Step 1: **Before any work begins** complete and submit the application packet with the correct permit fee:
Permit fees are: New systems **$575.00**, Non-Conventional systems **$600.00**, Replacement systems, **$525.00**, Re-
placement Tank or Field, Modification or Greywater **$425** Surface Application **$500.00**, Privy **$300.00**, Commercial
system **<2000 Gal. Daily Residential Usage, $750.00**, As–built, **$2,000.00**, More than 2 Inspections, **$150.00**
each, payable to:

Fremont County Planning Department
450 North 2nd Street, Room 360
Lander, WY 82520

Please allow **2 WEEKS** to process the application. Incomplete applications will delay processing.
If you have any questions or need assistance contact the Planning Department at 332-1830 or 332-1077 or fax to 332-1177.

Marcel Lopez, Small Wastewater Specialist (332-1830 or 330-4010)
marcel.lopez@fremontcountywy.gov

Step 2: **To ensure compliance with State and Fremont County Regulations:** plan the layout for your home site, with the following minimum distance requirements in mind:

<table>
<thead>
<tr>
<th>From</th>
<th>To Septic Tank</th>
<th>To Leach field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wells (including neighboring wells)</td>
<td>50’</td>
<td>100’</td>
</tr>
<tr>
<td>Open waterway (including streams, lakes or ditches)</td>
<td>50’</td>
<td>50’</td>
</tr>
<tr>
<td>Potable water line</td>
<td>25’</td>
<td>25’</td>
</tr>
<tr>
<td>Building foundation (without foundation drain)</td>
<td>5’</td>
<td>10’</td>
</tr>
<tr>
<td>Building foundation (with foundation drain)</td>
<td>5’</td>
<td>25’</td>
</tr>
<tr>
<td>Break in slope greater than 15%</td>
<td>15’</td>
<td>15’</td>
</tr>
<tr>
<td>Property line</td>
<td>10’</td>
<td>10’</td>
</tr>
<tr>
<td>Septic tank</td>
<td>n/a</td>
<td>10’</td>
</tr>
</tbody>
</table>

Be sure to choose a site where the bottom of the leach field is at least 4 ft. above the high groundwater level and at least 4 ft. above any bedrock or impermeable soil layer. **As per Fremont County Regulations this will require a backhoe cut that is to be inspected by County personnel during a site evaluation.**

Step 3: Run percolation tests in the area of the proposed leach field rounding up to the nearest whole num-
ber. Instructions and forms are on pages 5-7 of the application.

Step 4: **Prior to construction, you must make an appointment for a site evaluation.** During the site evaluation we will provide specific information as to the size and configuration of the leach field, if the percolation test has been done.

Step 5: **Prior to backfilling, the system must be inspected by a representative of the Planning Department.** A 48-hour advance notice would be appreciated if possible.

IMPORTANT REMINDER: Before undertaking any excavation, contractors and landowners have a duty to call to locate any utilities buried beneath worksites. Public utilities have established a nationwide network. **This is a free public service & it's the law.** In Wyoming this service is called **One Call of Wyoming: (800) 849-2476 or 811.**

7/1/2022
EXAMPLE

Owner(s)
Name: John & Becky Smith
Mailing Address: 123 Washboard
Phone: 555-1234

Installer
Name: Owner or Contractor
Mailing Address: 55 Long Rd.
Phone: 555-1122

System Type, **Check One**: ☑ SEPTIC, ☐ GREYWATER, ☐ PRIVY, ☐ COMMERCIAL

1. Physical Address of Property: __101 Fake St.
2. Location of Property: Section _10_ T _2N_ R _3E_
3. Subdivision Name: __Freeland Estates__ Lot # _3_ Block# _N/A_
4. Lot Size: __5 1/2__ Acres
5. Type of building, **Circle One** (single family home/ mobile home/ office/ shop) other ____________
6. ____ basement, ____ floor drain, ____ garbage disposal, __x__ Water softener
 ____ community well, __X__ Private well, ____ cistern, ____ municipal (check all that apply)
7. Drain field site conditions: (a) Ground slope: __3__ %
 Circle One (b) Type of soil: sand, silt, clay, gravel, sandy clay, clay sand
 (c) Depth to peak groundwater is at least __8__ ft.,
 (d) Depth to impermeable soil/bedrock is at least __8__ ft.
8. **Septic Tank**: (a) Size: __1000__ Gallons (Minimum 1,000 gal. for 1 to 4 bedrooms. 5 bedrooms and up call for size)
 (b) Manufacturer: __The Concrete Place__
9. **Percolation Rate**: __25__ mpi (See page 8 for procedure and page 10 for data sheet)
10. **Loading Rate**: __.42__ gpd/s.f. (Locate your per-colation rate on the “Loading Rate Table "on page 12)
11. **DAILY FLOW RATE**: (INDICATE ONE) ☑ 1 Bedroom 150: ☑ 2 Bedroom 280: ☑ 3 Bedroom 390:
 ☑ 4 Bedroom 470: ☑ 5 Bedroom 550: ☑ 6 Bedroom 630.

