, this study will evaluate the design criteria for a roundabout. For the intersection of US-20 and the Orleans Park driveway, the following countermeasures were considered during this study:

- All-way Stop Control
- Traffic Signal
- Two-Way-Left-Turn-Lane (TWLTL)
- Roundabout

The traffic volumes were analyzed to determine if any of the countermeasures met warrants. The warrant evaluations for each countermeasure followed the procedures according to the applicable various ODOT manuals, including the following:

- Location \& Design Manual (L\&D)
- Ohio Manual of Uniform Traffic Control Devices (OMUTCD)
- Traffic Engineering Manual (TEM)

A table comparing the results of the warrants for each countermeasure is provided below. Details of the warrant summaries for each countermeasure can be found in Appendix C.

Table 3 US-20 \& Orleans Park Driveway Intersection Countermeasures Countermeasure Warrants Met

All-way Stop Control	No^{A}
Traffic Signal	No^{B}
Left Turn Lane	$\mathrm{Yes}^{\mathrm{C}}$
Roundabout	Multi-lane Roundabout required ${ }^{\mathrm{D}}$

${ }^{\text {A }}$ The vehicular volume for the major street approaches was above the warrant threshold, but the minor street approach does not meet the warrant threshold of at least 200 units per hour, as set forth in the OMUTCD Section 2B. 07
${ }^{B}$ Warrant 8, Roadway Network was the only signal warrant met based on the traffic counted. Warrant 8 cannot be used as the sole warrant in the analysis.
${ }^{\text {c }}$ Left Turn Lanes were not warranted for a 4-lane Highway but were warranted for 2lane Highways with any posted speed limit.
${ }^{\text {D }}$ A Multi-lane Roundabout was suggested based on the thresholds stated in the L\&D Figure 403-1 and confirmed through traffic modeling based on the results from the LOS/Delay analysis.

CRASH DATA

Since this study includes an approximately half-mile segment of US-20/SR-25 and the intersection of US-20, W Front and SR-25, each location's crash data will be presented separately to provide a more detailed and accurate picture of the crash trends. Crash data was gathered from 20172021 using ODOT's GIS Crash Analysis Tool (GCAT). Crash data was then evaluated to ensure the data presented is as accurate as possible. The locations of crashes can be seen in the following section called Collision Diagrams.

Table 4 US-20 \& SR-25 Crash Data

YEAR	CRASHES
2017	11
2018	13
2019	13
2020	12
2021	12

	CRASH SEVERITY
72%	Property Damage Only
28%	Injury
0%	Fatal

	TYPE OF CRASH
59%	Rear End
16%	Fixed Object
7%	Sideswipe - Passing
7%	Left Turn
5%	Right Turn

TIME OF DAY	
62%	Day
38%	Night

	PAVEMENT CONDITION
46%	Wet
43%	Dry
5%	Snow
5%	Ice

	CONTRIBUTING FACTOR
54%	Following too close
18%	Other Improper Action
7%	Drove off Road
5%	Improper Lane Change
5%	Improper Turn

Total Crashes by Hour of Day

WOO-20-0.056-0.46 Traffic Study

Table 5 US-20 (0.056-0.44) Crash Data

YEAR	CRASHES
2017	7
2018	8
2019	5
2020	6
2021	9

	TYPE OF CRASH
60%	Rear End
14%	Fixed Object
14%	Sideswipe - Passing
3%	Pedalcycles
3%	Left Turn

	TIME OF DAY
91%	Day
9%	Night

	CRASH SEVERITY
63%	Property Damage Only
37%	Injury
0%	Fatal

PAVEMENT CONDITION	
17%	Wet
71%	Dry
6%	Snow
6%	Ice

	CONTRIBUTING FACTOR
57%	Following too close
9%	Improper Lane Change
9%	Other Improper Action
6%	Drove off Road
6%	Failure to yield

Total Crashes by Hour of Day

City of Perrysburg

WOO-20-0.056-0.46 Traffic Study

6. COLLISION DIAGRAMS

Figure 8 US-20 \& SR-25 2017-2021 Collision Diagram

City of Perrysburg

WOO-20-0.056-0.46 Traffic Study

Figure 9 US-20 \& Orleans Park Driveway 2017-2021 Collision Diagram

City of Perrysburg

WOO-20-0.056-0.46 Traffic Study

7. PROBABLE CAUSES

Since the study area is not homogenous throughout the entire corridor, the probable causes for vehicle crashes will be separated. The first set of causes will include the crashes that occurred at the intersection of US-20 and SR-25 and the second set will include the crashes that occurred throughout the corridor of US-20 from the Perrysburg-Maumee bridge to intersection of US-20 and SR-25.

Probably Causes: US-20 \& SR-25

1. The majority of crashes happen in the afternoon and evening (13:00-19:00), which roughly coincides with the hours which have the highest traffic volumes. This could mean that many of the crashes are correlated to the relatively higher traffic volumes during those hours.
2. The majority of crashes occurred when the pavement was wet or had snow or ice, which is about 24% over the statewide average. This could mean that the pavement friction is not sufficient to keep cars on the roadway.
3. The contributing factor for a majority of the crashes was following too close on each approach. This could mean that drivers are going too fast and cannot brake in time to avoid a collision.
4. The roadway geometry is slightly skewed on the eastbound approach of US-20. This could inhibit a driver's ability to judge oncoming traffic and contribute to left turn and angle crashes.
5. Fixed object crashes accounted for approximately 16% of crashes, 13% more than the statewide average. These departures from the roadway could be caused by a variety of factors including, low friction pavement (item \#2), the skew angle of the intersection (item \#4), and/or unsafe speeds (item \#3).

Probable Causes: US-20 Corridor

1. The majority of crashes happen in the afternoon and evening (14:00-19:00), which aligns with the hours which have the highest traffic volumes. This could mean that many of the crashes are correlated to the relatively higher traffic volumes during those hours.
2. The majority of crashes were rear end crashes and, for the most part, occurred at the driveway to Orleans Park or the intersection at Rapids Road. This could mean that drivers are travelling too fast to brake for a stopped vehicle in front of them that is attempting to turn onto those roadways.
3. Drivers on US-20 trying to turn left into Orleans Park or Rapids Road may find it difficult to find gaps in traffic to make their turn. They may become impatient and cross during insufficient gaps in traffic, resulting in angle or left turn crashes.
4. Injury crashes accounted for 37% of all crashes in the corridor, an increase of 9% when compared to the intersection of US-20 \& SR-25. This could be caused by an increase in the speed limit to 45 MPH from 35 MPH (Front Street) and 40 MPH (W Boundary Street).

WOO-20-0.056-0.46 Traffic Study

8. HIGHWAY SAFETY MANUAL EXISTING CONDITIONS

Highway Safety Manual (HSM) calculations were completed using the methodology for urban \& suburban arterial segments and intersections. A table and bar graph summarizing the calculated crash frequencies are provided below.

9. RECOMMENDED COUNTERMEASURES

The following table outlines the recommended countermeasures for the study area. Further discussion of the countermeasures can be found in the following sections.