eighty (80) gallons per day for each additional bedroom over six (6).
Unfinished basements are to be considered at no less than two (2) additional bedrooms.
Due to freezing conditions, add an additional 50 gallons per day to the small wastewater sewage flow for mobile homes.

Commercial Daily Flow Rate to be determined by Planning Department

I certify that the above described facility has been submitted in accordance with local, county and state statutes, as required, and that said facility shall be constructed as authorized under the provisions specified in Wyoming Water Quality Rules and Regulations, Chapter 25. This application is effective for a period of (1) year maximum from the date of this application

___ ____________________
Signature of Owner Date

7/1/2022
Owner(s) Installer
Name: _______________________________ Name: _______________________________
Mailing Address: _______________________________ Mailing Address: _______________________________
Phone: _______________________________ Phone: _______________________________

System Type: Check One: □ SEPTIC, □ GREYWATER, □ PRIVY, □ COMMERCIAL

1. Physical Address of Property: __

2. Location of Property: Section_____ T________ R_______

3. Subdivision Name: ___________________________________ Lot #____ Block#____

4. Lot Size:___________acres

5. Type of building, Circle One (single family home/ mobile home/ office/ shop) other___________

6. ____ basement, ____ floor drain, ____ garbage disposal, ____ water softener
 ____ community well, ____ private well, ____ cistern, ____ municipal (check all that apply)

7. Drain field site conditions: (a) Ground slope: ________%
 Circle One (b) Type of soil: (sand, silt, clay, gravel, sandy clay, clay sand)
 (c) Depth to peak groundwater is at least _____ ft.
 (d) Depth to impermeable soil/bedrock is at least _____ ft.

8. Septic Tank: (a) Size: _____gallons (Minimum 1,000 gal. for 1 to 4 bedrooms. 5 bedrooms and up call for TANK SIZE)
 (b) Manufacturer: ___

9. Percolation Rate: __________ mpi (See page 8 for procedure and page 10 for data sheet)

10. Loading Rate: _______gpd/s.f. (Locate your percolation rate on the “Loading Rate Table "on page 12)

11. DAILY FLOW RATE:(INDICATE ONE) □ 1 Bedroom 150: □ 2 Bedroom 280: □ 3 Bedroom 390:
 □ 4 Bedroom 470: □ 5 Bedroom 550 : □ 6 Bedroom 630.

** Add eighty (80) gallons per day for each additional bedroom over six (6).
Unfinished basements are to be considered at no less than two (2) additional bedrooms.
Due to freezing conditions, add an additional 50 gallons per day to the small wastewater sewage flow for mobile homes.

Commercial Daily Flow Rate to be determined by Planning Department

I certify that the above described facility has been submitted in accordance with local, county and state statutes, as required, and that said facility shall be constructed as authorized under the provisions specified in Wyoming Water Quality Rules and Regulations, Chapter 25. This application is effective for a period of (1) year maximum from the date of this application

___ ____________________
Signature of Owner Date

7/1/2022
Example

12. Drain field size calculations:

\[
\text{Daily Flow Rate} = \frac{630 \text{ gpd}}{.42 \text{ gpd/s.f.}} = 1,500 \text{ ft}^2
\]

13. Drain field layout:

(a) Type of system: (check one)
- Rock and perforated pipe Trench
- Rock and perforated pipe Bed
- X Chamber Trench system
- Chamber Bed system

(b) Request the appropriate design sheet during the pre-construction site evaluation with the Planning Department staff.

Construction Requirements

SEPTIC TANK

1. Tank design must comply with Wyoming DEQ standards.
2. The septic tank must contain baffles and/or “T’s” that extend into the middle third of the liquid depth. A minimum 20” man way must be installed for each compartment of the tank. The riser from the access opening shall terminate at a maximum of six (6) inches below the ground surface. Riser covers terminating above grade shall have an approved locking device.
3. Tank must be set on top of compacted or undisturbed soil.

BUILDING SEWER

1. All solid pipe between the house and the tank and between the tank and field must have a minimum slope of ¼” per foot (2%) for a 4” pipe.
2. The septic tank inlet and outlet pipes shall be 4” schedule 40 PVC and shall extend past the septic tank excavation to undisturbed soil.
3. Cleanouts shall be provided at least every 100 ft. and up grade of any change in alignment greater than 22.5 degrees. A cleanout just outside the house is required, regardless of the distance to the tank.

LEACHFIELD

1. Pipe and Stone Systems-A minimum of 6” of washed stone under the pipe and a minimum of 2” of washed stone over the pipe is required. The stone must be covered by filter cloth or 2” of straw before backfilling. Do not use plastic sheeting or tar paper.
2. The bottom of all beds and trenches must be level. And no deeper than 5 feet from finished grade.
3. A minimum of 12” of backfill is required to cover the field.
4. The field must be 15 ft. from the break in slope if the slope is steeper than 20%.

7/1/2022
12. Minimum square feet of infiltrative surface needed:

\[
\text{Daily Flow Rate} = \ \underline{\ \ \ \text{gpd}} \div \underline{\ \ \ \text{gpd/ft}}^2 = \underline{\ \ \ \text{ft}^2}
\]

Loading Rate = \ \underline{\ \ \ \text{gpd/ft}^2}

13. Drain field layout:

(a) Type of system: (check one)

- Rock and perforated pipe Trench
- Rock and perforated pipe Bed
- Chamber Trench system
- Chamber Bed system

(b) Request the appropriate design sheet during the pre-construction site evaluation with the Planning Department staff.

Construction Requirements

SEPTIC TANK

1. Tank design must comply with Wyoming DEQ standards.
2. The septic tank must contain baffles and/or “T’s” that extend into the middle third of the liquid depth. A minimum 20” man way must be installed for each compartment of the tank. The riser from the access opening shall terminate at a maximum of six (6) inches below the ground surface. Riser covers terminating above grade shall have an approved locking device.
3. Tank must be set on top of compacted or undisturbed soil.

BUILDING SEWER

1. All solid pipe between the house and the tank and between the tank and field must have a minimum slope of ¼” per foot (2%) for a 4” pipe.
2. The septic tank inlet and outlet pipes shall be 4” schedule 40 PVC and shall extend past the septic tank excavation to undisturbed soil.
3. Cleanouts shall be provided at least every 100 ft. and up grade of any change in alignment greater than 22.5 degrees. A cleanout just outside the house is required, regardless of the distance to the tank.

LEACHFIELD

1. Pipe and Stone Systems-A minimum of 6” of washed stone under the pipe and a minimum of 2” of washed stone over the pipe is required. The stone must be covered by filter cloth or 2” of straw before backfilling. Do not use plastic sheeting or tar paper.
2. The bottom of all beds and trenches must be level. And no deeper than 5 feet from finished grade
3. A minimum of 12” of backfill is required to cover the field.
4. The field must be 15 ft. from the break in slope if the slope is steeper than 20%.

7/1/2022
Example Plan

Make a drawing of your property, including:
1. property lines
2. all buildings
3. all wells within 200’
4. drinking water lines
5. streams, ditches, surface bodies of water
6. breaks in slope greater than 15%
7. septic tank
8. leach field
9. a NORTH ARROW
10. the road you will use to access the house
11. the driveway
12. an area for future installation of a REPLACEMENT LEACHFIELD

Show the relative distances of these features. See table below for minimum distance requirements.