ID \#	Countermeasure	Crash Type Affected	Crash Reduction	Timeline
Alt. 1	Lane Reconfiguration	All	56%	Short Term
Alt. 2	All-Way Stop Control @ US- 20/SR-25 \& Orleans Park	Injury; PDO	$23 \% ; 32 \%$	Short Term
Alt. 3	Improve pavement friction	Wet Road	57%	Medium Term
Alt. 4	Install median on US-20/SR-25 Corridor	All	29%	Long Term
Alt. 5	Roundabout @ US-20 \& SR-25	Injury; PDO	$29 \% ; 74 \%$	Long Term
Alt. 6	 Orleans Park	Injury; PDO	$22 \% ; 71 \%$	Long Term

Table 7 Recommended Countermeasures

9a. Short Term Countermeasures

Alternative 1: Convert 4-lane corridor into 2-lane with Two-way Left Turn Lane (TWLTL) and reduce speed limit
This conversion is considered a short-term countermeasure because of the low cost and short time it can take to implement. According to the HSM, converting the existing 4-lane roadway into a 2-lane roadway with a two-way left turn lane would reduce all crash types by $19 \%-47 \%$ within the segment being studied. This traffic calming strategy affects the roadway and its users in a few main ways. First, it limits drivers' ability to travel in ways that increase the risk of a crash such as passing sideswipes and excessive speeding. Second, it provides a refuge for vehicles that are pursuing conflicting turning movements into areas along the corridor such as left turns into Orleans Park or onto Rapids Road where rear ends are a common occurrence at these intersections. It is also possible to include refuge islands for pedestrians in the design when left turn lanes are not necessary. Third, this strategy provides better integration of the roadway into surrounding uses that result in an enhanced quality of life. As mentioned previously, a driver would go through several speed limit changes driving through the corridor based on where they started. This reconfiguration and reduction in speed limit would better align with the surrounding roads and make it safer for other modes of transportation to travel to and through the area.

This roadway reconfiguration is considered, by the Federal Highway Administration (FHWA), a Proven Safety Countermeasure and provides safer roadway conditions and supports mobility for all users. With Orleans Park on the north side of the corridor, and the City of Perrysburg's intentions to improve the park, it may be desirable to accommodate other modes of travel and align to the 'Complete Streets' policies supported by the FHWA and ODOT. By reducing the number of lanes and the speed limit, the roadway is much safer for other users and improves the accessibility to Orleans Park and the trails surrounding Fort Meigs that is serviced by Rapids Road.

ODOT's Economic Crash Analysis Tool, or ECAT, was used to evaluate the safety impacts of this countermeasure. The results show that the number of average annual crashes would decrease from 17.1 expected crashes per year to 15.6 predicted crashes per year. This is summarized in the following figure.

Figure $11 \quad$ Alternative 1 ECAT
There is one notable caveat from a traffic perspective worth mentioning for this alternative. Because a lane is being dropped in each direction of travel, the effective storage capacity of the roadway is reduced and the possibility of backups could increase, most notably on the eastbound
movement east of the Orleans Park entrance. This is because the approach at the intersection of SR-25 has dedicated lanes for the through movement to continue onto US-20 and the right turn movement onto SR-25 that must remain intact to adequately serve the intersection. If one of the lanes backs up to the diverging taper then the backup will continue down the approach since vehicles may not be able to access one lane or the other.

Alternative 2: Convert the intersection at US-20 \& Orleans Park Driveway to all-way stop control All-way stop control is considered a short-term countermeasure because of the low cost and short time it can take to implement, although it could also be implemented as an interim solution during the time it takes to design and construct one of the long term countermeasures. While this alternative addresses the concerns of drivers attempting to make left turns out of Orleans Park, it does not address many of the crashes that occurred over the past 5 years. The all-way stop control typically has the largest crash reductions for angle and left turn crashes, none of which occurred according to the crash data gathered. It is also not recommended to combine this alternative with the lane reconfiguration stated previously. The ECAT evaluation supports this by showing that the number of average annual crashes would decrease from 17.1 expected crashes per year to 16.5 predicted crashes per year. This is summarized in the following figure.

Figure 12 Alternative 2 ECAT
While this alternative does increase the safety performance of the intersection and the ability for traffic leaving Orleans Park to safely make left turns to return to the City of Perrysburg, an all-way-stop-control intersection does not make sense from a traffic perspective. This is because almost all of the traffic at this intersection are using the through movements when compared to the turning movements for both approaches. By making all traffic stop at the entrance to Orleans Park, congestion and delay would drastically increase and cascade to negatively impact the traffic to the east at the intersection of US-20 \& SR-25 as well as to the west as vehicles travel from Maumee to Perrysburg.

9b. Medium Term Countermeasures

Alternative 3: Improve pavement friction at intersections Improving the pavement friction would reduce the number of rear end crashes as well as crashes that occur on wet roads. The increase in pavement friction would assist drivers that lose control of their vehicle during or immediately following inclement weather or drivers that attempt to brake before hitting another vehicle or object that is in front of them or in a different lane. This countermeasure can also be used in conjunction with other recommended countermeasures to further mitigate the risk of crashes throughout the corridor.

By improving the pavement friction at key areas, most notably at the intersection of US-20 \& SR25 , the risk of crashes on wet roads crashes is reduced by approximately 43% according to the HSM. The ECAT evaluation for this countermeasure showed that the number of average annual crashes would decrease from 17.1 expected crashes per year to 15.9 predicted crashes per year. This is summarized in the following figure.

Figure 13
Alternative 3 ECAT

9c. Long Term Countermeasures

Alternative 4: Construct median in the US-20 corridor (and reduce speed limit) and connect Southbound W Boundary Street/Orleans Park Entrance to signalized intersection at US-20 \& SR25
Installing a median in the US-20 corridor would prohibit left turns throughout the corridor, including at the current Orleans Park entrance, and limit the conflicts associated with those movements. This would mitigate crashes resulting from those prohibited left turns such as angle crashes or rear end crashes that specifically occur at the two intersections in the corridor. Based on the HSM, the median would reduce crashes within the corridor by 29%. The ECAT evaluation for this alternative showed that the number of average crashes would decrease from 17.1 expected crashes per year to 14.5 predicted crashes per year. This is summarized in the following figure.

Figure 14 Alternative 4 ECAT
The construction of a median can also be supplemented with the lane reconfiguration mentioned in the short term countermeasures. By pursuing this strategy, drivers would be even more limited in the number of conflicting movements they can make on US-20. With the addition of the median
to the lane reconfiguration, the ECAT evaluation for this alternative showed the number of average annual crashes would decrease from 17.1 expected crashes per year to 14.3 predicted crashes per year. The addition of the lane reconfiguration only reduces the expected average crash frequency by 0.2 because the median and lane reconfiguration address similar crash types thus having a level of diminishing returns.

This alternative would not be desirable for a few main reasons. First, connecting southbound W Boundary into the signalized intersection at US-20 \& SR-25 would be difficult to implement due to the wetland area north of the current intersection. Second, the drop in elevation from the current intersection to the current ground level of southbound W Boundary would require approximately 450 of new road to be constructed. Third, the introduction of an additional approach to the already 5-leg intersection at US-20 \& SR-25 would require adjusting the current signal timing and possibly increasing the amount of congestion at the intersection by reducing the amount of green time on the eastbound, northbound, and westbound approaches. An increase in congestion has the potential to lead to more crashes if this alternative is pursued.

Alternative 5: Construct multi-lane roundabout at the intersection of US-20 \& SR-25 Of all the alternatives, the multi-lane roundabout by far provides the most improvement to the safety and operational performance of the intersection. The slow entry speed and geometrics of the roundabout reduce 74% of PDO crashes and 29% of fatal and injury crashes, according to the HSM. The ECAT evaluation for this alternative showed that the number of average annual crashes throughout the corridor would decrease from 17.1 expected crashes per year to 9.6 predicted crashes per year, a 44\% reduction in total crashes.

Figure 15 Alternative 5 ECAT
Alternative 6: Construct multi-lane roundabout at US-20 and Orleans Park Driveway and reduce speed limit
Installing a multi-lane roundabout at the Orleans Park Driveway would mitigate several risk factors that have been observed or noted by city officials. The roundabout would make the park more accessible to drivers as well as easier to exit the park. First, the roundabout makes the driver have to judge gaps from only one direction, thereby making left turns an easier movement to pursue. The slow entry speed also makes judging gaps easier by slowing traffic down on the approach, rather than vehicles speeding on SR-25/US-20 up as they currently do. The slower speeds also effectively reduces the sight distance needed to make the movement into the roundabout, thereby reducing the impact of the sight distance issue previously noted. Additionally, the roundabout would be designed to accommodate trucks and trailers, so movements pursued by those vehicles would be easier to make. The ECAT evaluation for this alternative showed that
the number of average annual crashes throughout the corridor would decrease from 17.1 expected crashes per year to 13.2 predicted crashes per year, a 23% reduction in total crashes.

Figure 16
Alternative 6 ECAT
Based on the guidance provided for roundabout sizing in the L\&D, it is recommended that the roundabout would require two or more entry lanes because of the high number of vehicles that travel through the area. This is supported by the HCS analysis when comparing a single lane to a multi-lane roundabout. A single lane is projected to have a 33.9 second delay and a LOS of D on the eastbound approach and a 302.9 second delay and LOS of F on the westbound approach during the PM peak hour. Because of this, a single lane roundabout should not be included in a road reconfiguration at the Orleans Park Driveway.

From a traffic perspective, a multi-lane roundabout accomplishes many of the goals outlined by the City of Perrysburg. A roundabout would lower vehicle speeds entering the intersection and reduce the crashes that occur because of vehicle turning movements. The roundabout would also make traffic movements exiting Orleans Park easier to pursue since drivers have to only negotiate gaps on one approach, rather than two. The roundabout can also be designed to accommodate vehicles towing trailers which is a major benefit since the park has a boat launch behind the water treatment plant.

9d. Comparison of Alternatives

The figure on this page compares the predicted annual number of crashes for each alternative in relation to the current conditions.

| Alternative
 Options | Comparison of Alternative Countermeasures
 Annual
 Crashes | Estimated
 Cost | Problem(s)
 Addressed |
| :--- | :---: | :---: | :---: | :---: |
| Existing Conditions | 17.1^{E} | $\$ 0$ | N/A |
| (1) Convert 4-lane undivided highway to 2-
 lane highway with TWLTL | 15.6^{P} | $\$ 170,000$ | Reduce conflict points
 for park traffic |
| (2) All-Way Stop Control at
 Orleans Park Entrance | 16.5^{P} | $\$ 5,000$ | Safer and easier
 ingress/egress to park |
| (3) Resurface roadways to increase
 pavement friction at intersections | 15.9^{P} | $\$ 185,000$ | Reduce wet pavement
 crashes |
| (4) Construct Median on US-20 with RIRO at
 Orleans Park and connect SB W Boundary
 to existing intersection | 14.3^{P} | $\$ 1 \mathrm{M}$ | Safer and easier
 ingress/egress to park |
| (5) Multi-Lane Roundabout at US-20
 \& SR-25 | 9.6^{P} | $\$ 5.8 \mathrm{M}$ | Safer and easier
 ingress/egress to park
 and improve
 LOS/Delay, Reduce |
| wet pavement crashes | | | |$|$

$E=$ Expected Crashes; $P=$ Predicted Crashes

9e. Intersection Analysis

The level of service (LOS) is a way to classify the intersection on a scale of A to F, from a functional standpoint. Intersections and approaches are assigned an overall grade based on traffic volumes, capacity, and overall delay experienced by drivers.

Capacity Analysis was conducted for various geometric and traffic control alternatives for the intersections of US-20 at Orleans Park and SR-25/W Boundary Street. Synchro 9 Software was used to determine the LOS for signalized scenarios at all intersections, while the stop-controlled intersections were analyzed using HCS 2022. LOS is generally identified for each movement or approach. LOS C is considered acceptable in all conditions, while LOS D is considered acceptable in congested urban areas, such as interchanges and commuter corridors. For TwoWay Stop controlled intersections, the LOS is undefined for the overall intersection.

Table 8 Intersection Level Of Service And Delay (in seconds)					
Signalized Intersection			Unsignalized Intersection		
A	<=	10s	A	<=	10s
B	$>$	10-20s	B	>	10-15s
C	$>$	20-35s	C	>	15-25s
D	$>$	35-55s	D	$>$	25-35s
E	$>$	55-80s	E	$>$	35-50s
F	$>$	80s	F	$>$	50s

The following table compares the HCS delay results for each alternative by approach during the AM \& PM peak hours. Detailed summaries of the HCS evaluations can be found in Appendix D.