<table>
<thead>
<tr>
<th>From</th>
<th>To Septic Tank</th>
<th>To Leachfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wells</td>
<td>50’</td>
<td>100’</td>
</tr>
<tr>
<td>Open waterway</td>
<td>50’</td>
<td>50’</td>
</tr>
<tr>
<td>Potable water line</td>
<td>25’</td>
<td>25’</td>
</tr>
<tr>
<td>Building foundation (without vent)</td>
<td>5’</td>
<td>10’</td>
</tr>
<tr>
<td>Building foundation (with vent)</td>
<td>5’</td>
<td>25’</td>
</tr>
<tr>
<td>Break in slope</td>
<td>15’</td>
<td>15’</td>
</tr>
<tr>
<td>Property line</td>
<td>10’</td>
<td>10’</td>
</tr>
<tr>
<td>Septic tank</td>
<td>N/A</td>
<td>10’</td>
</tr>
</tbody>
</table>

Reviewed by:

Date of Authorization:
Make a drawing of your property, including:
1. property lines
2. all buildings
3. all wells within 200’
4. drinking water lines
5. streams, ditches, surface bodies of water
6. breaks in slope greater than 15%
7. septic tank
8. leach field
9. a NORTH ARROW
10. the road you will use to access the house
11. the driveway
12. an area for future installation of a REPLACEMENT LEACHFIELD

Show the relative distances of these features. See table below for minimum distance requirements.

<table>
<thead>
<tr>
<th>From field</th>
<th>To Septic Tank</th>
<th>To Leach field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wells</td>
<td>50’</td>
<td>100’</td>
</tr>
<tr>
<td>Open waterway</td>
<td>50’</td>
<td>50’</td>
</tr>
<tr>
<td>Potable water line</td>
<td>25’</td>
<td>25’</td>
</tr>
<tr>
<td>Building foundation (without vent)</td>
<td>5’</td>
<td>10’</td>
</tr>
<tr>
<td>Building foundation (with vent)</td>
<td>5’</td>
<td>25’</td>
</tr>
<tr>
<td>Break in slope</td>
<td>15’</td>
<td>15’</td>
</tr>
<tr>
<td>Property line</td>
<td>10’</td>
<td>10’</td>
</tr>
<tr>
<td>Septic tank</td>
<td>N/A</td>
<td>10’</td>
</tr>
</tbody>
</table>

Reviewed by:

Date of Authorization:
Percolation Test Instructions

In order for a septic system to perform properly, the wastewater must move through the soil at an ideal rate, neither too fast nor too slow. A percolation test estimates the rate at which the water will percolate, or move, through the soil. The information provided by percolation tests is necessary to design leach fields correctly. Follow the steps below to complete a percolation test.

Location of Percolation Test Holes. The percolation (perc) test holes must be spaced uniformly over the proposed leach field site. A minimum of three (3) test holes are required, although you can use more if desired.

Test Hole Preparation. Dig or bore each hole 12 inches wide and as deep as the proposed depth of the leach field (usually between 30 and 40 inches). Make sure the sides are vertical and scrape the sides and bottom of the hole with a sharp pointed instrument to restore a natural soil surface. Remove loose soil from the hole and place 2 inches of coarse sand, washed gravel, or crushed stone in the bottom in order to prevent scouring or sealing.

Presoaking. Presoaking is absolutely required to get valid percolation test results. Presoaking allows the water conditions in the test hole to reach a stable condition that is similar to a leach field. Presoaking time varies with soil conditions, but presoak holes for at least 4 hours. Maintain at least 18 inches of water in the test holes for at least 4 hours, then allow the soil to swell for 12 hours (overnight is good) before starting the perc test.

For sandy or loose soils, add 18 inches of water above the gravel or coarse sand. If the 18 inches of water seeps away in 18 minutes or less, add 18 inches of water a second time. If the second filling of 18 inches of water seeps away in 18 minutes or less, the soil is excessively permeable and the site is unsuitable for a conventional disposal system. If this is the case, contact your county small wastewater permitting authority or DEQ district office.

Perc Rate Measurements. Fill each hole with 12 inches of water and let the soil re-hydrate for 15 minutes prior to taking any measurements. Establish a fixed reference point such as a flat board placed across the top of the hole to measure the incremental water level drop at the constant time intervals. Measure the water level drop to the nearest 1/8 of an inch with a minimum time interval of 10 minutes. Normal time intervals are usually 10 or 15 minutes.

Refill the test hole to 12 inches above the gravel before starting the measurements. Measure down to the water from the fixed reference point. Record this value on the first line in the perc test data sheet (Page 10). Take another measurement after the time interval has elapsed and record on the second line of the table. Calculate the water level drop and record in the table.