City of Perrysburg

WOO-20-0.056-0.46 Traffic Study

Table 9													
US-20 \& Orleans Park - Unsignalized													
	EB	$\begin{gathered} \hline \mathrm{A} \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (59.2) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (100.6) \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \text { A } \\ (6.3) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (6.5) \\ \hline \end{gathered}$
	WB	$\begin{gathered} \mathrm{A} \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (71.3) \end{gathered}$	$\begin{gathered} F \\ (178.2) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \text { A } \\ (6.7) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (7.0) \\ \hline \end{gathered}$
	SB	$\begin{gathered} \text { C } \\ (21.9) \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ (12.9) \\ \hline \end{gathered}$	$\begin{gathered} C \\ (24.9) \end{gathered}$	$\begin{gathered} \hline D \\ (33.8) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (9.8) \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (9.7) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (14.2) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (2.0) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \mathrm{A} \\ (7.1) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.8) \\ \hline \end{gathered}$
	Overall	$\begin{gathered} \mathrm{A} \\ (0.1) \end{gathered}$	$\begin{gathered} A \\ (0.1) \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ (0.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { A } \\ (0.2) \end{gathered}$	$\begin{gathered} F \\ (65.2) \end{gathered}$	$\begin{gathered} F \\ (140.5) \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \mathrm{A} \\ (6.5) \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ (6.8) \\ \hline \end{gathered}$
	EB	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} A \\ (0.0) \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (70.4) \end{gathered}$	$\begin{gathered} F \\ (424.3) \end{gathered}$	$\begin{gathered} F \\ (585.5) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (0.9) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (0.0) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \text { A } \\ (7.1) \end{gathered}$	$\begin{gathered} \text { A } \\ (8.6) \\ \hline \end{gathered}$
	WB	$\begin{array}{c\|} \hline \mathrm{A} \\ (0.0) \\ \hline \end{array}$	$\begin{gathered} \mathrm{A} \\ (0.0) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ (70.4) \end{gathered}$	$\begin{array}{\|c\|} \hline F \\ (803.7) \end{array}$	$\begin{array}{\|c} \hline F \\ (1,162.8) \\ \hline \end{array}$	$\begin{gathered} \mathrm{A} \\ (0.9) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (0.0) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \mathrm{A} \\ (9.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (11.8) \\ \hline \end{gathered}$
	SB	$\begin{array}{\|c\|} \hline E \\ (39.5) \\ \hline \end{array}$	$\begin{gathered} F \\ (52.7) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (24.9) \end{gathered}$	$\begin{gathered} F \\ (169.9) \end{gathered}$	$\begin{gathered} \text { A } \\ (9.5) \end{gathered}$	$\begin{gathered} \text { A } \\ (9.5) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (45.5) \end{gathered}$	$\begin{gathered} \text { D } \\ (34.3) \end{gathered}$	-	-	$\begin{gathered} \mathrm{B} \\ (10.4) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (14.0) \end{gathered}$
	Overall	$\begin{gathered} \mathrm{A} \\ (0.1) \\ \hline \end{gathered}$	$\begin{gathered} A \\ (0.1) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (70.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline F \\ (628.7) \end{gathered}$	$\begin{gathered} F \\ (904.7) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (1.0) \end{gathered}$	$\begin{gathered} \text { A } \\ (0.1) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \mathrm{A} \\ (8.4) \end{gathered}$	$\begin{gathered} \hline \text { B } \\ (10.4) \\ \hline \end{gathered}$
US-20 \& SR-25 - Signalized													
$\begin{aligned} & \stackrel{y}{\pi} \\ & \stackrel{\sim}{\sim} \\ & \sum \\ & \sum \end{aligned}$	EB	$\begin{array}{\|c\|} \hline C \\ (22.0) \\ \hline \end{array}$	$\begin{gathered} \hline \text { D } \\ (43.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ (19.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ (15.3) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \mathrm{B} \\ (19.1) \end{gathered}$	$\begin{gathered} \text { D } \\ (35.7) \end{gathered}$	$\begin{gathered} \text { A } \\ (6.9) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.6) \\ \hline \end{gathered}$	-	-
	WB	$\begin{array}{\|c\|} \hline \mathrm{B} \\ (15.7) \\ \hline \end{array}$	$\begin{gathered} \hline \text { B } \\ (15.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (18.9) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (17.4) \\ \hline \end{gathered}$	-	-	$\begin{gathered} C \\ (28.1) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.0) \end{gathered}$	$\begin{gathered} \text { B } \\ (9.7) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (11.5) \\ \hline \end{gathered}$	-	-
	SB	-	-	-	-	-	-	$\begin{gathered} \text { D } \\ (41.5) \end{gathered}$	$\begin{gathered} F \\ (81.0) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.3) \end{gathered}$	$\begin{gathered} \hline \text { A } \\ (8.2) \\ \hline \end{gathered}$	-	-
	NB	$\begin{array}{\|c\|} \hline C \\ (20.1) \\ \hline \end{array}$	$\begin{gathered} C \\ (22.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline C \\ (26.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ (17.8) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \text { B } \\ (19.3) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline F \\ (100.8) \end{array}$	$\begin{gathered} \hline \mathrm{A} \\ (7.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ (8.4) \\ \hline \end{gathered}$	-	-
	Overall	$\begin{array}{\|c\|} \hline B \\ (19.6) \\ \hline \end{array}$	$\begin{gathered} C \\ (29.8) \end{gathered}$	$\begin{gathered} C \\ (21.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline B \\ (16.6) \\ \hline \end{gathered}$	-	-	$\begin{gathered} C \\ (21.8) \end{gathered}$	$\begin{gathered} \text { D } \\ (51.8) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.8) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (8.9) \\ \hline \end{gathered}$	-	-
$\begin{aligned} & \frac{\sim}{0} \\ & \stackrel{\sim}{\sim} \\ & \sum \\ & \sum \end{aligned}$	EB	$\begin{array}{\|c\|} \hline \mathrm{D} \\ (52.7) \\ \hline \end{array}$	$\begin{gathered} F \\ (90.1) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (48.6) \\ \hline \end{gathered}$	$\begin{gathered} B \\ (12.6) \end{gathered}$	-	-	$\begin{gathered} \mathrm{B} \\ (10.0) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (10.9) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (8.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (10.5) \end{gathered}$	-	-
	WB	$\begin{array}{\|c\|} \hline \mathrm{B} \\ (14.9) \\ \hline \end{array}$	$\begin{gathered} \text { B } \\ (14.2) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (35.1) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline F \\ (431.1) \\ \hline \end{array}$	-	-	$\begin{gathered} \mathrm{B} \\ (12.6) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (36.2) \end{gathered}$	$\begin{gathered} C \\ (19.5) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (44.0) \end{gathered}$	-	-
	SB	-	-	-	-	-	-	$\begin{gathered} F \\ (81.7) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (55.6) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (11.3) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (14.2) \end{gathered}$	-	-
	NB	$\begin{array}{\|c\|} \hline C \\ (29.9) \\ \hline \end{array}$	$\begin{gathered} \hline D \\ (37.7) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (112.1) \end{gathered}$	$\begin{array}{\|c} \hline F \\ (131.6) \end{array}$	-	-	$\begin{array}{\|c\|} \hline F \\ (143.7) \end{array}$	$\begin{array}{\|c\|} \hline F \\ (154.4) \end{array}$	$\begin{gathered} \text { B } \\ (12.5) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (18.9) \end{gathered}$	-	-
	Overall	$\begin{gathered} D \\ (35.4) \end{gathered}$	$\begin{gathered} \hline D \\ (51.1) \end{gathered}$	$\begin{gathered} E \\ (65.6) \end{gathered}$	$\begin{gathered} F \\ (146.2) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \text { D } \\ (47.7) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline E \\ (57.9) \\ \hline \end{array}$	$\begin{gathered} B \\ (12.7) \end{gathered}$	$\begin{gathered} \hline C \\ (22.1) \\ \hline \end{gathered}$	-	-

10. RECOMMENDATIONS

Based on the results presented in this study, the alternative that offers the most positive outcomes is the Multi-Lane Roundabout at US-20 \& SR-25 (Alternative 5) with the proposed connection of Southbound W Boundary to the intersection. The proposed roundabout can also be supplemented with the resurfacing of the roadway (Alternative 3) since the pavement will need to be redone to do the roundabout. This alternative offers the best results as it improves the average crash frequency of the corridor the most and is the only alternative that is projected to operate at an acceptable LOS for the intersection of US-20 \& SR-25 in the year 2042. While this alternative is the most expensive out of the alternatives presented, it offers the most operational and safety benefits for the corridor. A preliminary design for the roundabout can be found in Appendix E .

11. POTENTIAL GRANT OPPORTUNITIES

Below is a list of grants that could be used to leverage funding for the alternatives outlined in this report. It is important to note that some of these grant opportunities have minimum requirements to be eligible for funding and need to be considered before applying.

Table 10 Potential Funding Sources		
Funding Source	Type of Funding	Additional Information
ODOT	HSIP Formal Safety Funding	https://www.transportation.ohio.gov/programs/highway+safety/hi ghway-safety-improvement-program/03-formal-safetyapplication
	HSIP Abbreviated Safety Funding	https://www.transportation.ohio.gov/programs/highway+safety/hi ghway-safety-improvement-program/02-abbreviated-safety-funding-application
	Urban Paving Program	https://www.transportation.ohio.gov/working/funding/resources/u rban-paving
TMACOG	Congestion Mitigation and Air Quality Program (CMAQ)	https://tmacog.org/transportation/regional-transportation-improvement-plan
	```Surface Transportation Block Grant Program (STBG)```	
FHWA	Safe Streets and Roads for All (SS4A)	https://www.transportation.gov/grants/SS4A

12. PROJECT INFORMATION

12a. Previous Projects:
PID: 23470
Project Name: WOO Bike P 01.000
Description: Construct new pavement for bicycle trail bypass on the south side of US-20.
Construction: 2004
PID: 92731
Project Name: WOO 20/25 0.0/21.81 Safety/Urban Paving
Description: Construct new pavement for bicycle trail bypass on the south side of US-20.
Construction: April 2014 - July 2014

12b. Future Projects:
PID: 105633
Project Name: WOO Sign FY2023
Description: Upgrade roadway signage of SR-25 in Wood County.
Construction: Spring 2023
PID: 117262
Project Name: WOO Sign FY2024
Description: Upgrade roadway signage of US-20 in Wood County.
Construction: April 2024
PID: 109388
Project Name: WOO Maumee River MUP Phase 3
Description: Upgrade bicycle facilities along the Maumee River Construction: April 2024

City of Perrysburg WOO-20-0.056-0.46 Traffic Study

## Appendix A Design Standards

INTERSECTION	SIGHT	DISTANCE	201-5
			REFERENCE SECTION $201.3,201.3 .1$, $201.3 .2 \& 201.3 .3$

(See Following Page for Additional Figures \& Notes)
HEIGHT OF EYE 3.50' HEIGHT OF OBJECT 3.50'

DESIGN   SPEED   (mph)	Passenger Cars   Completing a Left   Turn from a Stop   (ossuming a tig of 7.5 sec.)  Passenger Cars   Completing a Right   Turn from a Stop or   Crossing Maneuuver   (assuming o tg of 6.5 sec.)                ISD   (ft.)      15      170      K-CREST      VERT.      CURVE		ISD   (ft.)	K-CREST   VERT.   CURVE
	225	10	145	8
	280	28	195	14
30	335	40	290	21
35	390	54	335	40
40	445	71	385	53
45	500	89	430	66
50	555	110	480	82
55	610	133	530	100
60	665	158	575	118
65	720	185	625	140
70	775	214	670	160

If ISD cannot be provided due to environmental or R/W constraints, then as a minimum, the SSD for vehicles on the major road should be provided.

$$
\begin{aligned}
\text { ISD }= & 1.47 \times V_{\text {major }} \times \dagger_{\mathrm{g}} \\
\text { ISD }= & \text { intersection sight } \\
& \text { distance (ft.) } \\
V_{\text {major }}= & \text { design speed of major } \\
& \text { road (mph) } \\
t_{\mathrm{g}}= & \begin{array}{l}
\text { ime gap for minor road } \\
\\
\\
\\
\\
\text { vehicle to enter road (sec.) }
\end{array}
\end{aligned}
$$

Using: $S=$ Intersection Sight Distance
L = Length of Crest Vertical Curve
A = Algebraic Difference in Grades (\%), Absolute Value
$\mathrm{K}=$ Rate of Vertical Curvature

- For a given design speed and an " $A$ " value, the calculated length " $L^{\prime \prime}=K \times A$
- To determine "S" with a given " $L$ " and " $A$ ", use the following: For $S<L: S=52.92 \sqrt{K}$, where $K=L / A$
For $S>L: S=1400 / A+L / 2$

\section*{ROUNDABOUT SIZING THRESHOLDS <br> | $403-1$ |
| :---: |
| REFERENCE SECTION |
| 403.3 |}

NHRP Report 672 -Exhlblt 3-14
Volume Thresholds for DeterminIng the Number of Entry Lanes Required (PlannIng Level)

Volume Range   Entry +Circulating   (veh/hr)	Number of Lanes Required
$0-1,000$	- Single-lane entry likely to be sufficient
$1,000-1,300$	- Two lane entry may be needed   - Single-lane may be sufficient based   upon more detaled anaylsis
$1,300-1,800$	- Two lane entry is likely to be sufficient
$1,800+$	- More than two entry lanes may be   required   A more detailed capacity evaluation   should be conducted to verify lane   number and arrangements

NHRP Report 672 - Exhlblt 3-12
Planning-Level Daily Intersection Volumes


July 2019

City of Perrysburg

## WOO-20-0.056-0.46 Traffic Study

## Appendix B Turning Movement Counts

City of Perrysburg WOO-20-0.056-0.46 Traffic Study


City of Perrysburg WOO-20-0.056-0.46 Traffic Study


# WOO-20-0.056-0.46 Traffic Study 



City of Perrysburg WOO-20-0.056-0.46 Traffic Study

## Appendix C Warrant Evaluations

## Multi-Way Stop Application

## OMUTCD Section 2B. 07

A. Where traffic control signals are justified, the multi-way stop is an interim measure that can be installed quickly to control traffic while arrangements are being made for the installation of the traffic control signal.

Warranted ?
B. Five or more reported crashes in a 12 -month period that are susceptible to correction by a multiway stop installation. Such crashes include right-turn and left-turn collisions as well as $\qquad$ No right-angle collisions.
C. Minimum Volumes:

1 The vehicular volume entering the intersection from the major street approaches (total of both approaches) averages at least 300 vehicles per hour for any 8 hours of an average day.

Yes
2 The combined vehicular, pedestrian, and bicycle volume entering the intersection from the minor street approaches (total of both approaches) averages at least 200 units per hour for the same 8 hours, with an average delay to minor-street vehicular traffic of at least 30 seconds per vehicle during the highest hour.*
*If this condition is satisfied, there must also be an average delay of at least 30 seconds per vehicle during the peak hour.

3 If the 85th-percentile approach speed of the major-street traffic exceeds 40 mph , the minimum volume warrants are 70 percent of the values provided in Items 1 and 2.
D. Where no single criterion is satisfied, but where Criteria B, C.1, and C. 2 are all satisfied to 80 percent of the minimum values. Criterion C. 3 is excluded from this condition.

Other criteria that may be considered in an engineering study include:
A. The need to control left-turn conflicts;
B. The need to control vehicle/pedestrian conflicts near locations that generate high pedestrian volumes;