Continue the test until the water level drop rate has stabilized, i.e. three consecutive measurements within 1/8 inch of each other. Before the water level drops below 1 inch above the gravel, refill the test hole to 12 inches. Some test holes may take longer to stabilize than others. If the drop rate continues to fluctuate, use the smallest drop rate out of the last six intervals for your calculations.
PERCOLATION TEST RESULTS

1. Performed by: Mike Plumber
Test date (s): 6/23 & 6/24, 2018
Credentials or status of tester: CONTRACTOR
(Owner Contractor Installer engineer geologist, sanitarian, soil scientist, or other)

2. The **time interval** between water level measurements was: 10 minutes.

3. **TEST DATA:** The test holes were **PRESOAKED** for: ___ Hours, or ___ overnight.

Do not perform percolation test if ground is frozen or if groundwater is present in holes. Holes must be 12 inches in diameter and evenly spaced over the leach field area. Roughen sides and bottoms of holes and place 2 inches of gravel in each hole.

<table>
<thead>
<tr>
<th>Hole # (Required)</th>
<th>Hole # (Required)</th>
<th>Hole # (Required)</th>
<th>Hole # (Optional)</th>
<th>Hole # (Optional)</th>
<th>Hole # (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of Hole:</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measure to nearest 1/8 inch</td>
</tr>
<tr>
<td></td>
<td>Water Level</td>
<td>Drop</td>
<td>Water Level</td>
<td>Drop</td>
<td>Water Level</td>
</tr>
<tr>
<td>0</td>
<td>17”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18 ⅓”</td>
<td>1 ¼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19 ¼”</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>20 ¾</td>
<td>¾</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>20 ⅛</td>
<td>⅛</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>15 ⅓</td>
<td>RE-FILL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>15 ½</td>
<td>½</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>15 ⅜</td>
<td>⅝</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>16 ⅜</td>
<td>⅜</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Water level drop Between intervals**
- **Refill hole if needed and re-measure Actual water level**
- **Continue the test until 3 consecutive “drops” are the same to within 1/8 inch total variation**

Time Interval (minutes): 10
Final Interval Drop (inches): ½
Perc Rate (min/inch): 20 MPI

A. If **6 or more holes** were tested, the **average perc rate was:** NA mpi or
B. If **3 to 5 holes** were tested, the **slowest perc rate (largest number) was:** 20 mpi
PERCOLATION TEST RESULTS

1. Performed by: ___________________________ Test date (s): _____________________
 Credentials or status of tester: ___________________ (Owner Contractor Installer
 engineer geologist, sanitarian, soil scientist, or other)
2. The time interval between water level measurements was: ____ minutes.
3. TEST DATA: The test holes were PRESOAKED for: ____ Hours, or ____ overnight.

Do not perform percolation test if ground is frozen or if groundwater is present in holes. Holes must be 12 inches in diameter and evenly spaced over the leach field area. Roughen sides and bottoms of holes and place 2 inches of gravel in each hole.

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Hole #1 (Required)</th>
<th>Hole #2 (Required)</th>
<th>Hole #3 (Required)</th>
<th>Hole #4 (Optional)</th>
<th>Hole #5 (Optional)</th>
<th>Hole #6 (Optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (Min)</td>
<td>Depth of Hole:</td>
<td>Measure to nearest 1/8 inch</td>
</tr>
<tr>
<td>Water Level</td>
<td>Water Level Drop</td>
</tr>
</tbody>
</table>

A. If 6 or more holes were tested, the average perc rate was: _____ mpi or
B. If 3 to 5 holes were tested, the slowest perc rate (largest number) was: ______ mpi

7/1/2022
Wyoming DEQ Rules and Regulations Chapter 25 Section 8 allows for a 30% reduction in the leach field area when using chambers in place of traditional pipe and stone systems. To calculate the reduction in square footage required to achieve the same amount of infiltrative surface as pipe trenches or beds, use the dimensions provided by the chamber manufacturer. In a trench configuration, the equivalent area is equal to Length * [(Chamber Width * 1.43) + (2 * Effective Sidewall Height)]. In a bed configuration the sidewall is not counted, so the equivalent area is equal to Length * (Chamber Width * 1.43). Use dimensions provided in the table below to design leach fields utilizing chamber technology on pages 16 (chamber trenches) or 20 (chamber beds) of the application package.