C. Locations where a road user, after stopping, cannot see conflicting traffic and is not able to negotiate the intersection unless conflicting cross traffic is also required to stop; and
D. An intersection of two residential neighborhood collector (through) streets of similar design and operating characteristics where multi-way stop control would improve traffic operational characteristics of the intersection.

Are the requirements for Multi-Way Stop Satisfied?: Yes

# TRAFFIC SIGNAL WARRANT ANALYSIS FINDINGS 



Notes and Comments:

	Applicable? Satisfied?		Notes and Comments:	
Warrant 1, Eight-Hour Vehicular Volume	Yes	No		
Warrant 2, Four-Hour Vehicular Volume	Yes	No		
				Peak Hour
Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic   actuated.	7:45 AM
				8:45 AM



May be used as an interim measure if traffic signal warrants are satisfied.
The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

[^0]$\square$

City of Perrysburg WOO-20-0.056-0.46 Traffic Study

## 4-LANE LEFT TURN <br> LANE WARRANT

$401-5 \mathrm{C}$
ReFERENCE SECTION   401.6 .1

4-Lane Highway Left Turn Lane Warrant

$\begin{array}{llllllllllll}0 & 200 & 400 & 600 & 800 & 1000 & 1200 & 1400 & 1600 & 1800 & 2000\end{array}$ Opposing Volume (dhv)




October 2004

City of Perrysburg WOO-20-0.056-0.46 Traffic Study

2-LANE LEFT TURN LANE	$401-5 \mathrm{~b}$
	RARERENCE SECTION
WARANT (HIGH SPEED)	



City of Perrysburg WOO-20-0.056-0.46 Traffic Study

2-LANE LEFT TURN LANE	401-5a
WARRANT (LOW SPEED)	REFERENCE SECTION   401.6 .1




October 2004

City of Perrysburg WOO-20-0.056-0.46 Traffic Study

## Appendix D HCS Evaluations

## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study

HCS All-Way Stop Control Report												
General Information					Site Information							
Analyst	tsj								US-20 \& Orleans Park			
Agency/Co.	DGL Consulting Engineers				Jurisdiction				City of Perrysburg			
Date Performed					East/West Street				US-20			
Analysis Year	2022				North/South Street				Orleans Park			
Analysis Time Period (hrs)					Peak Hour Factor				0.92			
Time Analyzed	AM Peak											
Project Description	AWSC at Orleans Park											
Lanes												
Vehicle Volume and Adjustments												
Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	7	990			1033	5				2		3
\% Thrus in Shared Lane	50					50						
Lane	L1	L2	L3									
Configuration	LT	T		T	TR					LR		
Flow Rate, v (veh/h)	546	538		561	567					5		
Percent Heavy Vehicles	2	2		2	2					2		
Departure Headway and Service Time												
Initial Departure Headway, hd (s)	3.20	3.20		3.20	3.20					3.20		
Initial Degree of Utilization, x	0.485	0.478		0.499	0.504					0.005		
Final Departure Headway, hd (s)	6.09	6.09		6.03	6.02					6.77		
Final Degree of Utilization, x	0.924	0.910		0.940	0.948					0.010		
Move-Up Time, m (s)	2.3	2.3		2.3	2.3					2.0		
Service Time, ts (s)	3.79	3.79		3.73	3.72					4.77		
Capacity, Delay and Level of Service												
Flow Rate, v (veh/h)	546	538		561	567					5		
Capacity	591	591		597	598					532		
95\% Queue Length, Q95 (veh)	19.5	18.0		21.4	22.4					0.0		
Control Delay (s/veh)	62.0	56.3		69.1	73.5					9.8		
Level of Service, LOS	F	F		F	F					A		
Approach Delay (s/veh)	59.2			$71.3$						9.8		
Approach LOS	F			F						A		
Intersection Delay, s/veh \| LOS	65.2						F					

## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study

HCSAV-Way Stop Control Report												
General Information					Site Information							
Analyst	tsj				Intersection				Maumee Western Reserve \& Orleans...			
Agency/Co.	DGL Consulting Engineers				Jurisdiction				City of Perrysburg			
Date Performed	7/19/2022				East/West Street				Maumee Western Reserve			
Analysis Year	2042				North/South Street				Orleans Park			
Analysis Time Period (hrs)	1.00				Peak Hour Factor				0.92			
Time Analyzed	2042 - AM Peak											
Project Description	AWSC @ Orleans Park											
Lanes												
Vehicle Volume and Adjustments												
Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	6	1039			1123	5				2		4
\% Thrus in Shared Lane	50					50						
Lane	L1	L2	L3									
Configuration	LT	T		T	TR					LR		
Flow Rate, v (veh/h)	571	565		610	616					7		
Percent Heavy Vehicles	2	2		2	2					2		
Departure Headway and Service Time												
Initial Departure Headway, hd (s)	3.20	3.20		3.20	3.20					3.20		
Initial Degree of Utilization, x	0.508	0.502		0.543	0.547					0.006		
Final Departure Headway, hd (s)	6.24	6.23		6.20	6.19					6.66		
Final Degree of Utilization, $x$	0.990	0.978		1.051	1.060					0.012		
Move-Up Time, m (s)	2.3	2.3		2.3	2.3					2.0		
Service Time, ts (s)	3.94	3.93		3.90	3.89					4.66		
Capacity, Delay and Level of Service												
Flow Rate, v (veh/h)	571	565		610	616					7		
Capacity	577	578		581	581					540		
95\% Queue Length, $\mathrm{Q}_{95}$ (veh)	27.8	26.1		38.6	40.2					0.0		
Control Delay (s/veh)	105.7	95.5		172.7	183.6					9.7		
Level of Service, LOS	F	F		F	F					A		
Approach Delay (s/veh)	100.6			178.2						9.7		
Approach LOS	F			F						A		
Intersection Delay, s/veh \| LOS	140.5						F					

## WOO-20-0.056-0.46 Traffic Study

HCS All-Way Stop Control Report													
General Information					Site Information								
Anayst	${ }^{15}$				Intesection				Maume Western Reseeve eroreans				
Ageny/c.	DGL Consuling Enginees				Junsisicion				ciy of feerstury				
Date Peformed	71992022				Esastwestrseet				Mumee Western Reses				
Analsis vear	2042				Northsouth steet				Oineans Pazk				
Anaysisi Tine Peioiod (has)	${ }_{1}^{1.00}$				Peak Hour fatar				0.92				
Time Anayzed	${ }^{2042}$ - PM Peak												
Projet Descripion	AVSC	ortens											
Lanes													
Vehicle Volume and Adjustments													
Approach	${ }^{\text {Eastbound }}$			Westound			Northbound			Southbound			
Movenent	L	${ }^{\top}$	R	$\llcorner$	${ }^{+}$	R				L	${ }^{\top}$	R	
Volume	0	${ }^{1389}$			1733	3				0		5	
\%\%Thus in Shared lane	50					50							
Lane	4	12	${ }^{13}$	${ }^{1}$	12	${ }^{13}$	${ }^{4}$	12	13	4	12	${ }^{13}$	
Configution	u	T		T	${ }_{\text {TR }}$					${ }^{\text {LR }}$			
Fow Rate, v(ehent	755	${ }^{755}$		942	945					5			
Perenent Heary venices	2	2		2	2					2			
Departure Headway and Service Time													
Lnitid Depaturere Headwy, hd (s)	3.20	${ }^{3} 20$		${ }^{320}$	3.20					3.20			
hitial Degree of fulization, $x$	0.671	0.671		${ }^{0.337}$	0.840					0.005			
Final Departure Headwa, hd (s)	6.23	${ }^{623}$		623	6.23					6.42			
Final Degree ofutiration, $x$	1.306	${ }^{1.306}$		1.630	1.35					0.010			
Movecovp Time. $m$ (s)	23	23		23	23					20			
Senice Time, $t$ (s)	333	3.93		3.3	3.93					442			
Capacity, Delay and Level of Service													
Fow kate, (venth)	${ }^{755}$	${ }^{755}$		942	945					5			
Capacity	578	578		578	578					561			
95\% Queue elength OSs (een)	99.8	99.8		1894	190.					0.0			
Conto Dealy (seen)	5855	${ }_{585}$		11583	11672					9.5			
Leevo f fence, los	F	F		F	F					A			
Appraad Dieas (Sven)	5955				11628					9.5			
Appraad los	F				F								
Intesestion Deap, SNen\|	Los	${ }_{9047}$											

## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study

HCS Roundabouts Report																
General Information							Site Information									
Analyst	tsj									Intersection				Maumee Western Reserve \&...		
Agency or Co.	DGL Consulting Engineers									E/W Street Name				Maumee Western Reserve/Fr...		
Date Performed										N/S Street Name				W Boundary		
Analysis Year	2022									Analysis Time Period, hrs				1.00		
Time Analyzed	2022 - PM Peak									Peak Hour Factor				0.92		
Project Description	Multi-Lane Roundabout - Exi...									Jurisdiction				City of Perrysburg		
Volume Adjustments and Site Characteristics																
Approach	EB				WB					NB				SB		
Movement	U	L	T	R	$u$	L		T	R	U	L	T	R	U	T	R
Number of Lanes ( N )	0	0	1	1	0	0		2	0	0	1	1	0	0	0	0
Lane Assignment	T		R		LT		T			L		LR				
Volume (V), veh/h	0		533	735	0	68		726		0	797		74			
Percent Heavy Vehicles, \%	3		3	3	3	3		3		3	3		3			
Flow Rate (VpcE), pc/h	0		597	823	0	76		813		0	892		83			
Right-Turn Bypass	None				None					None				None		
Conflicting Lanes	2				2					2						
Pedestrians Crossing, p/h	0				0					0						
Proportion of CAVs	0															
Critical and Follow-Up Headway Adjustment																
Approach			EB			WB					NB			SB		
Lane			Left	Right	Bypass		Left		Right	Bypass	Left	Right	Bypass	Left	Right	Bypass
Critical Headway, s			4.6453	4.3276			4.6453		4.3276		4.6453	4.3276				
Follow-Up Headway, s			2.6667	2.5352			2.6667		2.5352		2.6667	2.5352				
Flow Computations, Capacity and v/c Ratios																
Approach			EB			WB					NB			SB		
Lane			Left	Right	Bypass		Left		Right	Bypass	Left	Right	Bypass	Left	Right	Bypass
Entry Flow (ve), pc/h			597	823			418		471		517	458				
Entry Volume, veh/h			580	799			406		457		502	445				
Circulating Flow ( $\mathrm{v}_{\mathrm{c}}$, $\mathrm{pc} / \mathrm{h}$			76			$892$					$597$			1781		
Exiting Flow ( $\mathrm{vex}^{\text {e }}$ ) $\mathrm{pc} / \mathrm{h}$			680			1705					0			899		
Capacity (cpre), pc/h			1259	1331			594		665		779	855				
Capacity (c), veh/h			1222	1292			577		646		757	830				
v/c Ratio (x)			0.47	0.62			0.70		0.71		0.66	0.54				
Delay and Level of Service																
Approach			EB			WB					NB			SB		
Lane			Left	Right	Bypass		Left		Right	Bypass	Left	Right	Bypass	Left	Right	Bypass
Lane Control Delay (d), s/veh			8.0	10.4			24.2		22.3		17.3	12.0				
Lane LOS			A	B			c		c		c	B				
95\% Queue, veh			2.7	4.8			6.6		6.8		5.7	3.4				
Approach Delay, s/veh			9.4			23.2					14.8					
Approach LOS			A			c					B					
Intersection Delay, s/veh \| LOS			14.7								B					

## WOO-20-0.056-0.46 Traffic Study

HCS Roundabouts Report																	
General Information								Site Information									
Analyst	tsj									Intersection				Maumee Western Reserve \&...			
Agency or Co.	DGL Consulting Engineers									E/W Street Name				Maumee Western Reserve/Fr...			
Date Performed	7/19/2022									N/S Street Name				W Boundary			
Analysis Year	2042									Analysis Time Period, hrs				1.00			
Time Analyzed	2042-AM Peak									Peak Hour Factor				0.92			
Project Description	Multi-Lane Roundabout - Exi...									Jurisdiction				City of Perrysburg			
Volume Adjustments and Site Characteristics																	
Approach	EB				WB					NB				SB			
Movement	u	L	T	R	U	L		T	R	$u$	L	T	R	U	L	T	R
Number of Lanes ( N )	0	0	1	1	0	0		2	0	0	1	1	0	0	0	0	0
Lane Assignment	T		R		LT		T			L		LR					
Volume ( $V$, veh/h	0		467	636	0	68		605		0	524		68				
Percent Heavy Vehicles, \%	3		3	3	3	3		3		3	3		3				
Flow Rate (VpcE), pc/h	0		523	712	0	76		677		0	587		76				
Right-Turn Bypass	None				None					None				None			
Conflicting Lanes	2				2					2							
Pedestrians Crossing, p/h	0				0					0							
Proportion of CAVs	0																
Critical and Follow-Up Headway Adjustment																	
Approach			EB			WB					NB			SB			
			Left	Right	Bypass		Left		Right	Bypass	Left	Right	Bypass			Right	Bypass
Critical Headway, s			4.6453	4.3276			4.6453	53	4.3276		4.6453	4.3276					
Follow-Up Headway, s			2.6667	2.5352			2.6667		2.5352		2.6667	2.5352					
Flow Computations, Capacity and v/c Ratios																	
Approach			EB			WB					NB			SB			
Lane			Left	Right	Bypass		Left		Right	Bypass	Left	Right	Bypass			Right	Bypass
Entry Flow (ve), pc/h			523	712			354		399		351	312					
Entry Volume, veh/h			508	691			344		387		341	303					
Circulating Flow (vc), $\mathrm{pc} / \mathrm{h}$			76			587					523			1340			
Exiting Flow (vex), pc/h			599			1264					0			788			
Capacity ( $\mathrm{cpee}^{\text {e }}$, pc/h			1259	1331			787		862		834	910					
Capacity (c), veh/h			1222	1292			764		837		810	884					
v/c Ratio (x)			0.42	0.53			0.45		0.46		0.42	0.34					
Delay and Level of Service																	
Approach			EB			WB					NB			SB			
Lane			Left	Right	Bypass		Left		Right	Bypass	Left	Right	Bypass			Right	Bypass
Lane Control Delay (d), s/veh			7.1	8.7			10.8		10.3		9.8	7.9					
Lane LOS			A	A			B		B		A	A					
95\% Queue, veh			2.1	3.4			2.4		2.6		2.2	1.6					
Approach Delay, s/veh			8.0						10.5			8.9					
Approach LOS			A						B			A					
Intersection Delay, s/veh \| LOS			8.9								A						

## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study



Flow Computations, Capacity and v/c Ratios

$\begin{aligned} & \text { Approach } \\ & \hline \text { Lane } \end{aligned}$	EB			WB			NB			SB		
	Left	Right	Bypass									
Entry Flow (ve), pc/h	467	635		319	360		316	280			2	
Entry Volume, veh/h	462	629		313	353		310	275			2	
Circulating Flow (vg), pc/h	71			596			468			1207		
Exiting Flow (vex), pc/h	468			1138			68			705		
Capacity ( $\mathrm{c}_{\mathrm{p} \times \text { ) }}$, pc/h	1331	1331		780	856		928	928			509	