Commonly used chambers in Fremont County in RED

Table 1. Chamber System Equivalent Areas

<table>
<thead>
<tr>
<th>Chamber Class</th>
<th>Chamber Name</th>
<th>Nominal Dimensions</th>
<th>Effective Dimensions</th>
<th>Equivalent Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length (ft)</td>
<td>Width (in)</td>
<td>Height (in)</td>
</tr>
<tr>
<td>High Capacity</td>
<td>Quick4 High Capacity</td>
<td>4.4</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Quick4 Plus High Capacity</td>
<td>4.4</td>
<td>34</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Arc 36 High Capacity</td>
<td>5.3</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>BioDiffuser 16" High Capacity</td>
<td>6.3</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Standard</td>
<td>Quick4 Standard</td>
<td>4.4</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Quick4 Plus Standard</td>
<td>4.4</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Arc 36</td>
<td>5.3</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>BioDiffuser 11" Standard</td>
<td>6.3</td>
<td>34</td>
<td>11</td>
</tr>
<tr>
<td>Standard Low Profile</td>
<td>Quick4 Plus Standard LP</td>
<td>4.4</td>
<td>34</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Arc 36 LP</td>
<td>5.3</td>
<td>34</td>
<td>8</td>
</tr>
<tr>
<td>Narrow</td>
<td>Quick4 Equalizer 36</td>
<td>4.4</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Arc 24</td>
<td>5.6</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BioDiffuser Bio 3</td>
<td>7.3</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Narrow LP</td>
<td>Quick4 Plus Equalizer 36 LP</td>
<td>4.4</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Ultra- Narrow</td>
<td>Quick4 Equalizer 24</td>
<td>4.4</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Arc 18</td>
<td>5.6</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BioDiffuser Bio 2</td>
<td>7.3</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Ultra- Narrow LP</td>
<td>Quick4 Equalizer 24 LP</td>
<td>4.4</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

1: The equivalent areas calculation used the outside width of the chamber.
2: The effective height is the height of the slotted sidewall of the chamber or depth below the flow line of the inlet pipe, whichever is less.

12/1/2020
LOADING RATE TABLE

<table>
<thead>
<tr>
<th>Percolation Rate (mpi)</th>
<th>Loading Rate (gpd/ft²)</th>
<th>Percolation Rate (mpi)</th>
<th>Loading Rate (gpd/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.80</td>
<td>21</td>
<td>0.45</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>22</td>
<td>0.44</td>
</tr>
<tr>
<td>7</td>
<td>0.71</td>
<td>23-24</td>
<td>0.43</td>
</tr>
<tr>
<td>8</td>
<td>0.68</td>
<td>25</td>
<td>0.42</td>
</tr>
<tr>
<td>9</td>
<td>0.65</td>
<td>26-27</td>
<td>0.41</td>
</tr>
<tr>
<td>10</td>
<td>0.62</td>
<td>28-29</td>
<td>0.40</td>
</tr>
<tr>
<td>11</td>
<td>0.60</td>
<td>30-31</td>
<td>0.39</td>
</tr>
<tr>
<td>12</td>
<td>0.58</td>
<td>32-33</td>
<td>0.38</td>
</tr>
<tr>
<td>13</td>
<td>0.56</td>
<td>34-35</td>
<td>0.37</td>
</tr>
<tr>
<td>14</td>
<td>0.54</td>
<td>36-37</td>
<td>0.36</td>
</tr>
<tr>
<td>15</td>
<td>0.52</td>
<td>38-40</td>
<td>0.35</td>
</tr>
<tr>
<td>16</td>
<td>0.50</td>
<td>41-43</td>
<td>0.34</td>
</tr>
<tr>
<td>17</td>
<td>0.49</td>
<td>44-46</td>
<td>0.33</td>
</tr>
<tr>
<td>18</td>
<td>0.48</td>
<td>47-50</td>
<td>0.32</td>
</tr>
<tr>
<td>19</td>
<td>0.47</td>
<td>51-55</td>
<td>0.31</td>
</tr>
<tr>
<td>20</td>
<td>0.46</td>
<td>56-60</td>
<td>0.30</td>
</tr>
</tbody>
</table>

NOTE - If the perc rate for your site is less than 5 mpi or greater than 60 mpi, you cannot use this generic application package. You must hire a Wyoming Registered Professional Engineer and submit an application customized for your specific site conditions.

12/1/2020