Capacity (c), veh/h	1318	1318		765	839		909	909			494	
v/c Ratio (x)	0.35	0.48		0.41	0.42		0.34	0.30			0.00	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh	6.0	7.6		10.0	9.5		7.7	7.2			7.3	
Lane LOS	A	A		A	A		A	A			A	
95\% Queue, veh	1.6	2.7		2.1	2.2		1.5	1.3			0.0	
Approach Delay, s/veh	6.9			9.7			7.5			7.3		
Approach LOS	A			A			A			A		
Intersection Delay, s/veh \| LOS	7.8						A					

## WOO-20-0.056-0.46 Traffic Study



## WOO-20-0.056-0.46 Traffic Study



Volume Adjustments and Site Characteristics

Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L.	T	R	U	L	T	R	U	L	T	R
Number of Lanes ( N )	0	0	1	1	0	0	2	0	0	1	1	0	0	0	1	0
Lane Assignment	LT		R		LT		TR		L		LTR				LTR	
Volume (V), veh/h	0	0	467	637	0	68	635	0	0	524	68	0	0	2	1	0
Percent Heavy Vehicles, \%	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
Flow Rate (Vpcz), pc/h	0	0	513	699	0	75	671	0	0	581	75	0	0	2	1	0
Right-Turn Bypass	None															
Conflicting Lanes	1				2				1				2			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

## Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s	4.5436	4.5436		4.6453	4.3276		4.5436	4.5436			4.3276	
Follow-Up Headway, s	2.5352	2.5352		2.6667	2.5352		2.5352	2.5352			2.5352	

## Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h	513	699		351	395		348	308			3	
Entry Volume, veh/h	508	692		344	388		341	302			3	
Circulating Flow ( $\mathrm{v}_{\mathrm{c}}$ ), pc/h	78			656			515			1327		
Exiting Flow (vex), pc/h	515			1252			75			775		
Capacity (cpee), pc/h	1323	1323		738	813		889	889			460	
Capacity (c), veh/h	1310	1310		724	797		871	871			446	
v/c Ratio (x)	0.39	0.53		0.47	0.49		0.39	0.35			0.01	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh	6.4	8.5		11.8	11.2		8.7	8.1			8.2	
Lane LOS	A	A		B	B		A	A			A	
95\% Queue, veh	1.9	3.3		2.7	2.8		1.9	1.6			0.0	
Approach Delay, s/veh	7.6			11.5			8.4			8.2		
Approach LOS	A			B			A			A		
Intersection Delay, s/veh \| LOS	8.9						A					

## WOO-20-0.056-0.46 Traffic Study

HCS Roundabouts Report																
General Information							Site Information									
Analyst	tsj								Intersection				Maumee Western Reserve-Fr...			
Agency or Co.	DGL Consulting Engineers								E/W Street Name				Maumee Western Reserve/Fr...			
Date Performed	8/25/2022								N/S Street Name				W Boundary			
Analysis Year	2042								Analysis Time Period, hrs				1.00			
Time Analyzed	2042 - PM Peak								Peak Hour Factor				0.92			
Project Description	Multi-Lane RAB Prop. Interse...								Jurisdiction				City of Perrysburg			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	$u$	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes ( N )	0	0	1	1	0	0	2	0	0	1	1	0	0	0	1	0
Lane Assignment	LT		R		LT		TR		L		LTR		LTR			
Volume (V), veh/h	0	0	596	823	0	76	815	0	0	893	0	84	0	2	1	0
Percent Heavy Vehicles, \%	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
Flow Rate (VEEE), pc/h	0	0	654	904	0	84	904	0	0	990	0	93	0	2	1	0
Right-Turn Bypass	None															
Conflicting Lanes	1				2				1				2			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

## Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s	4.5436	4.5436		4.6453	4.3276		4.5436	4.5436			4.3276	
Follow-Up Headway, s	2.5352	2.5352		2.6667	2.5352		2.5352	2.5352			2.5352	

## Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h	654	904		464	524		574	509			3	
Entry Volume, veh/h	648	895		455	513		563	499			3	
Circulating Flow (ve), pc/h	87			990			656			1978		
Exiting Flow (ve), pc/h	749			1894			0			989		
Capacity ( $\mathrm{Cpce}^{\text {c }}$ ) $\mathrm{pc} / \mathrm{h}$	1312	1312		543	612		782	782			264	
Capacity (c), veh/h	1299	1299		532	600		766	766			257	
v/c Ratio ( x )	0.50	0.69		0.86	0.86		0.73	0.65			0.01	

Delay and Level of Service

Approach   Lane	EB			WB			NB			SB		
	Left	Right	Bypass									
Lane Control Delay (d), s/veh	8.0	12.3		46.2	41.9		21.0	16.6			14.2	
Lane LOS	A	B		E	E		c	c			B	
95\% Queue, veh	3.0	6.4		13.2	13.5		7.7	5.4			0.0	
Approach Delay, s/veh	10.5			44.0			18.9			14.2		
Approach LOS	B			E			c			B		
Intersection Delay, s/veh \| LOS	22.1						C					

City of Perrysburg WOO-20-0.056-0.46 Traffic Study

## Appendix E Roundabout Preliminary Design

## Engineer's Cost Estimate

Project: MAUMEE WESTERN TRAFFIC STUD \begin{tabular}{ll}

Preliminary Estimate	Calculated By: CML
Checked By: $\underline{\text { LLA }}$	

\end{tabular}

Date: September 20, 2022

| Description | Quantity $\quad$ Unit $@$ Unit Cost $\quad=$ | Total Cost |
| :--- | :--- | :--- | :--- |

Section 001 Roundabout

Construction (Includes incidentals)	1	LS	@	\$	2,253,238.08	=	\$	2,253,238.08
Retaining Wall	21000.00	SQFT	@	\$	65.00	=	\$	1,365,000.00
Embankment	44000	CY	@	\$	15.00	=	\$	660,000.00
Roadway Total							\$	4,278,238.08

Section 004 New Park Road

Construction	1	LS	@	\$	161,730.00	=	\$	161,730.00
Embankment	2520	CY	@	\$	15.00	=	\$	37,800.00
Pavement Total							\$	199,530.00


Subtotal (Sections 001-011)	$\$$	$4,477,768.08$
Contingency	$30 \%$	$\$$
PROJECT TOTAL	$1,343,330.42$	




[^0]:    If no warrants are satisfied, additional options may be considered:

    1. An engineering study, performed by a firm prequalified by ODOT for signal design, if approved by the ODOT district, may be used to justify a new signal installation or retention of an existing signal that otherwise does not meet the published warrants. An example of such an instance is a traffic signal in proximity to a railroad crossing that serves to reduce queuing across the tracks.
    2. According to TEM 402-2, If the actual turning movement counts fail to satisfy a signal warrant, it may be acceptable to use traffic volumes projected to the second year after project completion. The Modeling and Forecasting Section should provide the projected traffic volumes.
    3. A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C of TEM) or at a location that meets traffic signal warrants under Sections 4C. 05 and/or 4C. 06 but a decision is made to not install a traffic control signal. Please fill inputs on PHB Score Sheet and submit to ODOT.

    Considerations such as geometrics and lack of sight distance generally have not been accepted in lieu of satisfying signal warrants. These considerations may allow an otherwise unwarranted traffic signal to be retained at $\mathbf{1 0 0}$ percent local cost. Please review TEM 402-4 for details.

